
Global
edition

Software Engineering
TENTH edition

Ian Sommerville

Software Engineering
Tenth Edition

Ian Sommerville

Boston   Columbus   Indianapolis   New York   San Francisco   Hoboken

Amsterdam   Cape Town   Dubai   London   Madrid   Milan   Munich   Paris   Montreal   Toronto

Delhi   Mexico City   São Paulo   Sydney   Hong Kong   Seoul   Singapore   Taipei   Tokyo

Editorial Director: Marcia Horton
Editor in Chief: Michael Hirsch
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Chelsea Bell
Assistant Acquisitions Editor, Global
  Edition: Murchana Borthakur
Associate Project Editor, Global
  Edition: Binita Roy
Managing Editor: Jeff Holcomb
Senior Production Project
  Manager: Marilyn Lloyd
Director of Marketing: Margaret Waples

Marketing Coordinator: Kathryn Ferranti
Senior Manufacturing Buyer: Carol Melville
Senior Manufacturing Controller, Production,
  Global Edition: Trudy Kimber
Text Designer: Susan Raymond
Cover Art Designer: Lumina Datamatics
Cover Image: © Andrey Bayda/Shutterstock
Interior Chapter Opener: © graficart.net/Alamy
Full-Service Project Management: Rashmi
  Tickyani, Aptara®, Inc.
Composition and Illustrations: Aptara®, Inc.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The rights of Ian Sommerville to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Software Engineering, 10th edition, ISBN
978-0-13-394303-0, by Ian Sommerville, published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without either the prior written permission of the publisher or a license permitting restricted copying in
the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street,
London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this
text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does
the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 1-292-09613-6
ISBN 13: 978-1-292-09613-1

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

Typeset in 9 New Aster LT Std by Aptara®, Inc.

Printed and bound by Courier Westford in the United States of America.

http://www.pearsonglobaleditions.com

Progress in software engineering over the last 50 years has been astonishing. Our
societies could not function without large professional software systems. National
utilities and infrastructure—energy, communications and transport—all rely on
complex and mostly reliable computer systems. Software has allowed us to explore
space and to create the World Wide Web—the most significant information system
in the history of mankind. Smartphones and tablets are ubiquitous and an entire ‘apps
industry’ developing software for these devices has emerged in the past few years.

Humanity is now facing a demanding set of challenges—climate change and
extreme weather, declining natural resources, an increasing world population to be fed
and housed, international terrorism, and the need to help elderly people lead satisfying
and fulfilled lives. We need new technologies to help us address these challenges and,
for sure, software will have a central role in these technologies. Software engineering
is, therefore, critically important for our future on this planet. We have to continue to
educate software engineers and develop the discipline so that we meet the demand for
more software and create the increasingly complex future systems that we need.

Of course, there are still problems with software projects. Systems are still some-
times delivered late and cost more than expected. We are creating increasingly com-
plex software systems of systems and we should not be surprised that we encounter
difficulties along the way. However, we should not let these problems conceal the
real successes in software engineering and the impressive software engineering
methods and technologies that have been developed.

This book, in different editions, has now been around for over 30 years and this edi-
tion is based around the essential principles that were established in the first edition:

1.	 I write about software engineering as it is practiced in industry, without taking
an evangelical position on particular approaches such as agile development or
formal methods. In reality, industry mixes techniques such as agile and plan-
based development and this is reflected in the book.

Preface

4    Preface

2.	 I write about what I know and understand. I have had many suggestions for
additional topics that might be covered in more detail such as open source
development, the use of the UML and mobile software engineering. But I don’t
really know enough about these areas. My own work has been in system depend-
ability and in systems engineering and this is reflected in my selection of
advanced topics for the book.

I believe that the key issues for modern software engineering are managing com-
plexity, integrating agility with other methods and ensuring that our systems are
secure and resilient. These issues have been the driver for the changes and additions
in this new edition of my book.

Changes from the 9th edition

In summary, the major updates and additions in this book from the 9th edition are:

•	 I have extensively updated the chapter on agile software engineering, with new
material on Scrum. I have updated other chapters as required to reflect the increas-
ing use of agile methods of software engineering.

•	 I have added new chapters on resilience engineering, systems engineering, and
systems of systems.

•	 I have completely reorganized three chapters covering reliability, safety, and security.

•	 I have added new material on RESTful services to the chapter covering service-
oriented software engineering.

•	 I have revised and updated the chapter on configuration management with new
material on distributed version control systems.

•	 I have moved chapters on aspect-oriented software engineering and process
improvement from the print version of the book to the web site.

•	 New supplementary material has been added to the web site, including a set of
supporting videos. I have explained key topics on video and recommended related
YouTube videos.

The 4-part structure of the book, introduced in earlier editions, has been retained
but I have made significant changes in each part of the book.

1.	 In Part 1, Introduction to software engineering, I have completely rewritten
Chapter 3 (agile methods) and updated this to reflect the increasing use of Scrum.
A new case study on a digital learning environment has been added to Chapter 1
and is used in a number of chapters. Legacy systems are covered in more detail
in Chapter 9. Minor changes and updates have been made to all other chapters.

	 Preface    5

2.	 Part 2, which covers dependable systems, has been revised and restructured.
Rather than an activity-oriented approach where information on safety, security
and reliability is spread over several chapters, I have reorganized this so that
each topic has a chapter in its own right. This makes it easier to cover a single
topic, such as security, as part of a more general course. I have added a com-
pletely new chapter on resilience engineering which covers cybersecurity,
organizational resilience, and resilient systems design.

3.	 In Part 3, I have added new chapters on systems engineering and systems of
systems and have extensively revised the material on service-oriented systems
engineering to reflect the increasing use of RESTful services. The chapter on
aspect-oriented software engineering has been deleted from the print version but
remains available as a web chapter.

4.	 In Part 4, I have updated the material on configuration management to reflect
the increasing use of distributed version control tools such as Git. The chapter
on process improvement has been deleted from the print version but remains
available as a web chapter.

An important change in the supplementary material for the book is the addition of
video recommendations in all chapters. I have made over 40 videos on a range of topics
that are available on my YouTube channel and linked from the book’s web pages. In cases
where I have not made videos, I have recommended YouTube videos that may be useful.

I explain the rationale behind the changes that I’ve made in this short video:
http://software-engineering-book/videos/10th-edition-changes

Readership

The book is primarily aimed at university and college students taking introductory
and advanced courses in software and systems engineering. I assume that readers
understand the basics of programming and fundamental data structures.

Software engineers in industry may find the book useful as general reading and to
update their knowledge on topics such as software reuse, architectural design,
dependability and security and systems engineering.

Using the book in software engineering courses

I have designed the book so that it can be used in three different types of software
engineering course:

1.	� General introductory courses in software engineering. The first part of the book
has been designed to support a 1-semester course in introductory software engi-
neering. There are 9 chapters that cover fundamental topics in software engineering.

http://software-engineering-book/videos/10th-edition-changes

If your course has a practical component, management chapters in Part 4 may be
substituted for some of these.

  2.	� Introductory or intermediate courses on specific software engineering topics.
You can create a range of more advanced courses using the chapters in parts
2–4. For example, I have taught a course in critical systems using the chapters in
Part 2 plus chapters on systems engineering and quality management. In a course
covering software-intensive systems engineering, I used chapters on systems
engineering, requirements engineering, systems of systems, distributed software
engineering, embedded software, project management and project planning.

  3.	� More advanced courses in specific software engineering topics. In this case, the
chapters in the book form a foundation for the course. These are then supple-
mented with further reading that explores the topic in more detail. For example,
a course on software reuse could be based around Chapters 15–18.

Instructors may access additional teaching support material from Pearson’s website.
Some of this is password-protected and instructors using the book for teaching can
obtain a password by registering at the Pearson website. The material available includes:

•	 Model answers to selected end of chapter exercises.

•	 Quiz questions and answers for each chapter.

You can access this material at:
www.pearsonglobaleditions.com/Sommerville

Book website

This book has been designed as a hybrid print/web text in which core information in the
printed edition is linked to supplementary material on the web. Several chapters include
specially written ‘web sections’ that add to the information in that chapter. There are also
six ‘web chapters’ on topics that I have not covered in the print version of the book.

You can download a wide range of supporting material from the book’s website
(software-engineering-book.com) including:

•	 A set of videos where I cover a range of software engineering topics. I also rec-
ommend other YouTube videos that can support learning.

•	 An instructor’s guide that gives advice on how to use the book in teaching differ-
ent courses.

•	 Further information on the book’s case studies (insulin pump, mental health care
system, wilderness weather system, digital learning system), as well other case
studies, such as the failure of the Ariane 5 launcher.

6    Preface

http://www.pearsonglobaleditions.com/Sommerville

•	 Six web chapters covering process improvement, formal methods, interaction
design, application architectures, documentation and aspect-oriented development.

•	 Web sections that add to the content presented in each chapter. These web sec-
tions are linked from breakout boxes in each chapter.

•	 PowerPoint presentations for all of the chapters in the book and additional
PowerPoint presentations covering a range of systems engineering topics are
available at pearsonglobaleditions.com/Sommerville.

In response to requests from users of the book, I have published a complete
requirements specification for one of the system case studies on the book’s web site.
It is difficult for students to get access to such documents and so understand their
structure and complexity. To avoid confidentiality issues, I have re-engineered the
requirements document from a real system so there are no restrictions on its use.

Contact details

Website: software-engineering-book.com
Email: name: software.engineering.book; domain: gmail.com
Blog: iansommerville.com/systems-software-and-technology
YouTube: youtube.com/user/SoftwareEngBook
Facebook: facebook.com/sommerville.software.engineering
Twitter: @SoftwareEngBook or @iansommerville (for more general tweets)

Follow me on Twitter or Facebook to get updates on new material and comments on
software and systems engineering.

Acknowledgements

A large number of people have contributed over the years to the evolution of this
book and I’d like to thank everyone (reviewers, students and book users) who have
commented on previous editions and made constructive suggestions for change. I’d
particularly like to thank my family, Anne, Ali, and Jane, for their love, help and
support while I was working on this book (and all of the previous editions).

Ian Sommerville,
September 2014

	 Preface    7

Contents at a glance

Preface	 3

	 Part 1	 Introduction to Software Engineering	 15
	 Chapter 1	 Introduction 	 17
	 Chapter 2	 Software processes 	 43
	 Chapter 3	 Agile software development 	 72
	 Chapter 4	 Requirements engineering 	 101
	 Chapter 5	 System modeling 	 138
	 Chapter 6	 Architectural design 	 167
	 Chapter 7	 Design and implementation 	 196
	 Chapter 8	 Software testing 	 226
	 Chapter 9	 Software evolution 	 255

	 Part 2	 System Dependability and Security	 283
	 Chapter 10	 Dependable systems 	 285
	 Chapter 11	 Reliability engineering 	 306
	 Chapter 12	 Safety engineering 	 339
	 Chapter 13	 Security engineering 	 373
	 Chapter 14	 Resilience engineering 	 408

	 Part 3	 Advanced Software Engineering	 435
	 Chapter 15	 Software reuse 	 437
	 Chapter 16	 Component-based software engineering 	 464
	 Chapter 17	 Distributed software engineering 	 490
	 Chapter 18	 Service-oriented software engineering 	 520
	 Chapter 19	 Systems engineering 	 551
	 Chapter 20	 Systems of systems 	 580
	 Chapter 21	 Real-time software engineering 	 610

	 Part 4	 Software management	 639
	 Chapter 22	 Project management 	 641
	 Chapter 23	 Project planning 	 667
	 Chapter 24	 Quality management 	 700
	 Chapter 25	 Configuration management 	 730

Glossary	 757

Subject index	 777

Author index	 803

�Pearson wishes to thank and acknowledge the following people for their work on the Global Edition:

Contributor

Sherif G. Aly, The American University in Cairo

Muthuraj M., Android developer

Reviewers

Mohit P. Tahiliani, National Institute of Technology Karnataka, Surathkal

Chitra Dhawale, P. R. Patil Group of Educational Institutes, Amravati

Sanjeevni Shantaiya, Disha Institute of Management & Technology

Contents

Preface	 3

	 Part 1	 Introduction to Software Engineering	 15

	 Chapter 1	 Introduction 	 17

1.1 	 Professional software development 	 19

1.2 	 Software engineering ethics 	 28

1.3 	 Case studies 	 31

	 Chapter 2	 Software processes 	 43

2.1 	 Software process models 	 45

2.2 	 Process activities 	 54

2.3 	 Coping with change 	 61

2.4 	 Process improvement 	 65

	 Chapter 3	 Agile software development 	 72

3.1 	 Agile methods 	 75

3.2 	 Agile development techniques 	 77

3.3 	 Agile project management 	 84

3.4 	 Scaling agile methods 	 88

10    Contents

	 Chapter 4	 Requirements engineering 	 101

4.1 	 Functional and non-functional requirements 	 105

4.2 	 Requirements engineering processes 	 111

4.3 	 Requirements elicitation 	 112

4.4 	 Requirements specification 	 120

4.5 	 Requirements validation 	 129

4.6 	 Requirements change 	 130

	 Chapter 5	 System modeling 	 138

5.1 	 Context models 	 141

5.2 	 Interaction models 	 144

5.3 	 Structural models 	 149

5.4 	 Behavioral models 	 154

5.5 	M odel-driven architecture 	 159

	 Chapter 6	 Architectural design 	 167

6.1 	 Architectural design decisions 	 171

6.2 	 Architectural views 	 173

6.3 	 Architectural patterns 	 175

6.4 	 Application architectures 	 184

	 Chapter 7	 Design and implementation 	 196

7.1 	 Object-oriented design using the UML 	 198

7.2 	 Design patterns 	 209

7.3 	 Implementation issues 	 212

7.4 	 Open-source development 	 219

	 Chapter 8	 Software testing 	 226

8.1 	 Development testing 	 231

8.2 	 Test-driven development 	 242

	 Contents    11

8.3 	 Release testing 	 245

8.4 	 User testing 	 249

	 Chapter 9	 Software evolution 	 255

9.1 	 Evolution processes 	 258

9.2 	 Legacy systems 	 261

9.3 	 Software maintenance 	 270

	 Part 2	 System Dependability and Security	 283

	 Chapter 10	 Dependable systems 	 285

10.1 	Dependability properties 	 288

10.2 	Sociotechnical systems 	 291

10.3 	Redundancy and diversity 	 295

10.4 	Dependable processes 	 297

10.5 	Formal methods and dependability 	 299

	 Chapter 11	 Reliability engineering 	 306

11.1 	Availability and reliability 	 309

11.2 	Reliability requirements 	 312

11.3 	Fault-tolerant architectures 	 318

11.4 	Programming for reliability 	 325

11.5 	Reliability measurement 	 331

	 Chapter 12	 Safety engineering 	 339

12.1 	Safety-critical systems 	 341

12.2 	Safety requirements 	 344

12.3 	Safety engineering processes 	 352

12.4 	Safety cases 	 361

	 Chapter 13	 Security engineering 	 373

13.1 	Security and dependability 	 376

13.2 	Security and organizations 	 380

13.3 	Security requirements 	 382

13.4 	Secure systems design 	 388

13.5 	Security testing and assurance 	 402

	 Chapter 14	 Resilience engineering 	 408

14.1 	Cybersecurity 	 412

14.2 	Sociotechnical resilience 	 416

14.3 	Resilient systems design 	 424

	 Part 3	 Advanced Software Engineering	 435

	 Chapter 15	 Software reuse 	 437

15.1 	The reuse landscape 	 440

15.2 	Application frameworks 	 443

15.3 	Software product lines 	 446

15.4 	Application system reuse 	 453

	 Chapter 16	 Component-based software engineering 	 464

16.1 	Components and component models 	 467

16.2 	CBSE processes 	 473

16.3 	Component composition 	 480

	 Chapter 17	 Distributed software engineering 	 490

17.1 	Distributed systems 	 492

17.2 	Client–server computing 	 499

12    Contents

17.3 	Architectural patterns for distributed systems 	 501

17.4 	Software as a service 	 512

	 Chapter 18	 Service-oriented software engineering 	 520

18.1 	Service-oriented architecture 	 524

18.2 	RESTful services 	 529

18.3 	Service engineering 	 533

18.4 	Service composition 	 541

	 Chapter 19	 Systems engineering 	 551

19.1 	Sociotechnical systems 	 556

19.2 	Conceptual design 	 563

19.3 	System procurement 	 566

19.4 	System development 	 570

19.5 	System operation and evolution 	 574

	 Chapter 20	 Systems of systems 	 580

20.1 	System complexity 	 584

20.2 	Systems of systems classification 	 587

20.3 	Reductionism and complex systems 	 590

20.4 	Systems of systems engineering 	 593

20.5 	Systems of systems architecture 	 599

	 Chapter 21	 Real-time software engineering 	 610

21.1 	Embedded system design 	 613

21.2 	Architectural patterns for real-time software 	 620

21.3 	Timing analysis 	 626

21.4 	Real-time operating systems 	 631

	 Contents    13

	 Part 4	 Software Management	 639

	 Chapter 22	 Project management 	 641

22.1 	Risk management 	 644

22.2 	Managing people 	 652

22.3 	Teamwork 	 656

	 Chapter 23	 Project planning 	 667

23.1 	Software pricing 	 670

23.2 	Plan-driven development 	 672

23.3 	Project scheduling 	 675

23.4 	Agile planning 	 680

23.5 	Estimation techniques 	 682

23.6 	COCOMO cost modeling 	 686

	 Chapter 24	 Quality management 	 700

24.1 	Software quality 	 703

24.2 	Software standards 	 706

24.3 	Reviews and inspections 	 710

24.4 	Quality management and agile development 	 714

24.5 	Software measurement 	 716

	 Chapter 25	 Configuration management 	 730

25.1 	Version management 	 735

25.2 	System building 	 740

25.3 	Change management 	 745

25.4 	Release management 	 750

Glossary 	 757
Subject index 	 777
Author index 	 803

14    Contents

PART

My aim in this part of the book is to provide a general introduction to soft-
ware engineering. The chapters in this part have been designed to support
a one-semester first course in software engineering. I introduce impor-
tant concepts such as software processes and agile methods, and describe
essential software development activities, from requirements specification
through to system evolution.

Chapter 1 is a general introduction that introduces professional software
engineering and defines some software engineering concepts. I have also
included a brief discussion of ethical issues in software engineering. It is
important for software engineers to think about the wider implications of
their work. This chapter also introduces four case studies that I use in the
book. These are an information system for managing records of patients
undergoing treatment for mental health problems (Mentcare), a control
system for a portable insulin pump, an embedded system for a wilder-
ness weather station and a digital learning environment (iLearn).

Chapters 2 and 3 cover software engineering processes and agile devel-
opment. In Chapter 2, I introduce software process models, such as the
waterfall model, and I discuss the basic activities that are part of these
processes. Chapter 3 supplements this with a discussion of agile devel-
opment methods for software engineering. This chapter had been

 1 Introduction
to Software
Engineering

extensively changed from previous editions with a focus on agile devel-
opment using Scrum and a discussion of agile practices such as stories
for requirements definition and test-driven development.

The remaining chapters in this part are extended descriptions of the
software process activities that are introduced in Chapter 2. Chapter 4
covers the critically important topic of requirements engineering, where
the requirements for what a system should do are defined. Chapter 5
explains system modeling using the UML, where I focus on the use of
use case diagrams, class diagrams, sequence diagrams and state dia-
grams for modeling a software system. In Chapter 6, I discuss the impor-
tance of software architecture and the use of architectural patterns in
software design.

Chapter 7 introduces object oriented design and the use of design pat-
terns. I also introduce important implementation issues here—reuse,
configuration management and host-target development and discuss
open source development. Chapter 8 focuses on software testing from
unit testing during system development to the testing of software
releases. I also discuss the use of test-driven development—an
approach pioneered in agile methods but which has wide applicabil-
ity. Finally, Chapter 9 presents an overview of software evolution
issues. I cover evolution processes, software maintenance and legacy
system management.

Introduction
1

Objectives
The objectives of this chapter are to introduce software engineering and
to provide a framework for understanding the rest of the book. When you
have read this chapter, you will:

■	 understand what software engineering is and why it is important;

■	 understand that the development of different types of software
system may require different software engineering techniques;

■	 understand ethical and professional issues that are important
for software engineers;

■	 have been introduced to four systems, of different types, which are
used as examples throughout the book.

Contents
1.1 	Professional software development

1.2 	Software engineering ethics

1.3 	Case studies

18    Chapter 1  ■  Introduction

Software engineering is essential for the functioning of government, society, and national
and international businesses and institutions. We can’t run the modern world without
software. National infrastructures and utilities are controlled by computer-based systems,
and most electrical products include a computer and controlling software. Industrial
manufacturing and distribution is completely computerized, as is the financial system.
Entertainment, including the music industry, computer games, and film and television, is
software-intensive. More than 75% of the world’s population have a software-controlled
mobile phone, and, by 2016, almost all of these will be Internet-enabled.

Software systems are abstract and intangible. They are not constrained by the prop-
erties of materials, nor are they governed by physical laws or by manufacturing pro-
cesses. This simplifies software engineering, as there are no natural limits to the potential
of software. However, because of the lack of physical constraints, software systems can
quickly become extremely complex, difficult to understand, and expensive to change.

There are many different types of software system, ranging from simple embed-
ded systems to complex, worldwide information systems. There are no universal
notations, methods, or techniques for software engineering because different types
of software require different approaches. Developing an organizational information
system is completely different from developing a controller for a scientific instru-
ment. Neither of these systems has much in common with a graphics-intensive com-
puter game. All of these applications need software engineering; they do not all need
the same software engineering methods and techniques.

There are still many reports of software projects going wrong and of “software
failures.” Software engineering is criticized as inadequate for modern software
development. However, in my opinion, many of these so-called software failures
are a consequence of two factors:

1.	 Increasing system complexity As new software engineering techniques help us
to build larger, more complex systems, the demands change. Systems have to be
built and delivered more quickly; larger, even more complex systems are
required; and systems have to have new capabilities that were previously
thought to be impossible. New software engineering techniques have to be
developed to meet new the challenges of delivering more complex software.

2.	 Failure to use software engineering methods It is fairly easy to write computer
programs without using software engineering methods and techniques. Many
companies have drifted into software development as their products and ser-
vices have evolved. They do not use software engineering methods in their every-
day work. Consequently, their software is often more expensive and less reliable
than it should be. We need better software engineering education and training to
address this problem.

Software engineers can be rightly proud of their achievements. Of course, we still
have problems developing complex software, but without software engineering we
would not have explored space and we would not have the Internet or modern tele-
communications. All forms of travel would be more dangerous and expensive.
Challenges for humanity in the 21st century are climate change, fewer natural

	 1.1  ■  Professional software development    19

resources, changing demographics, and an expanding world population. We will rely
on software engineering to develop the systems that we need to cope with these issues.

	 1.1	 Professional software development

Lots of people write programs. People in business write spreadsheet programs to
simplify their jobs; scientists and engineers write programs to process their experi-
mental data; hobbyists write programs for their own interest and enjoyment.
However, most software development is a professional activity in which software is
developed for business purposes, for inclusion in other devices, or as software prod-
ucts such as information systems and computer-aided design systems. The key dis-
tinctions are that professional software is intended for use by someone apart from its
developer and that teams rather than individuals usually develop the software. It is
maintained and changed throughout its life.

Software engineering is intended to support professional software development
rather than individual programming. It includes techniques that support program
specification, design, and evolution, none of which are normally relevant for per-
sonal software development. To help you to get a broad view of software engineer-
ing, I have summarized frequently asked questions about the subject in Figure 1.1.

Many people think that software is simply another word for computer programs.
However, when we are talking about software engineering, software is not just the
programs themselves but also all associated documentation, libraries, support web-
sites, and configuration data that are needed to make these programs useful. A pro-
fessionally developed software system is often more than a single program. A system
may consist of several separate programs and configuration files that are used to set
up these programs. It may include system documentation, which describes the struc-
ture of the system, user documentation, which explains how to use the system, and
websites for users to download recent product information.

This is one of the important differences between professional and amateur soft-
ware development. If you are writing a program for yourself, no one else will use it

History of software engineering

The notion of software engineering was first proposed in 1968 at a conference held to discuss what was then
called the software crisis (Naur and Randell 1969). It became clear that individual approaches to program devel-
opment did not scale up to large and complex software systems. These were unreliable, cost more than
expected, and were delivered late.

Throughout the 1970s and 1980s, a variety of new software engineering techniques and methods were
developed, such as structured programming, information hiding, and object-oriented development. Tools and
standard notations were developed which are the basis of today’s software engineering.

http://software-engineering-book.com/web/history/

http://software-engineering-book.com/web/history

20    Chapter 1  ■  Introduction

Figure 1.1  Frequently
asked questions about
software engineering

Question Answer

What is software? Computer programs and associated documentation. Software
products may be developed for a particular customer or may be
developed for a general market.

What are the attributes of good
software?

Good software should deliver the required functionality and
performance to the user and should be maintainable, dependable
and usable.

What is software engineering? Software engineering is an engineering discipline that is concerned
with all aspects of software production from initial conception to
operation and maintenance.

What are the fundamental
software engineering activities?

Software specification, software development, software validation
and software evolution.

What is the difference between
software engineering and
computer science?

Computer science focuses on theory and fundamentals; software
engineering is concerned with the practicalities of developing and
delivering useful software.

What is the difference between
software engineering and system
engineering?

System engineering is concerned with all aspects of computer-
based systems development including hardware, software and
process engineering. Software engineering is part of this more
general process.

What are the key challenges
facing software engineering?

Coping with increasing diversity, demands for reduced delivery
times and developing trustworthy software.

What are the costs of software
engineering?

Roughly 60% of software costs are development costs, 40% are
testing costs. For custom software, evolution costs often exceed
development costs.

What are the best software
engineering techniques and
methods?

While all software projects have to be professionally managed and
developed, different techniques are appropriate for different types
of system. For example, games should always be developed using
a series of prototypes whereas safety critical control systems
require a complete and analyzable specification to be developed.
There are no methods and techniques that are good for everything.

What differences has the Internet
made to software engineering?

Not only has the Internet led to the development of massive, highly
distributed, service-based systems, it has also supported the
creation of an “app” industry for mobile devices which has
changed the economics of software.

and you don’t have to worry about writing program guides, documenting the pro-
gram design, and so on. However, if you are writing software that other people will
use and other engineers will change, then you usually have to provide additional
information as well as the code of the program.

Software engineers are concerned with developing software products, that is,
software that can be sold to a customer. There are two kinds of software product:

1.	 Generic products These are stand-alone systems that are produced by a
development organization and sold on the open market to any customer who is
able to buy them. Examples of this type of product include apps for mobile
devices, software for PCs such as databases, word processors, drawing packages,
and project management tools. This kind of software also includes “vertical”

	 1.1  ■  Professional software development    21

applications designed for a specific market such as library information systems,
accounting systems, or systems for maintaining dental records.

2.	 Customized (or bespoke) software These are systems that are commissioned by
and developed for a particular customer. A software contractor designs and
implements the software especially for that customer. Examples of this type of
software include control systems for electronic devices, systems written to
support a particular business process, and air traffic control systems.

The critical distinction between these types of software is that, in generic prod-
ucts, the organization that develops the software controls the software specification.
This means that if they run into development problems, they can rethink what is to
be developed. For custom products, the specification is developed and controlled by
the organization that is buying the software. The software developers must work to
that specification.

However, the distinction between these system product types is becoming increas-
ingly blurred. More and more systems are now being built with a generic product as
a base, which is then adapted to suit the requirements of a customer. Enterprise
Resource Planning (ERP) systems, such as systems from SAP and Oracle, are the
best examples of this approach. Here, a large and complex system is adapted for a
company by incorporating information about business rules and processes, reports
required, and so on.

When we talk about the quality of professional software, we have to consider that
the software is used and changed by people apart from its developers. Quality is
therefore not just concerned with what the software does. Rather, it has to include the
software’s behavior while it is executing and the structure and organization of the sys-
tem programs and associated documentation. This is reflected in the software’s qual-
ity or non-functional attributes. Examples of these attributes are the software’s
response time to a user query and the understandability of the program code.

The specific set of attributes that you might expect from a software system obvi-
ously depends on its application. Therefore, an aircraft control system must be safe, an
interactive game must be responsive, a telephone switching system must be reliable,
and so on. These can be generalized into the set of attributes shown in Figure 1.2,
which I think are the essential characteristics of a professional software system.

	 1.1.1 	 Software engineering

Software engineering is an engineering discipline that is concerned with all aspects
of software production from the early stages of system specification through to
maintaining the system after it has gone into use. In this definition, there are two
key phrases:

1.	 Engineering discipline Engineers make things work. They apply theories, meth-
ods, and tools where these are appropriate. However, they use them selectively

22    Chapter 1  ■  Introduction

Figure 1.2  Essential
attributes of good
software

Product characteristic Description

Acceptability Software must be acceptable to the type of users for which it is
designed. This means that it must be understandable, usable, and
compatible with other systems that they use.

Dependability and security Software dependability includes a range of characteristics including
reliability, security, and safety. Dependable software should not
cause physical or economic damage in the event of system failure.
Software has to be secure so that malicious users cannot access or
damage the system.

Efficiency Software should not make wasteful use of system resources such
as memory and processor cycles. Efficiency therefore includes
responsiveness, processing time, resource utilization, etc.

Maintainability Software should be written in such a way that it can evolve to
meet the changing needs of customers. This is a critical attribute
because software change is an inevitable requirement of a
changing business environment.

and always try to discover solutions to problems even when there are no appli-
cable theories and methods. Engineers also recognize that they must work
within organizational and financial constraints, and they must look for solutions
within these constraints.

2.	 All aspects of software production Software engineering is not just concerned
with the technical processes of software development. It also includes activities
such as software project management and the development of tools, methods,
and theories to support software development.

Engineering is about getting results of the required quality within schedule and
budget. This often involves making compromises—engineers cannot be perfection-
ists. People writing programs for themselves, however, can spend as much time as
they wish on the program development.

In general, software engineers adopt a systematic and organized approach to their
work, as this is often the most effective way to produce high-quality software.
However, engineering is all about selecting the most appropriate method for a set of
circumstances, so a more creative, less formal approach to development may be the
right one for some kinds of software. A more flexible software process that accom-
modates rapid change is particularly appropriate for the development of interactive
web-based systems and mobile apps, which require a blend of software and graphi-
cal design skills.

Software engineering is important for two reasons:

1.	 More and more, individuals and society rely on advanced software systems. We need
to be able to produce reliable and trustworthy systems economically and quickly.

2.	 It is usually cheaper, in the long run, to use software engineering methods and
techniques for professional software systems rather than just write programs as

	 1.1  ■  Professional software development    23

a personal programming project. Failure to use software engineering method
leads to higher costs for testing, quality assurance, and long-term maintenance.

The systematic approach that is used in software engineering is sometimes called
a software process. A software process is a sequence of activities that leads to the
production of a software product. Four fundamental activities are common to all
software processes.

1.	 Software specification, where customers and engineers define the software that
is to be produced and the constraints on its operation.

2.	 Software development, where the software is designed and programmed.

3.	 Software validation, where the software is checked to ensure that it is what the
customer requires.

4.	 Software evolution, where the software is modified to reflect changing customer
and market requirements.

Different types of systems need different development processes, as I explain in
Chapter 2. For example, real-time software in an aircraft has to be completely speci-
fied before development begins. In e-commerce systems, the specification and the
program are usually developed together. Consequently, these generic activities may
be organized in different ways and described at different levels of detail, depending
on the type of software being developed.

Software engineering is related to both computer science and systems engineering.

1.	 Computer science is concerned with the theories and methods that underlie
computers and software systems, whereas software engineering is concerned
with the practical problems of producing software. Some knowledge of com-
puter science is essential for software engineers in the same way that some
knowledge of physics is essential for electrical engineers. Computer science
theory, however, is often most applicable to relatively small programs. Elegant
theories of computer science are rarely relevant to large, complex problems that
require a software solution.

2.	 System engineering is concerned with all aspects of the development and evolu-
tion of complex systems where software plays a major role. System engineering
is therefore concerned with hardware development, policy and process design,
and system deployment, as well as software engineering. System engineers are
involved in specifying the system, defining its overall architecture, and then
integrating the different parts to create the finished system.

As I discuss in the next section, there are many different types of software. There are
no universal software engineering methods or techniques that may be used. However,
there are four related issues that affect many different types of software:

24    Chapter 1  ■  Introduction

1.	 Heterogeneity Increasingly, systems are required to operate as distributed sys-
tems across networks that include different types of computer and mobile
devices. As well as running on general-purpose computers, software may also
have to execute on mobile phones and tablets. You often have to integrate new
software with older legacy systems written in different programming languages.
The challenge here is to develop techniques for building dependable software
that is flexible enough to cope with this heterogeneity.

2.	 Business and social change Businesses and society are changing incredibly
quickly as emerging economies develop and new technologies become availa-
ble. They need to be able to change their existing software and to rapidly
develop new software. Many traditional software engineering techniques are
time consuming, and delivery of new systems often takes longer than planned.
They need to evolve so that the time required for software to deliver value to its
customers is reduced.

3.	 Security and trust As software is intertwined with all aspects of our lives, it is
essential that we can trust that software. This is especially true for remote soft-
ware systems accessed through a web page or web service interface. We have to
make sure that malicious users cannot successfully attack our software and that
information security is maintained.

4.	 Scale Software has to be developed across a very wide range of scales, from
very small embedded systems in portable or wearable devices through to
Internet-scale, cloud-based systems that serve a global community.

To address these challenges, we will need new tools and techniques as well as
innovative ways of combining and using existing software engineering methods.

	 1.1.2 	 Software engineering diversity

Software engineering is a systematic approach to the production of software
that takes into account practical cost, schedule, and dependability issues, as
well as the needs of software customers and producers. The specific methods,
tools, and techniques used depend on the organization developing the software,
the type of software, and the people involved in the development process. There
are no universal software engineering methods that are suitable for all systems
and all companies. Rather, a diverse set of software engineering methods and
tools has evolved over the past 50 years. However, the SEMAT initiative
(Jacobson et al. 2013) proposes that there can be a fundamental meta-process
that can be instantiated to create different kinds of process. This is at an early
stage of development and may be a basis for improving our current software
engineering methods.

Perhaps the most significant factor in determining which software engineering
methods and techniques are most important is the type of application being devel-
oped. There are many different types of application, including:

	 1.1  ■  Professional software development    25

1.	 Stand-alone applications These are application systems that run on a personal
computer or apps that run on a mobile device. They include all necessary func-
tionality and may not need to be connected to a network. Examples of such
applications are office applications on a PC, CAD programs, photo manipula-
tion software, travel apps, productivity apps, and so on.

2.	 Interactive transaction-based applications These are applications that execute
on a remote computer and that are accessed by users from their own computers,
phones, or tablets. Obviously, these include web applications such as e-commerce
applications where you interact with a remote system to buy goods and services.
This class of application also includes business systems, where a business
provides access to its systems through a web browser or special-purpose client
program and cloud-based services, such as mail and photo sharing. Interactive
applications often incorporate a large data store that is accessed and updated in
each transaction.

3.	 Embedded control systems These are software control systems that control and
manage hardware devices. Numerically, there are probably more embedded sys-
tems than any other type of system. Examples of embedded systems include the
software in a mobile (cell) phone, software that controls antilock braking in a
car, and software in a microwave oven to control the cooking process.

4.	 Batch processing systems These are business systems that are designed to pro-
cess data in large batches. They process large numbers of individual inputs to
create corresponding outputs. Examples of batch systems are periodic billing
systems, such as phone billing systems, and salary payment systems.

5.	 Entertainment systems These are systems for personal use that are intended to
entertain the user. Most of these systems are games of one kind or another,
which may run on special-purpose console hardware. The quality of the user
interaction offered is the most important distinguishing characteristic of enter-
tainment systems.

6.	 Systems for modeling and simulation These are systems that are developed by
scientists and engineers to model physical processes or situations, which include
many separate, interacting objects. These are often computationally intensive
and require high-performance parallel systems for execution.

7.	 Data collection and analysis systems Data collection systems are systems that
collect data from their environment and send that data to other systems for pro-
cessing. The software may have to interact with sensors and often is installed in
a hostile environment such as inside an engine or in a remote location. “Big
data” analysis may involve cloud-based systems carrying out statistical analysis
and looking for relationships in the collected data.

8.	 Systems of systems These are systems, used in enterprises and other large organ-
izations, that are composed of a number of other software systems. Some of
these may be generic software products, such as an ERP system. Other systems
in the assembly may be specially written for that environment.

26    Chapter 1  ■  Introduction

Of course, the boundaries between these system types are blurred. If you develop
a game for a phone, you have to take into account the same constraints (power, hard-
ware interaction) as the developers of the phone software. Batch processing systems
are often used in conjunction with web-based transaction systems. For example, in a
company, travel expense claims may be submitted through a web application but
processed in a batch application for monthly payment.

Each type of system requires specialized software engineering techniques because
the software has different characteristics. For example, an embedded control system
in an automobile is safety-critical and is burned into ROM (read-only memory)
when installed in the vehicle. It is therefore very expensive to change. Such a system
needs extensive verification and validation so that the chances of having to recall
cars after sale to fix software problems are minimized. User interaction is minimal
(or perhaps nonexistent), so there is no need to use a development process that relies
on user interface prototyping.

For an interactive web-based system or app, iterative development and delivery is
the best approach, with the system being composed of reusable components.
However, such an approach may be impractical for a system of systems, where
detailed specifications of the system interactions have to be specified in advance so
that each system can be separately developed.

Nevertheless, there are software engineering fundamentals that apply to all types
of software systems:

1.	 They should be developed using a managed and understood development pro-
cess. The organization developing the software should plan the development
process and have clear ideas of what will be produced and when it will be com-
pleted. Of course, the specific process that you should use depends on the type
of software that you are developing.

2.	 Dependability and performance are important for all types of system. Software
should behave as expected, without failures, and should be available for use
when it is required. It should be safe in its operation and, as far as possible,
should be secure against external attack. The system should perform efficiently
and should not waste resources.

3.	 Understanding and managing the software specification and requirements (what
the software should do) are important. You have to know what different custom-
ers and users of the system expect from it, and you have to manage their expec-
tations so that a useful system can be delivered within budget and to schedule.

4.	 You should make effective use of existing resources. This means that, where
appropriate, you should reuse software that has already been developed rather
than write new software.

These fundamental notions of process, dependability, requirements, manage-
ment, and reuse are important themes of this book. Different methods reflect them in
different ways, but they underlie all professional software development.

	 1.1  ■  Professional software development    27

These fundamentals are independent of the program language used for software
development. I don’t cover specific programming techniques in this book because
these vary dramatically from one type of system to another. For example, a dynamic
language, such as Ruby, is the right type of language for interactive system develop-
ment but is inappropriate for embedded systems engineering.

	 1.1.3 	 Internet software engineering

The development of the Internet and the World Wide Web has had a profound
effect on all of our lives. Initially, the web was primarily a universally accessible
information store, and it had little effect on software systems. These systems ran
on local computers and were only accessible from within an organization. Around
2000, the web started to evolve, and more and more functionality was added to
browsers. This meant that web-based systems could be developed where, instead
of a special-purpose user interface, these systems could be accessed using a web
browser. This led to the development of a vast range of new system products that
delivered innovative services, accessed over the web. These are often funded by
adverts that are displayed on the user’s screen and do not involve direct payment
from users.

As well as these system products, the development of web browsers that could
run small programs and do some local processing led to an evolution in business and
organizational software. Instead of writing software and deploying it on users’ PCs,
the software was deployed on a web server. This made it much cheaper to change
and upgrade the software, as there was no need to install the software on every PC.
It also reduced costs, as user interface development is particularly expensive.
Wherever it has been possible to do so, businesses have moved to web-based inter-
action with company software systems.

The notion of software as a service (Chapter 17) was proposed early in the 21st
century This has now become the standard approach to the delivery of web-based
system products such as Google Apps, Microsoft Office 365, and Adobe Creative
Suite. More and more software runs on remote “clouds” instead of local servers and
is accessed over the Internet. A computing cloud is a huge number of linked com-
puter systems that is shared by many users. Users do not buy software but pay
according to how much the software is used or are given free access in return for
watching adverts that are displayed on their screen. If you use services such as web-
based mail, storage, or video, you are using a cloud-based system.

The advent of the web has led to a dramatic change in the way that business soft-
ware is organized. Before the web, business applications were mostly monolithic,
single programs running on single computers or computer clusters. Communications
were local, within an organization. Now, software is highly distributed, sometimes
across the world. Business applications are not programmed from scratch but involve
extensive reuse of components and programs.

This change in software organization has had a major effect on software engi-
neering for web-based systems. For example:

28    Chapter 1  ■  Introduction

1.	 Software reuse has become the dominant approach for constructing web-based
systems. When building these systems, you think about how you can assemble
them from preexisting software components and systems, often bundled together
in a framework.

2.	 It is now generally recognized that it is impractical to specify all the require-
ments for such systems in advance. Web-based systems are always developed
and delivered incrementally.

3.	 Software may be implemented using service-oriented software engineering,
where the software components are stand-alone web services. I discuss this
approach to software engineering in Chapter 18.

4.	 Interface development technology such as AJAX (Holdener 2008) and HTML5
(Freeman 2011) have emerged that support the creation of rich interfaces within
a web browser.

The fundamental ideas of software engineering, discussed in the previous section,
apply to web-based software, as they do to other types of software. Web-based sys-
tems are getting larger and larger, so software engineering techniques that deal with
scale and complexity are relevant for these systems.

	 1.2 	 Software engineering ethics

Like other engineering disciplines, software engineering is carried out within a
social and legal framework that limits the freedom of people working in that area. As
a software engineer, you must accept that your job involves wider responsibilities
than simply the application of technical skills. You must also behave in an ethical
and morally responsible way if you are to be respected as a professional engineer.

It goes without saying that you should uphold normal standards of honesty and
integrity. You should not use your skills and abilities to behave in a dishonest way or
in a way that will bring disrepute to the software engineering profession. However,
there are areas where standards of acceptable behavior are not bound by laws but by
the more tenuous notion of professional responsibility. Some of these are:

1.	 Confidentiality You should normally respect the confidentiality of your employ-
ers or clients regardless of whether or not a formal confidentiality agreement
has been signed.

2.	 Competence You should not misrepresent your level of competence. You should
not knowingly accept work that is outside your competence.

3.	 Intellectual property rights You should be aware of local laws governing the
use of intellectual property such as patents and copyright. You should be careful
to ensure that the intellectual property of employers and clients is protected.

	 1.2  ■  Software engineering ethics    29

4.	 Computer misuse You should not use your technical skills to misuse other peo-
ple’s computers. Computer misuse ranges from relatively trivial (game playing
on an employer’s machine) to extremely serious (dissemination of viruses or
other malware).

Professional societies and institutions have an important role to play in setting
ethical standards. Organizations such as the ACM, the IEEE (Institute of Electrical
and Electronic Engineers), and the British Computer Society publish a code of pro-
fessional conduct or code of ethics. Members of these organizations undertake to
follow that code when they sign up for membership. These codes of conduct are
generally concerned with fundamental ethical behavior.

Professional associations, notably the ACM and the IEEE, have cooperated to
produce a joint code of ethics and professional practice. This code exists in both a
short form, shown in Figure 1.3, and a longer form (Gotterbarn, Miller, and Rogerson
1999) that adds detail and substance to the shorter version. The rationale behind this
code is summarized in the first two paragraphs of the longer form:

Figure 1.3  The ACM/
IEEE Code of Ethics

Software Engineering Code of Ethics and Professional Practice

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE
The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are
included in the full version give examples and details of how these aspirations change the way we act as soft-
ware engineering professionals. Without the aspirations, the details can become legalistic and tedious; without
the details, the aspirations can become high sounding but empty; together, the aspirations and the details form
a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design, development, test-
ing, and maintenance of software a beneficial and respected profession. In accordance with their commitment
to the health, safety, and welfare of the public, software engineers shall adhere to the following Eight Principles:

1. PUBLIC — Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER — Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with the public interest.
3. PRODUCT — Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible.
4. JUDGMENT — Software engineers shall maintain integrity and independence in their

professional judgment.
5. MANAGEMENT — Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and
maintenance.

6. PROFESSION — Software engineers shall advance the integrity and reputation of
the profession consistent with the public interest.

7. COLLEAGUES — Software engineers shall be fair to and supportive of their
colleagues.

8. SELF — Software engineers shall participate in lifelong learning regarding
the practice of their profession and shall promote an ethical approach to the
practice of the profession.

(ACM/IEEE-CS Joint
Task Force on Software
Engineering Ethics and
Professional Practices,
short version. http://
www.acm.org/about/
se-code)

(© 1999 by the ACM,
Inc. and the IEEE, Inc.)

http://www.acm.org/about
http://www.acm.org/about

30    Chapter 1  ■  Introduction

Computers have a central and growing role in commerce, industry, government,
medicine, education, entertainment and society at large. Software engineers are
those who contribute by direct participation or by teaching, to the analysis, spec-
ification, design, development, certification, maintenance and testing of software
systems. Because of their roles in developing software systems, software engi-
neers have significant opportunities to do good or cause harm, to enable others to
do good or cause harm, or to influence others to do good or cause harm. To
ensure, as much as possible, that their efforts will be used for good, software
engineers must commit themselves to making software engineering a beneficial
and respected profession. In accordance with that commitment, software engi-
neers shall adhere to the following Code of Ethics and Professional Practice†.

The Code contains eight Principles related to the behaviour of and decisions
made by professional software engineers, including practitioners, educators,
managers, supervisors and policy makers, as well as trainees and students of
the profession. The Principles identify the ethically responsible relationships
in which individuals, groups, and organizations participate and the primary
obligations within these relationships. The Clauses of each Principle are illus-
trations of some of the obligations included in these relationships. These obli-
gations are founded in the software engineer’s humanity, in special care owed
to people affected by the work of software engineers, and the unique elements
of the practice of software engineering. The Code prescribes these as obliga-
tions of anyone claiming to be or aspiring to be a software engineer†.

In any situation where different people have different views and objectives, you are
likely to be faced with ethical dilemmas. For example, if you disagree, in principle, with
the policies of more senior management in the company, how should you react? Clearly,
this depends on the people involved and the nature of the disagreement. Is it best to argue
a case for your position from within the organization or to resign in principle? If you feel
that there are problems with a software project, when do you reveal these problems to
management? If you discuss these while they are just a suspicion, you may be overreact-
ing to a situation; if you leave it too long, it may be impossible to resolve the difficulties.

We all face such ethical dilemmas in our professional lives, and, fortunately, in
most cases they are either relatively minor or can be resolved without too much dif-
ficulty. Where they cannot be resolved, the engineer is faced with, perhaps, another
problem. The principled action may be to resign from their job, but this may well
affect others such as their partner or their children.

A difficult situation for professional engineers arises when their employer acts in
an unethical way. Say a company is responsible for developing a safety-critical
system and, because of time pressure, falsifies the safety validation records. Is the
engineer’s responsibility to maintain confidentiality or to alert the customer or
publicize, in some way, that the delivered system may be unsafe?

†ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices, short
version Preamble. http://www.acm.org/about/se-code Copyright © 1999 by the Association for
Computing Machinery, Inc. and the Institute for Electrical and Electronics Engineers, Inc.

http://www.acm.org/about/se-code

	 1.3  ■  Case studies    31

The problem here is that there are no absolutes when it comes to safety. Although
the system may not have been validated according to predefined criteria, these
criteria may be too strict. The system may actually operate safely throughout its life-
time. It is also the case that, even when properly validated, the system may fail and
cause an accident. Early disclosure of problems may result in damage to the employer
and other employees; failure to disclose problems may result in damage to others.

You must make up your own mind in these matters. The appropriate ethical posi-
tion here depends on the views of the people involved. The potential for damage, the
extent of the damage, and the people affected by the damage should influence the
decision. If the situation is very dangerous, it may be justified to publicize it using
the national press or social media. However, you should always try to resolve the
situation while respecting the rights of your employer.

Another ethical issue is participation in the development of military and nuclear
systems. Some people feel strongly about these issues and do not wish to participate in
any systems development associated with defense systems. Others will work on mili-
tary systems but not on weapons systems. Yet others feel that national security is an
overriding principle and have no ethical objections to working on weapons systems.

In this situation, it is important that both employers and employees should make
their views known to each other in advance. Where an organization is involved in
military or nuclear work, it should be able to specify that employees must be willing
to accept any work assignment. Equally, if an employee is taken on and makes clear
that he or she does not wish to work on such systems, employers should not exert
pressure to do so at some later date.

The general area of ethics and professional responsibility is increasingly important
as software-intensive systems pervade every aspect of work and everyday life. It can
be considered from a philosophical standpoint where the basic principles of ethics are
considered and software engineering ethics are discussed with reference to these
basic principles. This is the approach taken by Laudon (Laudon 1995) and Johnson
(Johnson 2001). More recent texts such as that by Tavani (Tavani 2013) introduce the
notion of cyberethics and cover both the philosophical background and practical and
legal issues. They include ethical issues for technology users as well as developers.

I find that a philosophical approach is too abstract and difficult to relate to every-
day experience so I prefer the more concrete approach embodied in professional
codes of conduct (Bott 2005; Duquenoy 2007). I think that ethics are best discussed
in a software engineering context and not as a subject in its own right. Therefore, I
do not discuss software engineering ethics in an abstract way but include examples
in the exercises that can be the starting point for a group discussion.

	 1.3	 Case studies

To illustrate software engineering concepts, I use examples from four different types
of system. I have deliberately not used a single case study, as one of the key messages
in this book is that software engineering practice depends on the type of systems

32    Chapter 1  ■  Introduction

being produced. I therefore choose an appropriate example when discussing con-
cepts such as safety and dependability, system modeling, reuse, etc.

The system types that I use as case studies are:

1.	 An embedded system This is a system where the software controls some hard-
ware device and is embedded in that device. Issues in embedded systems typi-
cally include physical size, responsiveness, and power management, etc. The
example of an embedded system that I use is a software system to control an
insulin pump for people who have diabetes.

2.	 An information system The primary purpose of this type of system is to manage
and provide access to a database of information. Issues in information systems
include security, usability, privacy, and maintaining data integrity. The example
of an information system used is a medical records system.

3.	 A sensor-based data collection system This is a system whose primary purposes
are to collect data from a set of sensors and to process that data in some way.
The key requirements of such systems are reliability, even in hostile environ-
mental conditions, and maintainability. The example of a data collection system
that I use is a wilderness weather station.

4.	 A support environment. This is an integrated collection of software tools that are
used to support some kind of activity. Programming environments, such as
Eclipse (Vogel 2012) will be the most familiar type of environment for readers
of this book. I describe an example here of a digital learning environment that
is used to support students’ learning in schools.

I introduce each of these systems in this chapter; more information about each of
them is available on the website (software-engineering-book.com).

	 1.3.1 	 An insulin pump control system

An insulin pump is a medical system that simulates the operation of the pancreas (an
internal organ). The software controlling this system is an embedded system that
collects information from a sensor and controls a pump that delivers a controlled
dose of insulin to a user.

People who suffer from diabetes use the system. Diabetes is a relatively common
condition in which the human pancreas is unable to produce sufficient quantities of
a hormone called insulin. Insulin metabolizes glucose (sugar) in the blood. The con-
ventional treatment of diabetes involves regular injections of genetically engineered
insulin. Diabetics measure their blood sugar levels periodically using an external
meter and then estimate the dose of insulin they should inject.

The problem is that the level of insulin required does not just depend on the blood
glucose level but also on the time of the last insulin injection. Irregular checking can
lead to very low levels of blood glucose (if there is too much insulin) or very high
levels of blood sugar (if there is too little insulin). Low blood glucose is, in the short
term, a more serious condition as it can result in temporary brain malfunctioning and,

	 1.3  ■  Case studies    33

ultimately, unconsciousness and death. In the long term, however, continual high
levels of blood glucose can lead to eye damage, kidney damage, and heart problems.

Advances in developing miniaturized sensors have meant that it is now possible
to develop automated insulin delivery systems. These systems monitor blood sugar
levels and deliver an appropriate dose of insulin when required. Insulin delivery
systems like this one are now available and are used by patients who find it difficult
to control their insulin levels. In future, it may be possible for diabetics to have such
systems permanently attached to their bodies.

A software-controlled insulin delivery system uses a microsensor embedded in
the patient to measure some blood parameter that is proportional to the sugar level.
This is then sent to the pump controller. This controller computes the sugar level and
the amount of insulin that is needed. It then sends signals to a miniaturized pump to
deliver the insulin via a permanently attached needle.

Figure 1.4 shows the hardware components and organization of the insulin pump.
To understand the examples in this book, all you need to know is that the blood sensor
measures the electrical conductivity of the blood under different conditions and that
these values can be related to the blood sugar level. The insulin pump delivers one unit
of insulin in response to a single pulse from a controller. Therefore, to deliver 10 units
of insulin, the controller sends 10 pulses to the pump. Figure 1.5 is a Unified Modeling

Needle
assembly

Sensor

Display1 Display2

Alarm

Pump Clock

Controller

Power supply

Insulin reservoir

Figure 1.4  Insulin pump
hardware architecture

Analyze sensor
reading

Blood
sensor

Insulin
pump

Blood
sugar

Compute
insulin

Insulin
dose

Insulin
log

Log doseCompute pump
commands

Pump
data

Control insulin
pump

Figure 1.5  Activity
model of the
insulin pump

34    Chapter 1  ■  Introduction

Language (UML) activity model that illustrates how the software transforms an input
blood sugar level to a sequence of commands that drive the insulin pump.

Clearly, this is a safety-critical system. If the pump fails to operate or does not
operate correctly, then the user’s health may be damaged or they may fall into a
coma because their blood sugar levels are too high or too low. This system must
therefore meet two essential high-level requirements:

1.	 The system shall be available to deliver insulin when required.

2.	 The system shall perform reliably and deliver the correct amount of insulin to
counteract the current level of blood sugar.

The system must therefore be designed and implemented to ensure that it always
meets these requirements. More detailed requirements and discussions of how to
ensure that the system is safe are discussed in later chapters.

	 1.3.2 	 A patient information system for mental health care

A patient information system to support mental health care (the Mentcare system) is a
medical information system that maintains information about patients suffering from
mental health problems and the treatments that they have received. Most mental
health patients do not require dedicated hospital treatment but need to attend special-
ist clinics regularly where they can meet a doctor who has detailed knowledge of their
problems. To make it easier for patients to attend, these clinics are not just run in
hospitals. They may also be held in local medical practices or community centers.

The Mentcare system (Figure 1.6) is a patient information system that is intended
for use in clinics. It makes use of a centralized database of patient information but

Mentcare
client

Mentcare server

Patient database

Mentcare
client

Mentcare
client

Network

Figure 1.6  The
organization of the
Mentcare system

	 1.3  ■  Case studies    35

has also been designed to run on a laptop, so that it may be accessed and used from
sites that do not have secure network connectivity. When the local systems have
secure network access, they use patient information in the database, but they can
download and use local copies of patient records when they are disconnected. The
system is not a complete medical records system and so does not maintain informa-
tion about other medical conditions. However, it may interact and exchange data
with other clinical information systems.

This system has two purposes:

1.	 To generate management information that allows health service managers to
assess performance against local and government targets.

2.	 To provide medical staff with timely information to support the treatment of
patients.

Patients who suffer from mental health problems are sometimes irrational and
disorganized so may miss appointments, deliberately or accidentally lose prescriptions
and medication, forget instructions and make unreasonable demands on medical
staff. They may drop in on clinics unexpectedly. In a minority of cases, they may be
a danger to themselves or to other people. They may regularly change address or
may be homeless on a long-term or short-term basis. Where patients are dangerous,
they may need to be “sectioned”—that is, confined to a secure hospital for treatment
and observation.

Users of the system include clinical staff such as doctors, nurses, and health visi-
tors (nurses who visit people at home to check on their treatment). Nonmedical users
include receptionists who make appointments, medical records staff who maintain
the records system, and administrative staff who generate reports.

The system is used to record information about patients (name, address, age, next
of kin, etc.), consultations (date, doctor seen, subjective impressions of the patient,
etc.), conditions, and treatments. Reports are generated at regular intervals for medi-
cal staff and health authority managers. Typically, reports for medical staff focus on
information about individual patients, whereas management reports are anonymized
and are concerned with conditions, costs of treatment, etc.

The key features of the system are:

1.	 Individual care management Clinicians can create records for patients, edit the
information in the system, view patient history, and so on. The system supports
data summaries so that doctors who have not previously met a patient can
quickly learn about the key problems and treatments that have been prescribed.

2.	 Patient monitoring The system regularly monitors the records of patients that
are involved in treatment and issues warnings if possible problems are detected.
Therefore, if a patient has not seen a doctor for some time, a warning may be
issued. One of the most important elements of the monitoring system is to keep
track of patients who have been sectioned and to ensure that the legally required
checks are carried out at the right time.

36    Chapter 1  ■  Introduction

3.	 Administrative reporting The system generates monthly management reports
showing the number of patients treated at each clinic, the number of patients
who have entered and left the care system, the number of patients sectioned, the
drugs prescribed and their costs, etc.

Two different laws affect the system: laws on data protection that govern the con-
fidentiality of personal information and mental health laws that govern the compul-
sory detention of patients deemed to be a danger to themselves or others. Mental
health is unique in this respect as it is the only medical speciality that can recommend
the detention of patients against their will. This is subject to strict legislative safe-
guards. One aim of the Mentcare system is to ensure that staff always act in accord-
ance with the law and that their decisions are recorded for judicial review if necessary.

As in all medical systems, privacy is a critical system requirement. It is essential
that patient information is confidential and is never disclosed to anyone apart from
authorized medical staff and the patient themselves. The Mentcare system is also a
safety-critical system. Some mental illnesses cause patients to become suicidal or a
danger to other people. Wherever possible, the system should warn medical staff
about potentially suicidal or dangerous patients.

The overall design of the system has to take into account privacy and safety
requirements. The system must be available when needed; otherwise safety may be
compromised, and it may be impossible to prescribe the correct medication to patients.
There is a potential conflict here. Privacy is easiest to maintain when there is only a
single copy of the system data. However, to ensure availability in the event of server
failure or when disconnected from a network, multiple copies of the data should be
maintained. I discuss the trade-offs between these requirements in later chapters.

	 1.3.3 	 A wilderness weather station

To help monitor climate change and to improve the accuracy of weather forecasts in
remote areas, the government of a country with large areas of wilderness decides to
deploy several hundred weather stations in remote areas. These weather stations col-
lect data from a set of instruments that measure temperature and pressure, sunshine,
rainfall, wind speed and wind direction.

Wilderness weather stations are part of a larger system (Figure 1.7), which is a
weather information system that collects data from weather stations and makes it
available to other systems for processing. The systems in Figure 1.7 are:

1.	 The weather station system This system is responsible for collecting weather
data, carrying out some initial data processing, and transmitting it to the data
management system.

2.	 The data management and archiving system This system collects the data from
all of the wilderness weather stations, carries out data processing and analysis,
and archives the data in a form that can be retrieved by other systems, such as
weather forecasting systems.

	 1.3  ■  Case studies    37

3.	 The station maintenance system This system can communicate by satellite with
all wilderness weather stations to monitor the health of these systems and pro-
vide reports of problems. It can update the embedded software in these systems.
In the event of system problems, this system can also be used to remotely con-
trol the weather station.

In Figure 1.7, I have used the UML package symbol to indicate that each system is
a collection of components and the separate systems are identified using the UML
stereotype «system». The associations between the packages indicate there is an exchange
of information but, at this stage, there is no need to define them in any more detail.

The weather stations include instruments that measure weather parameters such
as wind speed and direction, ground and air temperatures, barometric pressure, and
rainfall over a 24-hour period. Each of these instruments is controlled by a software
system that takes parameter readings periodically and manages the data collected
from the instruments.

The weather station system operates by collecting weather observations at fre-
quent intervals; for example, temperatures are measured every minute. However,
because the bandwidth to the satellite is relatively narrow, the weather station carries
out some local processing and aggregation of the data. It then transmits this aggre-
gated data when requested by the data collection system. If it is impossible to make
a connection, then the weather station maintains the data locally until communica-
tion can be resumed.

Each weather station is battery-powered and must be entirely self-contained; there
are no external power or network cables. All communications are through a relatively
slow satellite link, and the weather station must include some mechanism (solar or
wind power) to charge its batteries. As they are deployed in wilderness areas, they are
exposed to severe environmental conditions and may be damaged by animals. The
station software is therefore not just concerned with data collection. It must also:

1.	 Monitor the instruments, power. and communication hardware and report faults
to the management system.

2.	 Manage the system power, ensuring that batteries are charged whenever the
environmental conditions permit but also that generators are shut down in
potentially damaging weather conditions, such as high wind.

«system»
Data management

and archiving

«system»
Station maintenance

«system»
Weather station

Figure 1.7  The weather
station’s environment

38    Chapter 1  ■  Introduction

3.	 Allow for dynamic reconfiguration where parts of the software are replaced
with new versions and where backup instruments are switched into the system
in the event of system failure.

Because weather stations have to be self-contained and unattended, this means
that the software installed is complex, even though the data collection functionality
is fairly simple.

	 1.3.4 	 A digital learning environment for schools

Many teachers argue that using interactive software systems to support education
can lead to both improved learner motivation and a deeper level of knowledge and
understanding in students. However, there is no general agreement on the ‘best’
strategy for computer-supported learning, and teachers in practice use a range of dif-
ferent interactive, web-based tools to support learning. The tools used depend on the
ages of the learners, their cultural background, their experience with computers,
equipment available, and the preferences of the teachers involved.

A digital learning environment is a framework in which a set of general-purpose
and specially designed tools for learning may be embedded, plus a set of applica-
tions that are geared to the needs of the learners using the system. The framework
provides general services such as an authentication service, synchronous and asyn-
chronous communication services, and a storage service.

The tools included in each version of the environment are chosen by teachers and
learners to suit their specific needs. These can be general applications such as spread-
sheets, learning management applications such as a Virtual Learning Environment
(VLE) to manage homework submission and assessment, games, and simulations.
They may also include specific content, such as content about the American Civil
War and applications to view and annotate that content.

Figure 1.8 is a high-level architectural model of a digital learning environment
(iLearn) that was designed for use in schools for students from 3 to 18 years of
age. The approach adopted is that this is a distributed system in which all compo-
nents of the environment are services that can be accessed from anywhere on the
Internet. There is no requirement that all of the learning tools are gathered together
in one place.

The system is a service-oriented system with all system components considered
to be a replaceable service. There are three types of service in the system:

1.	 Utility services that provide basic application-independent functionality and
that may be used by other services in the system. Utility services are usually
developed or adapted specifically for this system.

2.	 Application services that provide specific applications such as email, conferencing,
photo sharing, etc., and access to specific educational content such as scientific
films or historical resources. Application services are external services that are
either specifically purchased for the system or are available freely over the Internet.

	 1.3  ■  Case studies    39

3.	 Configuration services that are used to adapt the environment with a specific set
of application services and to define how services are shared between students,
teachers, and their parents.

The environment has been designed so that services can be replaced as new ser-
vices become available and to provide different versions of the system that are suited
for the age of the users. This means that the system has to support two levels of ser-
vice integration:

1.	 Integrated services are services that offer an API (application programming
interface) and that can be accessed by other services through that API. Direct
service-to-service communication is therefore possible. An authentication ser-
vice is an example of an integrated service. Rather than use their own authenti-
cation mechanisms, an authentication service may be called on by other services
to authenticate users. If users are already authenticated, then the authentication
service may pass authentication information directly to another service, via an
API, with no need for users to reauthenticate themselves.

2.	 Independent services are services that are simply accessed through a browser
interface and that operate independently of other services. Information can only
be shared with other services through explicit user actions such as copy and
paste; reauthentication may be required for each independent service.

If an independent service becomes widely used, the development team may then
integrate that service so that it becomes an integrated and supported service.

Authentication

Browser-based user interface

Configuration services

Group
management

Application
management

Identity
management

User storage

Logging and monitoring

Application storage

Interfacing

Search

Utility services

Application services

iLearn app

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder

Spreadsheet Virtual learning environment History archive

Figure 1.8  The
architecture of a
digital learning
environment (iLearn)

40    Chapter 1  ■  Introduction

F u r t h e r R e a d i n g

“Software Engineering Code of Ethics Is Approved.” An article that discusses the background to the
development of the ACM/IEEE Code of Ethics and that includes both the short and long form of the
code. (Comm. ACM, D. Gotterbarn, K. Miller, and S. Rogerson, October 1999). http://dx.doi.
org/10.1109/MC.1999.796142

“A View of 20th and 21st Century Software Engineering.” A backward and forward look at software
engineering from one of the first and most distinguished software engineers. Barry Boehm identifies
timeless software engineering principles but also suggests that some commonly used practices are
obsolete. (B. Boehm, Proc. 28th Software Engineering Conf., Shanghai. 2006). http://dx.doi.
org/10.1145/1134285.1134288

“Software Engineering Ethics.” Special issue of IEEE Computer, with several papers on the topic
(IEEE Computer, 42 (6), June 2009).

Ethics for the Information Age. This is a wide-ranging book that covers all aspects of information
technology (IT) ethics, not simply ethics for software engineers. I think this is the right approach
as you really need to understand software engineering ethics within a wider ethical framework
(M. J. Quinn, 2013, Addison-Wesley).

K e y P o i n t s

■	 Software engineering is an engineering discipline that is concerned with all aspects of software
production.

■	 Software is not just a program or programs but also includes all electronic documentation that
is needed by system users, quality assurance staff, and developers. Essential software product
attributes are maintainability, dependability and security, efficiency, and acceptability.

■	 The software process includes all of the activities involved in software development. The high-level
activities of specification, development, validation, and evolution are part of all software processes.

■	 There are many different types of system, and each requires appropriate software engineering
tools and techniques for their development. Few, if any, specific design and implementation
techniques are applicable to all kinds of system.

■	 The fundamental ideas of software engineering are applicable to all types of software system.
These fundamentals include managed software processes, software dependability and security,
requirements engineering, and software reuse.

■	 Software engineers have responsibilities to the engineering profession and society. They should
not simply be concerned with technical issues but should be aware of the ethical issues that
affect their work.

■	 Professional societies publish codes of conduct that embed ethical and professional standards.
These set out the standards of behavior expected of their members.

http://dx.doi.org/10.1109/MC.1999.796142
http://dx.doi.org/10.1145/1134285.1134288
http://dx.doi.org/10.1109/MC.1999.796142
http://dx.doi.org/10.1145/1134285.1134288

	 1.1  ■  Case studies    41	 Chapter 1  ■  Exercises    41

The Essence of Software Engineering: Applying the SEMAT kernel. This book discusses the idea of a
universal framework that can underlie all software engineering methods. It can be adapted and
used for all types of systems and organizations. I am personally skeptical about whether or not a
universal approach is realistic in practice, but the book has some interesting ideas that are worth
exploring. (I. Jacobsen, P-W Ng, P. E. McMahon, I. Spence, and S. Lidman, 2013, Addison-Wesley)

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-engineering/

Links to case study descriptions:

http://software-engineering-book.com/case-studies/

E x e r c i s e s

  1.1. 	Explain why professional software that is developed for a customer is not simply the
programs that have been developed and delivered.

  1.2. 	What is the most important difference between generic software product development and custom
software development? What might this mean in practice for users of generic software products?

  1.3. 	Briefly discuss why it is usually cheaper in the long run to use software engineering methods
and techniques for software systems.

  1.4. 	Software engineering is not only concerned with issues like system heterogeneity, business
and social change, trust, and security, but also with ethical issues affecting the domain. Give
some examples of ethical issues that have an impact on the software engineering domain.

  1.5. 	Based on your own knowledge of some of the application types discussed in Section 1.1.2,
explain, with examples, why different application types require specialized software
engineering techniques to support their design and development.

  1.6. 	Explain why the fundamental software engineering principles of process, dependability,
requirements management, and reuse are relevant to all types of software system.

  1.7. 	Explain how electronic connectivity between various development teams can support
software engineering activities.

  1.8. 	Noncertified individuals are still allowed to practice software engineering. Discuss some of the
possible drawbacks of this.

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-engineering
http://software-engineering-book.com/case-studies

42    Chapter 1  ■  Introduction

  1.9. 	For each of the clauses in the ACM/IEEE Code of Ethics shown in Figure 1.4, propose an
appropriate example that illustrates that clause.

1.10. 	The “Drone Revolution” is currently being debated and discussed all over the world. Drones
are unmanned flying machines that are built and equipped with various kinds of software
systems that allow them to see, hear, and act. Discuss some of the societal challenges of
building such kinds of systems.

R e f e r e n c e s

Bott, F. 2005. Professional Issues in Information Technology. Swindon, UK: British Computer
Society.

Duquenoy, P. 2007. Ethical, Legal and Professional Issues in Computing. London: Thomson
Learning.

Freeman, A. 2011. The Definitive Guide to HTML5. New York: Apress.

Gotterbarn, D., K. Miller, and S. Rogerson. 1999. “Software Engineering Code of Ethics Is Approved.”
Comm. ACM 42 (10): 102–107. doi:10.1109/MC.1999.796142.

Holdener, A. T. 2008. Ajax: The Definitive Guide. Sebastopol, CA: O’Reilly and Associates.

Jacobson, I., P-W. Ng, P. E. McMahon, I. Spence, and S. Lidman. 2013. The Essence of Software
Engineering. Boston: Addison-Wesley.

Johnson, D. G. 2001. Computer Ethics. Englewood Cliffs, NJ: Prentice-Hall.

Laudon, K. 1995. “Ethical Concepts and Information Technology.” Comm. ACM 38 (12): 33–39.
doi:10.1145/219663.219677.

Naur, P., and Randell, B. 1969. Software Engineering: Report on a conference sponsored by the NATO
Science Committee. Brussels. http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.pdf

Tavani, H. T. 2013. Ethics and Technology: Controversies, Questions, and Strategies for Ethical
Computing, 4th ed. New York: John Wiley & Sons.

Vogel, L. 2012. Eclipse 4 Application Development: The Complete Guide to Eclipse 4 RCP
Development. Sebastopol, CA: O’Reilly & Associates.

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.pdf

Software processes
2

Objectives
The objective of this chapter is to introduce you to the idea of a software
process—a coherent set of activities for software production. When you
have read this chapter, you will:

■	 understand the concepts of software processes and software
process models;

■	 have been introduced to three general software process models and
when they might be used;

■	 know about the fundamental process activities of software requirements
engineering, software development, testing, and evolution;

■	 understand why processes should be organized to cope with changes
in the software requirements and design;

■	 understand the notion of software process improvement and the
factors that affect software process quality.

Contents
2.1 	Software process models

2.2 	Process activities

2.3 	Coping with change

2.4 	Process improvement

44    Chapter 2  ■  Software processes

A software process is a set of related activities that leads to the production of a soft-
ware system. As I discussed in Chapter 1, there are many different types of software
systems, and there is no universal software engineering method that is applicable to
all of them. Consequently, there is no universally applicable software process. The
process used in different companies depends on the type of software being devel-
oped, the requirements of the software customer, and the skills of the people writing
the software.

However, although there are many different software processes, they all must
include, in some form, the four fundamental software engineering activities that I
introduced in Chapter 1:

1.	 Software specification The functionality of the software and constraints on its
operation must be defined.

2.	 Software development The software to meet the specification must be produced.

3.	 Software validation The software must be validated to ensure that it does what
the customer wants.

4.	 Software evolution The software must evolve to meet changing customer needs.

These activities are complex activities in themselves, and they include subactivi-
ties such as requirements validation, architectural design, and unit testing. Processes
also include other activities, such as software configuration management and project
planning that support production activities.

When we describe and discuss processes, we usually talk about the activities in
these processes, such as specifying a data model and designing a user interface, and
the ordering of these activities. We can all relate to what people do to develop soft-
ware. However, when describing processes, it is also important to describe who is
involved, what is produced, and conditions that influence the sequence of activities:

1.	 Products or deliverables are the outcomes of a process activity. For example, the
outcome of the activity of architectural design may be a model of the software
architecture.

2.	 Roles reflect the responsibilities of the people involved in the process. Examples
of roles are project manager, configuration manager, and programmer.

3.	 Pre- and postconditions are conditions that must hold before and after a process
activity has been enacted or a product produced. For example, before architec-
tural design begins, a precondition may be that the consumer has approved all
requirements; after this activity is finished, a postcondition might be that the
UML models describing the architecture have been reviewed.

Software processes are complex and, like all intellectual and creative processes,
rely on people making decisions and judgments. As there is no universal process that
is right for all kinds of software, most software companies have developed their own

	 2.1  ■  Software process models    45

development processes. Processes have evolved to take advantage of the capabilities
of the software developers in an organization and the characteristics of the systems
that are being developed. For safety-critical systems, a very structured development
process is required where detailed records are maintained. For business systems, with
rapidly changing requirements, a more flexible, agile process is likely to be better.

As I discussed in Chapter 1, professional Professional software development is a
managed activity, so planning is an inherent part of all processes. Plan-driven pro-
cesses are processes where all of the process activities are planned in advance and
progress is measured against this plan. In agile processes, which I discuss in Chapter 3,
planning is incremental and continual as the software is developed. It is therefore eas-
ier to change the process to reflect changing customer or product requirements. As
Boehm and Turner (Boehm and Turner 2004) explain, each approach is suitable for
different types of software. Generally, for large systems, you need to find a balance
between plan-driven and agile processes.

Although there is no universal software process, there is scope for process improve-
ment in many organizations. Processes may include outdated techniques or may not
take advantage of the best practice in industrial software engineering. Indeed, many
organizations still do not take advantage of software engineering methods in their
software development. They can improve their process by introducing techniques
such as UML modeling and test-driven development. I discuss software process
improvement briefly later in thischapter text and in more detail in web Chapter 26.

	 2.1 	 Software process models

As I explained in Chapter 1, a software process model (sometimes called a Software
Development Life Cycle or SDLC model) is a simplified representation of a soft-
ware process. Each process model represents a process from a particular perspective
and thus only provides partial information about that process. For example, a pro-
cess activity model shows the activities and their sequence but may not show the
roles of the people involved in these activities. In this section, I introduce a number
of very general process models (sometimes called process paradigms) and present
these from an architectural perspective. That is, we see the framework of the process
but not the details of process activities.

These generic models are high-level, abstract descriptions of software processes
that can be used to explain different approaches to software development. You can
think of them as process frameworks that may be extended and adapted to create
more specific software engineering processes.

The general process models that I cover here are:

1.	 The waterfall model This takes the fundamental process activities of specifica-
tion, development, validation, and evolution and represents them as separate
process phases such as requirements specification, software design, implemen-
tation, and testing.

46    Chapter 2  ■  Software processes

2.	 Incremental development This approach interleaves the activities of specifica-
tion, development, and validation. The system is developed as a series of versions
(increments), with each version adding functionality to the previous version.

3.	 Integration and configuration This approach relies on the availability of reus-
able components or systems. The system development process focuses on
configuring these components for use in a new setting and integrating them
into a system.

As I have said, there is no universal process model that is right for all kinds of
software development. The right process depends on the customer and regulatory
requirements, the environment where the software will be used, and the type of soft-
ware being developed. For example, safety-critical software is usually developed
using a waterfall process as lots of analysis and documentation is required before
implementation begins. Software products are now always developed using an incre-
mental process model. Business systems are increasingly being developed by con-
figuring existing systems and integrating these to create a new system with the
functionality that is required.

The majority of practical software processes are based on a general model but
often incorporate features of other models. This is particularly true for large systems
engineering. For large systems, it makes sense to combine some of the best features
of all of the general processes. You need to have information about the essential
system requirements to design a software architecture to support these requirements.
You cannot develop this incrementally. Subsystems within a larger system may be
developed using different approaches. Parts of the system that are well understood
can be specified and developed using a waterfall-based process or may be bought in
as off-the-shelf systems for configuration. Other parts of the system, which are dif-
ficult to specify in advance, should always be developed using an incremental
approach. In both cases, software components are likely to be reused.

Various attempts have been made to develop “universal” process models that
draw on all of these general models. One of the best known of these universal models
is the Rational Unified Process (RUP) (Krutchen 2003), which was developed by
Rational, a U.S. software engineering company. The RUP is a flexible model that

The Rational Unified Process

The Rational Unified Process (RUP) brings together elements of all of the general process models discussed
here and supports prototyping and incremental delivery of software (Krutchen 2003). The RUP is normally
described from three perspectives: a dynamic perspective that shows the phases of the model in time, a static
perspective that shows process activities, and a practice perspective that suggests good practices to be used in
the process. Phases of the RUP are inception, where a business case for the system is established; elaboration,
where requirements and architecture are developed; construction where the software is implemented; and
transition, where the system is deployed.

http://software-engineering-book.com/web/rup/

http://software-engineering-book.com/web/rup

	 2.1  ■  Software process models    47

can be instantiated in different ways to create processes that resemble any of the
general process models discussed here. The RUP has been adopted by some large
software companies (notably IBM), but it has not gained widespread acceptance.

	 2.1.1 	 The waterfall model

The first published model of the software development process was derived from
engineering process models used in large military systems engineering (Royce
1970). It presents the software development process as a number of stages, as shown
in Figure 2.1. Because of the cascade from one phase to another, this model is known
as the waterfall model or software life cycle. The waterfall model is an example of a
plan-driven process. In principle at least, you plan and schedule all of the process
activities before starting software development.

The stages of the waterfall model directly reflect the fundamental software devel-
opment activities:

1.	 Requirements analysis and definition The system’s services, constraints, and
goals are established by consultation with system users. They are then defined
in detail and serve as a system specification.

2.	 System and software design The systems design process allocates the require-
ments to either hardware or software systems. It establishes an overall system
architecture. Software design involves identifying and describing the funda-
mental software system abstractions and their relationships.

3.	 Implementation and unit testing During this stage, the software design is real-
ized as a set of programs or program units. Unit testing involves verifying that
each unit meets its specification.

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenanceFigure 2.1  The

waterfall model

48    Chapter 2  ■  Software processes

4.	 Integration and system testing The individual program units or programs are
integrated and tested as a complete system to ensure that the software
requirements have been met. After testing, the software system is delivered
to the customer.

5.	 Operation and maintenance Normally, this is the longest life-cycle phase. The
system is installed and put into practical use. Maintenance involves correcting
errors that were not discovered in earlier stages of the life cycle, improving the
implementation of system units, and enhancing the system’s services as new
requirements are discovered.

In principle, the result of each phase in the waterfall model is one or more docu-
ments that are approved (“signed off”). The following phase should not start until
the previous phase has finished. For hardware development, where high manufactur-
ing costs are involved, this makes sense. However, for software development, these
stages overlap and feed information to each other. During design, problems with
requirements are identified; during coding design problems are found, and so on.
The software process, in practice, is never a simple linear model but involves feed-
back from one phase to another.

As new information emerges in a process stage, the documents produced at previ-
ous stages should be modified to reflect the required system changes. For example,
if it is discovered that a requirement is too expensive to implement, the requirements
document should be changed to remove that requirement. However, this requires
customer approval and delays the overall development process.

As a result, both customers and developers may prematurely freeze the software
specification so that no further changes are made to it. Unfortunately, this means that
problems are left for later resolution, ignored, or programmed around. Premature
freezing of requirements may mean that the system won’t do what the user wants. It
may also lead to badly structured systems as design problems are circumvented by
implementation tricks.

During the final life-cycle phase (operation and maintenance) the software is put
into use. Errors and omissions in the original software requirements are discovered.

Boehm’s spiral process model

Barry Boehm, one of the pioneers in software engineering, proposed an incremental process model that was
risk-driven. The process is represented as a spiral rather than a sequence of activities (Boehm 1988).

Each loop in the spiral represents a phase of the software process. Thus, the innermost loop might be con-
cerned with system feasibility, the next loop with requirements definition, the next loop with system design,
and so on. The spiral model combines change avoidance with change tolerance. It assumes that changes are
a result of project risks and includes explicit risk management activities to reduce these risks.

http://software-engineering-book.com/web/spiral-model/

http://software-engineering-book.com/web/spiral-model

Program and design errors emerge, and the need for new functionality is identified.
The system must therefore evolve to remain useful. Making these changes (software
maintenance) may involve repeating previous process stages.

In reality, software has to be flexible and accommodate change as it is being
developed. The need for early commitment and system rework when changes are
made means that the waterfall model is only appropriate for some types of system:

1.	 Embedded systems where the software has to interface with hardware systems.
Because of the inflexibility of hardware, it is not usually possible to delay deci-
sions on the software’s functionality until it is being implemented.

2.	 Critical systems where there is a need for extensive safety and security analysis
of the software specification and design. In these systems, the specification and
design documents must be complete so that this analysis is possible. Safety-
related problems in the specification and design are usually very expensive to
correct at the implementation stage.

3.	 Large software systems that are part of broader engineering systems developed
by several partner companies. The hardware in the systems may be developed
using a similar model, and companies find it easier to use a common model for
hardware and software. Furthermore, where several companies are involved,
complete specifications may be needed to allow for the independent develop-
ment of different subsystems.

The waterfall model is not the right process model in situations where informal
team communication is possible and software requirements change quickly. Iterative
development and agile methods are better for these systems.

An important variant of the waterfall model is formal system development, where
a mathematical model of a system specification is created. This model is then refined,
using mathematical transformations that preserve its consistency, into executable
code. Formal development processes, such as that based on the B method (Abrial
2005, 2010), are mostly used in the development of software systems that have strin-
gent safety, reliability, or security requirements. The formal approach simplifies the
production of a safety or security case. This demonstrates to customers or regulators
that the system actually meets its safety or security requirements. However, because
of the high costs of developing a formal specification, this development model is
rarely used except for critical systems engineering.

	 2.1.2 	 Incremental development

Incremental development is based on the idea of developing an initial implementa-
tion, getting feedback from users and others, and evolving the software through
several versions until the required system has been developed (Figure 2.2).
Specification, development, and validation activities are interleaved rather than
separate, with rapid feedback across activities.

	 2.1  ■  Software process models    49

50    Chapter 2  ■  Software processes

Incremental development in some form is now the most common approach for
the development of application systems and software products. This approach can
be either plan-driven, agile or, more usually, a mixture of these approaches. In a
plan-driven approach, the system increments are identified in advance; if an agile
approach is adopted, the early increments are identified, but the development of
later increments depends on progress and customer priorities.

Incremental software development, which is a fundamental part of agile
development methods, is better than a waterfall approach for systems whose
requirements are likely to change during the development process. This is the
case for most business systems and software products. Incremental development
reflects the way that we solve problems. We rarely work out a complete prob-
lem solution in advance but move toward a solution in a series of steps, back-
tracking when we realize that we have made a mistake. By developing the
software incrementally, it is cheaper and easier to make changes in the software
as it is being developed.

Each increment or version of the system incorporates some of the functional-
ity that is needed by the customer. Generally, the early increments of the system
include the most important or most urgently required functionality. This means
that the customer or user can evaluate the system at a relatively early stage in
the development to see if it delivers what is required. If not, then only the cur-
rent increment has to be changed and, possibly, new functionality defined for
later increments.

Incremental development has three major advantages over the waterfall model:

1.	 The cost of implementing requirements changes is reduced. The amount of
analysis and documentation that has to be redone is significantly less than is
required with the waterfall model.

2.	 It is easier to get customer feedback on the development work that has been
done. Customers can comment on demonstrations of the software and see how

Concurrent
activities

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Figure 2.2  Incremental
development

much has been implemented. Customers find it difficult to judge progress from
software design documents.

3.	 Early delivery and deployment of useful software to the customer is possible,
even if all of the functionality has not been included. Customers are able to use
and gain value from the software earlier than is possible with a waterfall process.

From a management perspective, the incremental approach has two problems:

1.	 The process is not visible. Managers need regular deliverables to measure pro-
gress. If systems are developed quickly, it is not cost effective to produce docu-
ments that reflect every version of the system.

2.	 System structure tends to degrade as new increments are added. Regular change
leads to messy code as new functionality is added in whatever way is possible.
It becomes increasingly difficult and costly to add new features to a system. To
reduce structural degradation and general code messiness, agile methods sug-
gest that you should regularly refactor (improve and restructure) the software.

The problems of incremental development become particularly acute for large,
complex, long-lifetime systems, where different teams develop different parts of the
system. Large systems need a stable framework or architecture, and the responsi-
bilities of the different teams working on parts of the system need to be clearly
defined with respect to that architecture. This has to be planned in advance rather
than developed incrementally.

Incremental development does not mean that you have to deliver each increment
to the system customer. You can develop a system incrementally and expose it to
customers and other stakeholders for comment, without necessarily delivering it
and deploying it in the customer’s environment. Incremental delivery (covered in
Section 2.3.2) means that the software is used in real, operational processes, so user
feedback is likely to be realistic. However, providing feedback is not always possi-
ble as experimenting with new software can disrupt normal business processes.

Problems with incremental development

Although incremental development has many advantages, it is not problem free. The primary cause of the
difficulty is the fact that large organizations have bureaucratic procedures that have evolved over time and
there may be a mismatch between these procedures and a more informal iterative or agile process.

Sometimes these procedures are there for good reasons. For example, there may be procedures to ensure
that the software meets properly implements external regulations (e.g., in the United States, the Sarbanes
Oxley accounting regulations). Changing these procedures may not be possible, so process conflicts may
be unavoidable.

http://software-engineering-book.com/web/incremental-development /

	 2.1  ■  Software process models    51

http://software-engineering-book.com/web/incremental-development

52    Chapter 2  ■  Software processes

	 2.1.3 	 Integration and configuration

In the majority of software projects, there is some software reuse. This often happens
informally when people working on the project know of or search for code that is
similar to what is required. They look for these, modify them as needed, and integrate
them with the new code that they have developed.

This informal reuse takes place regardless of the development process that is
used. However, since 2000, software development processes that focus on the reuse
of existing software have become widely used. Reuse-oriented approaches rely on a
base of reusable software components and an integrating framework for the compo-
sition of these components.

Three types of software components are frequently reused:

1.	 Stand-alone application systems that are configured for use in a particular envi-
ronment. These systems are general-purpose systems that have many features,
but they have to be adapted for use in a specific application.

2.	 Collections of objects that are developed as a component or as a package to be
integrated with a component framework such as the Java Spring framework
(Wheeler and White 2013).

3.	 Web services that are developed according to service standards and that are
available for remote invocation over the Internet.

Figure 2.3 shows a general process model for reuse-based development, based on
integration and configuration. The stages in this process are:

1.	 Requirements specification The initial requirements for the system are pro-
posed. These do not have to be elaborated in detail but should include brief
descriptions of essential requirements and desirable system features.

2.	 Software discovery and evaluation Given an outline of the software require-
ments, a search is made for components and systems that provide the func-
tionality required. Candidate components and systems are evaluated to see if

Requirements
specification

Software
discovery

Software
evaluation

Requirements
refinement

Configure
application

system

Adapt
components

Integrate
system

Develop new
components

Application system
available

Components
availableFigure 2.3  Reuse-

oriented software
engineering

they meet the essential requirements and if they are generally suitable for
use in the system.

3.	 Requirements refinement During this stage, the requirements are refined using
information about the reusable components and applications that have been
discovered. The requirements are modified to reflect the available compo-
nents, and the system specification is re-defined. Where modifications are
impossible, the component analysis activity may be reentered to search for
alternative solutions.

4.	 Application system configuration If an off-the-shelf application system that
meets the requirements is available, it may then be configured for use to create
the new system.

5.	 Component adaptation and integration If there is no off-the-shelf system, indi-
vidual reusable components may be modified and new components developed.
These are then integrated to create the system.

Reuse-oriented software engineering, based around configuration and integra-
tion, has the obvious advantage of reducing the amount of software to be developed
and so reducing cost and risks. It usually also leads to faster delivery of the software.
However, requirements compromises are inevitable, and this may lead to a system

Software development tools

Software development tools are programs that are used to support software engineering process activities.
These tools include requirements management tools, design editors, refactoring support tools, compilers,
debuggers, bug trackers, and system building tools.

Software tools provide process support by automating some process activities and by providing information
about the software that is being developed. For example:

■	 The development of graphical system models as part of the requirements specification or the software
design

■	 The generation of code from these graphical models

■	 The generation of user interfaces from a graphical interface description that is created interactively by the user

■	 Program debugging through the provision of information about an executing program

■	 The automated translation of programs written using an old version of a programming language to a more
recent version

Tools may be combined within a framework called an Interactive Development Environment or IDE. This
provides a common set of facilities that tools can use so that it is easier for tools to communicate and operate
in an integrated way.

http://software-engineering-book.com/web/software-tools/

	 2.1  ■  Software process models    53

http://software-engineering-book.com/web/software-tools

54    Chapter 2  ■  Software processes

that does not meet the real needs of users. Furthermore, some control over the sys-
tem evolution is lost as new versions of the reusable components are not under the
control of the organization using them.

Software reuse is very important, and so several chapters in the third I have dedi-
cated several chapters in the 3rd part of the book to this topic. General issues of
software reuse are covered in Chapter 15, component-based software engineering in
Chapters 16 and 17, and service-oriented systems in Chapter 18.

	 2.2 	 Process activities

Real software processes are interleaved sequences of technical, collaborative, and
managerial activities with the overall goal of specifying, designing, implementing,
and testing a software system. Generally, processes are now tool-supported. This
means that software developers may use a range of software tools to help them, such
as requirements management systems, design model editors, program editors, auto-
mated testing tools, and debuggers.

The four basic process activities of specification, development, validation, and
evolution are organized differently in different development processes. In the water-
fall model, they are organized in sequence, whereas in incremental development
they are interleaved. How these activities are carried out depends on the type of
software being developed, the experience and competence of the developers, and the
type of organization developing the software.

	 2.2.1 	 Software specification

Software specification or requirements engineering is the process of understanding
and defining what services are required from the system and identifying the con-
straints on the system’s operation and development. Requirements engineering is a
particularly critical stage of the software process, as mistakes made at this stage
inevitably lead to later problems in the system design and implementation.

Before the requirements engineering process starts, a company may carry out a
feasibility or marketing study to assess whether or not there is a need or a market for
the software and whether or not it is technically and financially realistic to develop
the software required. Feasibility studies are short-term, relatively cheap studies that
inform the decision of whether or not to go ahead with a more detailed analysis.

The requirements engineering process (Figure 2.4) aims to produce an agreed
requirements document that specifies a system satisfying stakeholder requirements.
Requirements are usually presented at two levels of detail. End-users and customers
need a high-level statement of the requirements; system developers need a more
detailed system specification.

There are three main activities in the requirements engineering process:

1.	 Requirements elicitation and analysis This is the process of deriving the system
requirements through observation of existing systems, discussions with poten-
tial users and procurers, task analysis, and so on. This may involve the develop-
ment of one or more system models and prototypes. These help you understand
the system to be specified.

2.	 Requirements specification Requirements specification is the activity of trans-
lating the information gathered during requirements analysis into a document
that defines a set of requirements. Two types of requirements may be included
in this document. User requirements are abstract statements of the system
requirements for the customer and end-user of the system; system requirements
are a more detailed description of the functionality to be provided.

3.	 Requirements validation This activity checks the requirements for realism,
consistency, and completeness. During this process, errors in the require-
ments document are inevitably discovered. It must then be modified to correct
these problems.

Requirements analysis continues during definition and specification, and new
requirements come to light throughout the process. Therefore, the activities of analy-
sis, definition, and specification are interleaved.

In agile methods, requirements specification is not a separate activity but is seen
as part of system development. Requirements are informally specified for each
increment of the system just before that increment is developed. Requirements are
specified according to user priorities. The elicitation of requirements comes from
users who are part of or work closely with the development team.

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

System
descriptions

User and system
requirements

Requirements
document

Figure 2.4  The
requirements
engineering process

	 2.2  ■  Process activities    55

56    Chapter 2  ■  Software processes

	 2.2.2 	 Software design and implementation

The implementation stage of software development is the process of developing
an executable system for delivery to the customer. Sometimes this involves sepa-
rate activities of software design and programming. However, if an agile approach
to development is used, design and implementation are interleaved, with no for-
mal design documents produced during the process. Of course, the software is
still designed, but the design is recorded informally on whiteboards and program-
mer’s notebooks.

A software design is a description of the structure of the software to be imple-
mented, the data models and structures used by the system, the interfaces between
system components and, sometimes, the algorithms used. Designers do not arrive at
a finished design immediately but develop the design in stages. They add detail as
they develop their design, with constant backtracking to modify earlier designs.

Figure 2.5 is an abstract model of the design process showing the inputs to the
design process, process activities, and the process outputs. The design process activ-
ities are both interleaved and interdependent. New information about the design is
constantly being generated, and this affects previous design decisions. Design
rework is therefore inevitable.

Design inputs

Design outputs

Architectural
design

Interface
design

Database
design

Component
selection

and design

Design activities

Platform
information

Software
requirements

Data
descriptions

System
architecture

Interface
specification

Database
design

Component
descriptionsFigure 2.5  A general

model of the
design process

Most software interfaces with other software systems. These other systems
include the operating system, database, middleware, and other application systems.
These make up the “software platform,’ the environment in which the software will
execute. Information about this platform is an essential input to the design process,
as designers must decide how best to integrate it with its environment. If the system
is to process existing data, then the description of that data may be included in the
platform specification. Otherwise, the data description must be an input to the design
process so that the system data organization can be defined.

The activities in the design process vary, depending on the type of system being
developed. For example, real-time systems require an additional stage of timing design
but may not include a database, so there is no database design involved. Figure 2.5
shows four activities that may be part of the design process for information systems:

1.	 Architectural design, where you identify the overall structure of the system, the
principal components (sometimes called subsystems or modules), their relation-
ships, and how they are distributed.

2.	 Database design, where you design the system data structures and how these are
to be represented in a database. Again, the work here depends on whether an
existing database is to be reused or a new database is to be created.

3.	 Interface design, where you define the interfaces between system components.
This interface specification must be unambiguous. With a precise interface, a
component may be used by other components without them having to know
how it is implemented. Once interface specifications are agreed, the compo-
nents can be separately designed and developed.

4.	 Component selection and design, where you search for reusable components
and, if no suitable components are available, design new software components.
The design at this stage may be a simple component description with the imple-
mentation details left to the programmer. Alternatively, it may be a list of
changes to be made to a reusable component or a detailed design model
expressed in the UML. The design model may then be used to automatically
generate an implementation.

These activities lead to the design outputs, which are also shown in Figure 2.5.
For critical systems, the outputs of the design process are detailed design documents
setting out precise and accurate descriptions of the system. If a model-driven
approach is used (Chapter 5), the design outputs are design diagrams. Where agile
methods of development are used, the outputs of the design process may not be
separate specification documents but may be represented in the code of the program.

The development of a program to implement a system follows naturally from
system design. Although some classes of program, such as safety-critical systems,
are usually designed in detail before any implementation begins, it is more common
for design and program development to be interleaved. Software development tools
may be used to generate a skeleton program from a design. This includes code to

	 2.2  ■  Process activities    57

58    Chapter 2  ■  Software processes

define and implement interfaces, and, in many cases, the developer need only add
details of the operation of each program component.

Programming is an individual activity, and there is no general process that is
usually followed. Some programmers start with components that they understand,
develop these, and then move on to less understood components. Others take the
opposite approach, leaving familiar components till last because they know how to
develop them. Some developers like to define data early in the process and then
use this to drive the program development; others leave data unspecified for as
long as possible.

Normally, programmers carry out some testing of the code they have developed.
This often reveals program defects (bugs) that must be removed from the program.
Finding and fixing program defects is called debugging. Defect testing and debug-
ging are different processes. Testing establishes the existence of defects. Debugging
is concerned with locating and correcting these defects.

When you are debugging, you have to generate hypotheses about the observa-
ble behavior of the program and then test these hypotheses in the hope of finding
the fault that caused the output anomaly. Testing the hypotheses may involve trac-
ing the program code manually. It may require new test cases to localize the prob-
lem. Interactive debugging tools, which show the intermediate values of program
variables and a trace of the statements executed, are usually used to support the
debugging process.

	 2.2.3 	 Software validation

Software validation or, more generally, verification and validation (V & V) is
intended to show that a system both conforms to its specification and meets the
expectations of the system customer. Program testing, where the system is executed
using simulated test data, is the principal validation technique. Validation may also
involve checking processes, such as inspections and reviews, at each stage of the
software process from user requirements definition to program development.
However, most V & V time and effort is spent on program testing.

Except for small programs, systems should not be tested as a single, monolithic
unit. Figure 2.6 shows a three-stage testing process in which system components are
individually tested, then the integrated system is tested. For custom software, cus-
tomer testing involves testing the system with real customer data. For products that
are sold as applications, customer testing is sometimes called beta testing where
selected users try out and comment on the software.

System testing
Component

 testing
Customer

testing

Figure 2.6  Stages
of testing

The stages in the testing process are:

1.       Component testing The components making up the system are tested by the people
developing the system. Each component is tested independently, without other
system components. Components may be simple entities such as functions or
object classes or may be coherent groupings of these entities. Test automation
tools, such as JUnit for Java, that can rerun tests when new versions of the
component are created, are commonly used (Koskela 2013).

2.    System testing System components are integrated to create a complete system.
This process is concerned with finding errors that result from unanticipated
interactions between components and component interface problems. It is also
concerned with showing that the system meets its functional and non-functional
requirements, and testing the emergent system properties. For large systems,
this may be a multistage process where components are integrated to form
subsystems that are individually tested before these subsystems are integrated to
form the final system.

3.    Customer testing This is the final stage in the testing process before the system
is accepted for operational use. The system is tested by the system customer (or
potential customer) rather than with simulated test data. For custom-built
software, customer testing may reveal errors and omissions in the system
requirements definition, because the real data exercise the system in different
ways from the test data. Customer testing may also reveal requirements problems
where the system’s facilities do not really meet the users’ needs or the system
performance is unacceptable. For products, customer testing shows how well
the software product meets the customer’s needs.

Ideally, component defects are discovered early in the testing process, and inter-
face problems are found when the system is integrated. However, as defects are dis-
covered, the program must be debugged, and this may require other stages in the
testing process to be repeated. Errors in program components, say, may come to
light during system testing. The process is therefore an iterative one with informa-
tion being fed back from later stages to earlier parts of the process.

Normally, component testing is simply part of the normal development process.
Programmers make up their own test data and incrementally test the code as it is
developed. The programmer knows the component and is therefore the best person
to generate test cases.

If an incremental approach to development is used, each increment should be
tested as it is developed, with these tests based on the requirements for that incre-
ment. In test-driven development, which is a normal part of agile processes, tests are
developed along with the requirements before development starts. This helps the
testers and developers to understand the requirements and ensures that there are no
delays as test cases are created.

When a plan-driven software process is used (e.g., for critical systems develop-
ment), testing is driven by a set of test plans. An independent team of testers works

	 2.2  ■  Process activities    59

60    Chapter 2  ■  Software processes

from these test plans, which have been developed from the system specification and
design. Figure 2.7 illustrates how test plans are the link between testing and develop-
ment activities. This is sometimes called the V-model of development (turn it on its
side to see the V). The V-model shows the software validation activities that corre-
spond to each stage of the waterfall process model.

When a system is to be marketed as a software product, a testing process called
beta testing is often used. Beta testing involves delivering a system to a number of
potential customers who agree to use that system. They report problems to the sys-
tem developers. This exposes the product to real use and detects errors that may not
have been anticipated by the product developers. After this feedback, the software
product may be modified and released for further beta testing or general sale.

	 2.2.4 	 Software evolution

The flexibility of software is one of the main reasons why more and more software
is being incorporated into large, complex systems. Once a decision has been made to
manufacture hardware, it is very expensive to make changes to the hardware design.
However, changes can be made to software at any time during or after the system
development. Even extensive changes are still much cheaper than corresponding
changes to system hardware.

Historically, there has always been a split between the process of software
development and the process of software evolution (software maintenance). People
think of software development as a creative activity in which a software system is
developed from an initial concept through to a working system. However, they
sometimes think of software maintenance as dull and uninteresting. They think
that software maintenance is less interesting and challenging than original soft-
ware development.

This distinction between development and maintenance is increasingly irrelevant.
Very few software systems are completely new systems, and it makes much more

Requirements
specification

System
specification

Customer
test

System
integration test

Sub-system
integration test

System
design

Component
design

Service

Component
code and test

Customer
test plan

System
integration
test plan

Sub-system
integration
test plan

Figure 2.7  Testing
phases in a plan-driven
software process

sense to see development and maintenance as a continuum. Rather than two separate
processes, it is more realistic to think of software engineering as an evolutionary
process (Figure 2.8) where software is continually changed over its lifetime in
response to changing requirements and customer needs.

	 2.3 	 Coping with change

Change is inevitable in all large software projects. The system requirements
change as businesses respond to external pressures, competition, and changed
management priorities. As new technologies become available, new approaches to
design and implementation become possible. Therefore whatever software pro-
cess model is used, it is essential that it can accommodate changes to the software
being developed.

Change adds to the costs of software development because it usually means
that work that has been completed has to be redone. This is called rework. For
example, if the relationships between the requirements in a system have been ana-
lyzed and new requirements are then identified, some or all of the requirements
analysis has to be repeated. It may then be necessary to redesign the system to
deliver the new requirements, change any programs that have been developed,
and retest the system.

Two related approaches may be used to reduce the costs of rework:

1.	 Change anticipation, where the software process includes activities that can
anticipate or predict possible changes before significant rework is required. For
example, a prototype system may be developed to show some key features of
the system to customers. They can experiment with the prototype and refine
their requirements before committing to high software production costs.

2.	 Change tolerance, where the process and software are designed so that changes
can be easily made to the system. This normally involves some form of incre-
mental development. Proposed changes may be implemented in increments that
have not yet been developed. If this is impossible, then only a single increment
(a small part of the system) may have to be altered to incorporate the change.

Assess existing
systems

Define system
requirements

Propose system
changes

Modify
systems

New
system

Existing
systemsFigure 2.8  Software

system evolution

	 2.3  ■  Coping with change    61

62    Chapter 2  ■  Software processes

In this section, I discuss two ways of coping with change and changing system
requirements:

1.	 System prototyping, where a version of the system or part of the system is
developed quickly to check the customer’s requirements and the feasibility of
design decisions. This is a method of change anticipation as it allows users to
experiment with the system before delivery and so refine their requirements.
The number of requirements change proposals made after delivery is therefore
likely to be reduced.

2.	 Incremental delivery, where system increments are delivered to the customer
for comment and experimentation. This supports both change avoidance and
change tolerance. It avoids the premature commitment to requirements for the
whole system and allows changes to be incorporated into later increments at
relatively low cost.

The notion of refactoring, namely, improving the structure and organization of a
program, is also an important mechanism that supports change tolerance. I discuss
this in Chapter 3 (Agile methods).

	 2.3.1 	 Prototyping

A prototype is an early version of a software system that is used to demonstrate con-
cepts, try out design options, and find out more about the problem and its possible
solutions. Rapid, iterative development of the prototype is essential so that costs are
controlled and system stakeholders can experiment with the prototype early in the
software process.

A software prototype can be used in a software development process to help
anticipate changes that may be required:

1.	 In the requirements engineering process, a prototype can help with the elicita-
tion and validation of system requirements.

2.	 In the system design process, a prototype can be used to explore software solu-
tions and in the development of a user interface for the system.

System prototypes allow potential users to see how well the system supports their
work. They may get new ideas for requirements and find areas of strength and weak-
ness in the software. They may then propose new system requirements. Furthermore,
as the prototype is developed, it may reveal errors and omissions in the system
requirements. A feature described in a specification may seem to be clear and useful.
However, when that function is combined with other functions, users often find that
their initial view was incorrect or incomplete. The system specification can then be
modified to reflect the changed understanding of the requirements.

A system prototype may be used while the system is being designed to carry out
design experiments to check the feasibility of a proposed design. For example, a
database design may be prototyped and tested to check that it supports efficient data
access for the most common user queries. Rapid prototyping with end-user involve-
ment is the only sensible way to develop user interfaces. Because of the dynamic
nature of user interfaces, textual descriptions and diagrams are not good enough for
expressing the user interface requirements and design.

A process model for prototype development is shown in Figure 2.9. The objec-
tives of prototyping should be made explicit from the start of the process. These
may be to develop the user interface, to develop a system to validate functional
system requirements, or to develop a system to demonstrate the application to man-
agers. The same prototype usually cannot meet all objectives. If the objectives are
left unstated, management or end-users may misunderstand the function of the pro-
totype. Consequently, they may not get the benefits that they expected from the
prototype development.

The next stage in the process is to decide what to put into and, perhaps more
importantly, what to leave out of the prototype system. To reduce prototyping costs
and accelerate the delivery schedule, you may leave some functionality out of the
prototype. You may decide to relax non-functional requirements such as response
time and memory utilization. Error handling and management may be ignored unless
the objective of the prototype is to establish a user interface. Standards of reliability
and program quality may be reduced.

The final stage of the process is prototype evaluation. Provision must be
made during this stage for user training, and the prototype objectives should
be used to derive a plan for evaluation. Potential users need time to become
comfortable with a new system and to settle into a normal pattern of usage. Once
they are using the system normally, they then discover requirements errors
and omissions. A general problem with prototyping is that users may not use the
prototype in the same way as they use the final system. Prototype testers may
not be typical of system users. There may not be enough time to train users
during prototype evaluation. If the prototype is slow, the evaluators may adjust
their way of working and avoid those system features that have slow response
times. When provided with better response in the final system, they may use it in
a different way.

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
reportFigure 2.9  Prototype

development

	 2.3  ■  Coping with change    63

64    Chapter 2  ■  Software processes

	 2.3.2 	 Incremental delivery

Incremental delivery (Figure 2.10) is an approach to software development where
some of the developed increments are delivered to the customer and deployed for
use in their working environment. In an incremental delivery process, customers
define which of the services are most important and which are least important to
them. A number of delivery increments are then defined, with each increment pro-
viding a subset of the system functionality. The allocation of services to increments
depends on the service priority, with the highest priority services implemented and
delivered first.

Once the system increments have been identified, the requirements for the
services to be delivered in the first increment are defined in detail and that incre-
ment is developed. During development, further requirements analysis for later
increments can take place, but requirements changes for the current increment
are not accepted.

Once an increment is completed and delivered, it is installed in the customer’s
normal working environment. They can experiment with the system, and this helps
them clarify their requirements for later system increments. As new increments are
completed, they are integrated with existing increments so that system functionality
improves with each delivered increment.

Incremental delivery has a number of advantages:

1.	 Customers can use the early increments as prototypes and gain experience that
informs their requirements for later system increments. Unlike prototypes,
these are part of the real system, so there is no relearning when the complete
system is available.

2.	 Customers do not have to wait until the entire system is delivered before they
can gain value from it. The first increment satisfies their most critical require-
ments, so they can use the software immediately.

3.	 The process maintains the benefits of incremental development in that it should
be relatively easy to incorporate changes into the system.

Design system
architecture

Define outline
 requirements

Assign requirements
 to increments

System
incomplete?

Final
system

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete?

Figure 2.10 
Incremental delivery

4.	 As the highest priority services are delivered first and later increments then inte-
grated, the most important system services receive the most testing. This means
that customers are less likely to encounter software failures in the most impor-
tant parts of the system.

However, there are problems with incremental delivery. In practice, it only works in
situations where a brand-new system is being introduced and the system evaluators are
given time to experiment with the new system. Key problems with this approach are:

1.	 Iterative delivery is problematic when the new system is intended to replace an
existing system. Users need all of the functionality of the old system and are
usually unwilling to experiment with an incomplete new system. It is often
impractical to use the old and the new systems alongside each other as they are
likely to have different databases and user interfaces.

2.	 Most systems require a set of basic facilities that are used by different parts of the
system. As requirements are not defined in detail until an increment is to be imple-
mented, it can be hard to identify common facilities that are needed by all increments.

3.	 The essence of iterative processes is that the specification is developed in con-
junction with the software. However, this conflicts with the procurement model
of many organizations, where the complete system specification is part of the
system development contract. In the incremental approach, there is no complete
system specification until the final increment is specified. This requires a new
form of contract, which large customers such as government agencies may find
difficult to accommodate.

For some types of systems, incremental development and delivery is not the best
approach. These are very large systems where development may involve teams working
in different locations, some embedded systems where the software depends on hardware
development, and some critical systems where all the requirements must be analyzed to
check for interactions that may compromise the safety or security of the system.

These large systems, of course, suffer from the same problems of uncertain and
changing requirements. Therefore, to address these problems and get some of the
benefits of incremental development, a system prototype may be developed and used
as a platform for experiments with the system requirements and design. With the
experience gained from the prototype, definitive requirements can then be agreed.

	 2.4 	 Process improvement

Nowadays, there is a constant demand from industry for cheaper, better software,
which has to be delivered to ever-tighter deadlines. Consequently, many software
companies have turned to software process improvement as a way of enhancing the

	 2.4  ■  Process improvement    65

66    Chapter 2  ■  Software processes

quality of their software, reducing costs, or accelerating their development pro-
cesses. Process improvement means understanding existing processes and changing
these processes to increase product quality and/or reduce costs and development
time. I cover general issues of process measurement and process improvement in
detail in web Chapter 26.

Two quite different approaches to process improvement and change are used:

1.	 The process maturity approach, which has focused on improving process and
project management and introducing good software engineering practice into an
organization. The level of process maturity reflects the extent to which good
technical and management practice has been adopted in organizational software
development processes. The primary goals of this approach are improved prod-
uct quality and process predictability.

2.	 The agile approach, which has focused on iterative development and the reduc-
tion of overheads in the software process. The primary characteristics of agile
methods are rapid delivery of functionality and responsiveness to changing cus-
tomer requirements. The improvement philosophy here is that the best processes
are those with the lowest overheads and agile approaches can achieve this.
I describe agile approaches in Chapter 3.

People who are enthusiastic about and committed to each of these approaches are
generally skeptical of the benefits of the other. The process maturity approach is
rooted in plan-driven development and usually requires increased “overhead,” in the
sense that activities are introduced that are not directly relevant to program develop-
ment. Agile approaches focus on the code being developed and deliberately mini-
mize formality and documentation.

The general process improvement process underlying the process maturity
approach is a cyclical process, as shown in Figure 2.11. The stages in this process are:

1.	 Process measurement You measure one or more attributes of the software pro-
cess or product. These measurements form a baseline that helps you decide if

Analyze

Measure

Change

Figure 2.11  The process
improvement cycle

process improvements have been effective. As you introduce improvements, you
re-measure the same attributes, which will hopefully have improved in some way.

2.	 Process analysis The current process is assessed, and process weaknesses and
bottlenecks are identified. Process models (sometimes called process maps) that
describe the process may be developed during this stage. The analysis may be
focused by considering process characteristics such as rapidity and robustness.

3.	 Process change Process changes are proposed to address some of the identified
process weaknesses. These are introduced, and the cycle resumes to collect data
about the effectiveness of the changes.

Without concrete data on a process or the software developed using that process, it
is impossible to assess the value of process improvement. However, companies starting
the process improvement process are unlikely to have process data available as an
improvement baseline. Therefore, as part of the first cycle of changes, you may have to
collect data about the software process and to measure software product characteristics.

Process improvement is a long-term activity, so each of the stages in the improve-
ment process may last several months. It is also a continuous activity as, whatever
new processes are introduced, the business environment will change and the new
processes will themselves have to evolve to take these changes into account.

The notion of process maturity was introduced in the late 1980s when the
Software Engineering Institute (SEI) proposed their model of process capability
maturity (Humphrey 1988). The maturity of a software company’s processes reflects
the process management, measurement, and use of good software engineering prac-
tices in the company. This idea was introduced so that the U.S. Department of
Defense could assess the software engineering capability of defense contractors,
with a view to limiting contracts to those contractors who had reached a required
level of process maturity. Five levels of process maturity were proposed. as shown in
Figure 2.12. These have evolved and developed over the last 25 years (Chrissis,
Konrad, and Shrum 2011), but the fundamental ideas in Humphrey’s model are still
the basis of software process maturity assessment.

The levels in the process maturity model are:

1.	 Initial The goals associated with the process area are satisfied, and for all pro-
cesses the scope of the work to be performed is explicitly set out and communi-
cated to the team members.

2.	 Managed At this level, the goals associated with the process area are met, and organ-
izational policies are in place that define when each process should be used. There
must be documented project plans that define the project goals. Resource manage-
ment and process monitoring procedures must be in place across the institution.

3.	 Defined This level focuses on organizational standardization and deployment of
processes. Each project has a managed process that is adapted to the project require-
ments from a defined set of organizational processes. Process assets and process
measurements must be collected and used for future process improvements.

	 2.4  ■  Process improvement    67

68    Chapter 2  ■  Software processes

4.	 Quantitatively managed At this level, there is an organizational responsibility to
use statistical and other quantitative methods to control subprocesses. That is, col-
lected process and product measurements must be used in process management.

5.	 Optimizing At this highest level, the organization must use the process and
product measurements to drive process improvement. Trends must be analyzed
and the processes adapted to changing business needs.

The work on process maturity levels has had a major impact on the software
industry. It focused attention on the software engineering processes and practices
that were used and led to significant improvements in software engineering capabil-
ity. However, there is too much overhead in formal process improvement for small
companies, and maturity estimation with agile processes is difficult. Consequently,
only large software companies now use this maturity-focused approach to software
process improvement.

Level 3
Defined

Level 2
Managed

Level 1
Initial

Level 4
Quantitatively

managed

Level 5
Optimizing

Figure 2.12  Capability
maturity levels

K e y p o i n t s

■	 Software processes are the activities involved in producing a software system. Software process
models are abstract representations of these processes.

■	 General process models describe the organization of software processes. Examples of these
general models include the waterfall model, incremental development, and reusable component
configuration and integration.

	 Chapter 2  ■  Website    69

■	 Requirements engineering is the process of developing a software specification. Specifications
are intended to communicate the system needs of the customer to the system developers.

■	 Design and implementation processes are concerned with transforming a requirements specifi-
cation into an executable software system.

■	 Software validation is the process of checking that the system conforms to its specification and
that it meets the real needs of the users of the system.

■	 Software evolution takes place when you change existing software systems to meet new
requirements. Changes are continuous, and the software must evolve to remain useful.

■	 Processes should include activities to cope with change. This may involve a prototyping phase that
helps avoid poor decisions on requirements and design. Processes may be structured for iterative
development and delivery so that changes may be made without disrupting the system as a whole.

■	 Process improvement is the process of improving existing software processes to improve soft-
ware quality, lower development costs, or reduce development time. It is a cyclic process involv-
ing process measurement, analysis, and change.

F u r t h e r R e a d i n g

“Process Models in Software Engineering.” This is an excellent overview of a wide range of software
engineering process models that have been proposed. (W. Scacchi, Encyclopaedia of Software
Engineering, ed. J. J. Marciniak, John Wiley & Sons, 2001) http://www.ics.uci.edu/~wscacchi/
Papers/SE-Encyc/Process-Models-SE-Encyc.pdf

Software Process Improvement: Results and Experience from the Field. This book is a collection of
papers focusing on process improvement case studies in several small and medium-sized Norwegian
companies. It also includes a good introduction to the general issues of process improvement.
(Conradi, R., Dybå, T., Sjøberg, D., and Ulsund, T. (eds.), Springer, 2006).

“Software Development Life Cycle Models and Methodologies.” This blog post is a succinct sum-
mary of several software process models that have been proposed and used. It discusses the advan-
tages and disadvantages of each of these models (M. Sami, 2012). http://melsatar.wordpress.
com/2012/03/15/software-development-life-cycle-models-and-methodologies/

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-engineering/

http://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/Process-Models-SE-Encyc.pdf
http://melsatar.wordpress.com/2012/03/15/software-development-life-cycle-models-and-methodologies
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-engineering
http://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/Process-Models-SE-Encyc.pdf
http://melsatar.wordpress.com/2012/03/15/software-development-life-cycle-models-and-methodologies

70    Chapter 2  ■  Software processes

E x e r c i s e s

  2.1. 	Suggest the most appropriate generic software process model that might be used as a basis
for managing the development of the following systems. Explain your answer according to the
type of system being developed:

A system to control antilock braking in a car

A virtual reality system to support software maintenance

A university accounting system that replaces an existing system

An interactive travel planning system that helps users plan journeys with the lowest
environmental impact

  2.2. 	Incremental software development could be very effectively used for customers who do not
have a clear idea about the systems needed for their operations. Discuss.

  2.3. 	Consider the integration and configuration process model shown in Figure 2.3. Explain why it
is essential to repeat the requirements engineering activity in the process.

  2.4. 	Suggest why it is important to make a distinction between developing the user requirements
and developing system requirements in the requirements engineering process.

  2.5. 	Using an example, explain why the design activities of architectural design, database design,
interface design, and component design are interdependent.

  2.6. 	Explain why software testing should always be an incremental, staged activity. Are program-
mers the best people to test the programs that they have developed?

  2.7. 	Imagine that a government wants a software program that helps to keep track of the utiliza-
tion of the country’s vast mineral resources. Although the requirements put forward by the
government were not very clear, a software company was tasked with the development of a
prototype. The government found the prototype impressive, and asked it be extended to be
the actual system that would be used. Discuss the pros and cons of taking this approach.

  2.8. 	You have developed a prototype of a software system and your manager is very impressed by
it. She proposes that it should be put into use as a production system, with new features
added as required. This avoids the expense of system development and makes the system
immediately useful. Write a short report for your manager explaining why prototype systems
should not normally be used as production systems.

  2.9. 	Suggest two advantages and two disadvantages of the approach to process assessment and
improvement that is embodied in the SEI’s Capability Maturity framework.

2.10. 	Historically, the introduction of technology has caused profound changes in the labor market
and, temporarily at least, displaced people from jobs. Discuss whether the introduction of
extensive process automation is likely to have the same consequences for software engi-
neers. If you don’t think it will, explain why not. If you think that it will reduce job opportuni-
ties, is it ethical for the engineers affected to passively or actively resist the introduction of
this technology?

70    Chapter 2  ■  Software processes

	 Chapter 2  ■  References    71

R e f e r e n c e s

Abrial, J. R. 2005. The B Book: Assigning Programs to Meanings. Cambridge, UK: Cambridge
University Press.

	   . 2010. Modeling in Event-B: System and Software Engineering. Cambridge, UK: Cambridge
University Press.

Boehm, B. W. (1988). “A Spiral Model of Software Development and Enhancement.” IEEE Computer,
21 (5), 61–72. doi:10.1145/12944.12948

Boehm, B. W., and R. Turner. 2004. “Balancing Agility and Discipline: Evaluating and Integrating
Agile and Plan-Driven Methods.” In 26th Int. Conf on Software Engineering, Edinburgh, Scotland.
doi:10.1109/ICSE.2004.1317503.

Chrissis, M. B., M. Konrad, and S. Shrum. 2011. CMMI for Development: Guidelines for Process
Integration and Product Improvement, 3rd ed. Boston: Addison-Wesley.

Humphrey, W. S. 1988. “Characterizing the Software Process: A Maturity Framework.” IEEE Software
5 (2): 73–79. doi:10.1109/2.59.

Koskela, L. 2013. Effective Unit Testing: A Guide for Java Developers. Greenwich, CT: Manning
Publications.

Krutchen, P. 2003. The Rational Unified Process—An Introduction, 3rd ed. Reading, MA: Addison-Wesley.

Royce, W. W. 1970. “Managing the Development of Large Software Systems: Concepts and
Techniques.” In IEEE WESTCON, 1–9. Los Angeles, CA.

Wheeler, W., and J. White. 2013. Spring in Practice. Greenwich, CT: Manning Publications.

Agile software
development

3

Objectives
The objective of this chapter is to introduce you to agile software
development methods. When you have read the chapter, you will:

■	 understand the rationale for agile software development methods,
the agile manifesto, and the differences between agile and
plan-driven development;

■	 know about important agile development practices such as user
stories, refactoring, pair programming and test-first development;

■	 understand the Scrum approach to agile project management;

■	 understand the issues of scaling agile development methods and
combining agile approaches with plan-driven approaches in the
development of large software systems.

Contents
3.1 	Agile methods

3.2 	Agile development techniques

3.3 	Agile project management

3.4 	Scaling agile methods

Businesses now operate in a global, rapidly changing environment. They have to
respond to new opportunities and markets, changing economic conditions and the
emergence of competing products and services. Software is part of almost all busi-
ness operations, so new software has to be developed quickly to take advantage of
new opportunities and to respond to competitive pressure. Rapid software develop-
ment and delivery is therefore the most critical requirement for most business systems.
In fact, businesses may be willing to trade off software quality and compromise on
requirements if they can deploy essential new software quickly.

Because these businesses are operating in a changing environment, it is practi-
cally impossible to derive a complete set of stable software requirements.
Requirements change because customers find it impossible to predict how a system
will affect working practices, how it will interact with other systems, and what user
operations should be automated. It may only be after a system has been delivered
and users gain experience with it that the real requirements become clear. Even then,
external factors drive requirements change.

Plan-driven software development processes that completely specify the require-
ments and then design, build, and test a system are not geared to rapid software devel-
opment. As the requirements change or as requirements problems are discovered, the
system design or implementation has to be reworked and retested. As a consequence,
a conventional waterfall or specification-based process is usually a lengthy one, and
the final software is delivered to the customer long after it was originally specified.

For some types of software, such as safety-critical control systems, where a com-
plete analysis of the system is essential, this plan-driven approach is the right one.
However, in a fast-moving business environment, it can cause real problems. By the
time the software is available for use, the original reason for its procurement may
have changed so radically that the software is effectively useless. Therefore, for
business systems in particular, development processes that focus on rapid software
development and delivery are essential.

The need for rapid software development and processes that can handle changing
requirements has been recognized for many years (Larman and Basili 2003).
However, faster software development really took off in the late 1990s with the
development of the idea of “agile methods” such as Extreme Programming (Beck
1999), Scrum (Schwaber and Beedle 2001), and DSDM (Stapleton 2003).

Rapid software development became known as agile development or agile meth-
ods. These agile methods are designed to produce useful software quickly. All of the
agile methods that have been proposed share a number of common characteristics:

1.	 The processes of specification, design and implementation are interleaved.
There is no detailed system specification, and design documentation is mini-
mized or generated automatically by the programming environment used to
implement the system. The user requirements document is an outline definition
of the most important characteristics of the system.

2.	 The system is developed in a series of increments. End-users and other system
stakeholders are involved in specifying and evaluating each increment.

Chapter 3  ■  Agile software development   73  

74   Chapter 3  ■  Agile software development

They may propose changes to the software and new requirements that should be
implemented in a later version of the system.

3.	 Extensive tool support is used to support the development process. Tools that
may be used include automated testing tools, tools to support configuration man-
agement, and system integration and tools to automate user interface production.

Agile methods are incremental development methods in which the increments are
small, and, typically, new releases of the system are created and made available to
customers every two or three weeks. They involve customers in the development
process to get rapid feedback on changing requirements. They minimize documentation
by using informal communications rather than formal meetings with written documents.

Agile approaches to software development consider design and implementation
to be the central activities in the software process. They incorporate other activities,
such as requirements elicitation and testing, into design and implementation. By
contrast, a plan-driven approach to software engineering identifies separate stages in
the software process with outputs associated with each stage. The outputs from one
stage are used as a basis for planning the following process activity.

Figure 3.1 shows the essential distinctions between plan-driven and agile approaches
to system specification. In a plan-driven software development process, iteration
occurs within activities, with formal documents used to communicate between stages
of the process. For example, the requirements will evolve, and, ultimately, a require-
ments specification will be produced. This is then an input to the design and imple-
mentation process. In an agile approach, iteration occurs across activities. Therefore,
the requirements and the design are developed together rather than separately.

In practice, as I explain in Section 3.4.1, plan-driven processes are often used along
with agile programming practices, and agile methods may incorporate some planned

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements change
requests

Plan-based development

Agile development

Requirements
engineering

Design and
implementation

Figure 3.1  Plan-driven
and agile development

	 3.1  ■  Agile methods   75

activities apart from programming and testing. It is perfectly feasible, in a plan-driven
process, to allocate requirements and plan the design and development phase as a
series of increments. An agile process is not inevitably code-focused, and it may
produce some design documentation. Agile developers may decide that an iteration
should not produce new code but rather should produce system models and documentation.

	 3.1	 Agile methods

In the 1980s and early 1990s, there was a widespread view that the best way to
achieve better software was through careful project planning, formalized quality
assurance, use of analysis and design methods supported by software tools, and con-
trolled and rigorous software development processes. This view came from the soft-
ware engineering community that was responsible for developing large, long-lived
software systems such as aerospace and government systems.

This plan-driven approach was developed for software developed by large teams,
working for different companies. Teams were often geographically dispersed and
worked on the software for long periods of time. An example of this type of software
is the control systems for a modern aircraft, which might take up to 10 years from
initial specification to deployment. Plan-driven approaches involve a significant
overhead in planning, designing, and documenting the system. This overhead is jus-
tified when the work of multiple development teams has to be coordinated, when the
system is a critical system, and when many different people will be involved in
maintaining the software over its lifetime.

However, when this heavyweight, plan-driven development approach is applied
to small and medium-sized business systems, the overhead involved is so large that
it dominates the software development process. More time is spent on how the sys-
tem should be developed than on program development and testing. As the system
requirements change, rework is essential and, in principle at least, the specification
and design have to change with the program.

Dissatisfaction with these heavyweight approaches to software engineering
led to the development of agile methods in the late 1990s. These methods allowed
the development team to focus on the software itself rather than on its design and
documentation. They are best suited to application development where the sys-
tem requirements usually change rapidly during the development process. They
are intended to deliver working software quickly to customers, who can then pro-
pose new and changed requirements to be included in later iterations of the sys-
tem. They aim to cut down on process bureaucracy by avoiding work that has
dubious long-term value and eliminating documentation that will probably never
be used.

The philosophy behind agile methods is reflected in the agile manifesto (http://
agilemanifesto.org) issued by the leading developers of these methods. This mani-
festo states:

http://agilemanifesto.org
http://agilemanifesto.org

76   Chapter 3  ■  Agile software development

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more†.

All agile methods suggest that software should be developed and delivered incre-
mentally. These methods are based on different agile processes but they share a set
of principles, based on the agile manifesto, and so they have much in common. I
have listed these principles in Figure 3.2.

Agile methods have been particularly successful for two kinds of system development.

1.	 Product development where a software company is developing a small or
medium-sized product for sale. Virtually all software products and apps are now
developed using an agile approach.

2.	 Custom system development within an organization, where there is a clear com-
mitment from the customer to become involved in the development process and
where there are few external stakeholders and regulations that affect the software.

Agile methods work well in these situations because it is possible to have con-
tinuous communications between the product manager or system customer and the
development team. The software itself is a stand-alone system rather than tightly
integrated with other systems being developed at the same time. Consequently, there
is no need to coordinate parallel development streams. Small and medium-sized

Principle Description

Customer involvement Customers should be closely involved throughout the development process.
Their role is provide and prioritize new system requirements and to evaluate
the iterations of the system.

Embrace change Expect the system requirements to change, and so design the system to
accommodate these changes.

Incremental delivery The software is developed in increments, with the customer specifying the
requirements to be included in each increment.

Maintain simplicity Focus on simplicity in both the software being developed and in the
development process. Wherever possible, actively work to eliminate
complexity from the system.

People, not process The skills of the development team should be recognized and exploited.
Team members should be left to develop their own ways of working without
prescriptive processes.

Figure 3.2  The
principles of agile
methods

†http://agilemanifesto.org/

http://agilemanifesto.org

	 3.2   ■  Agile development techniques   77

systems can be developed by co-located teams, so informal communications among
team members work well.

	 3.2 	 Agile development techniques

The ideas underlying agile methods were developed around the same time by a number
of different people in the 1990s. However, perhaps the most significant approach to
changing software development culture was the development of Extreme Programming
(XP). The name was coined by Kent Beck (Beck 1998) because the approach was
developed by pushing recognized good practice, such as iterative development, to
“extreme” levels. For example, in XP, several new versions of a system may be devel-
oped by different programmers, integrated, and tested in a day. Figure 3.3 illustrates
the XP process to produce an increment of the system that is being developed.

In XP, requirements are expressed as scenarios (called user stories), which are
implemented directly as a series of tasks. Programmers work in pairs and develop
tests for each task before writing the code. All tests must be successfully executed
when new code is integrated into the system. There is a short time gap between
releases of the system.

Extreme programming was controversial as it introduced a number of agile prac-
tices that were quite different from the development practice of that time. These prac-
tices are summarized in Figure 3.4 and reflect the principles of the agile manifesto:

1.	 Incremental development is supported through small, frequent releases of the sys-
tem. Requirements are based on simple customer stories or scenarios that are used
as a basis for deciding what functionality should be included in a system increment.

2.	 Customer involvement is supported through the continuous engagement of the
customer in the development team. The customer representative takes part in
the development and is responsible for defining acceptance tests for the system.

3.	 People, not process, are supported through pair programming, collective owner-
ship of the system code, and a sustainable development process that does not
involve excessively long working hours.

Break down
stories to tasks

Select user
stories for this

release
Plan release

Release
software

Evaluate
system

Develop/integrate/
test softwareFigure 3.3  The XP

release cycle

78   Chapter 3  ■  Agile software development

Principle or practice Description

Collective ownership The pairs of developers work on all areas of the system, so that no islands of
expertise develop and all the developers take responsibility for all of the code.
Anyone can change anything.

Continuous
integration

As soon as the work on a task is complete, it is integrated into the whole
system. After any such integration, all the unit tests in the system must pass.

Incremental planning Requirements are recorded on “story cards,” and the stories to be included in
a release are determined by the time available and their relative priority. The
developers break these stories into development “tasks.” See Figures 3.5
and 3.6.

On-site customer A representative of the end-user of the system (the Customer) should be
available full time for the use of the XP team. In an extreme programming
process, the customer is a member of the development team and is
responsible for bringing system requirements to the team for implementation.

Pair programming Developers work in pairs, checking each other's work and providing the
support to always do a good job.

Refactoring All developers are expected to refactor the code continuously as soon as
potential code improvements are found. This keeps the code simple and
maintainable.

Simple design Enough design is carried out to meet the current requirements and no more.

Small releases The minimal useful set of functionality that provides business value is
developed first. Releases of the system are frequent and incrementally add
functionality to the first release.

Sustainable pace Large amounts of overtime are not considered acceptable, as the net effect is
often to reduce code quality and medium-term productivity.

Test first
development

An automated unit test framework is used to write tests for a new piece of
functionality before that functionality itself is implemented.

Figure 3.4  Extreme
programming practices 4.	 Change is embraced through regular system releases to customers, test-first

development, refactoring to avoid code degeneration, and continuous integra-
tion of new functionality.

5.	 Maintaining simplicity is supported by constant refactoring that improves code
quality and by using simple designs that do not unnecessarily anticipate future
changes to the system.

In practice, the application of Extreme Programming as originally proposed has
proved to be more difficult than anticipated. It cannot be readily integrated with the
management practices and culture of most businesses. Therefore, companies adopt-
ing agile methods pick and choose those XP practices that are most appropriate for
their way of working. Sometimes these are incorporated into their own development
processes but, more commonly, they are used in conjunction with a management-
focused agile method such as Scrum (Rubin 2013).

	 3.2   ■  Agile development techniques   79

I am not convinced that XP on its own is a practical agile method for most com-
panies, but its most significant contribution is probably the set of agile development
practices that it introduced to the community. I discuss the most important of these
practices in this section.

	 3.2.1 	 User stories

Software requirements always change. To handle these changes, agile methods do not
have a separate requirements engineering activity. Rather, they integrate requirements
elicitation with development. To make this easier, the idea of “user stories” was devel-
oped where a user story is a scenario of use that might be experienced by a system user.

As far as possible, the system customer works closely with the development team
and discusses these scenarios with other team members. Together, they develop a
“story card” that briefly describes a story that encapsulates the customer needs. The
development team then aims to implement that scenario in a future release of the
software. An example of a story card for the Mentcare system is shown in Figure 3.5.
This is a short description of a scenario for prescribing medication for a patient.

User stories may be used in planning system iterations. Once the story cards have
been developed, the development team breaks these down into tasks (Figure 3.6) and
estimates the effort and resources required for implementing each task. This usually
involves discussions with the customer to refine the requirements. The customer
then prioritizes the stories for implementation, choosing those stories that can be

Kate is a doctor who wishes to prescribe medication for a patient attending a clinic.
The patient record is already displayed on her computer so she clicks on the
medication field and can select ‘current medication’, ‘new medication’ or ‘formulary’.

If she selects ‘current medication’, the system asks her to check the dose; If she
wants to change the dose, she enters the new dose then confirms the prescription.

If she chooses ‘new medication’, the system assumes that she knows which
medication to prescribe. She types the first few letters of the drug name. The system
displays a list of possible drugs starting with these letters. She chooses the required
medication and the system responds by asking her to check that the medication
selected is correct. She enters the dose then confirms the prescription.

If she chooses ‘formulary’, the system displays a search box for the approved
formulary. She can then search for the drug required. She selects a drug and is asked
to check that the medication is correct. She enters the dose then confirms the
prescription.

The system always checks that the dose is within the approved range. If it isn’t, Kate
is asked to change the dose.

After Kate has confirmed the prescription, it will be displayed for checking. She either
clicks ‘OK’ or ‘Change’. If she clicks ‘OK’, the prescription is recorded on the audit
database. If she clicks on ‘Change’, she reenters the ‘Prescribing medication’ process.

Prescribing medication

Figure 3.5  A
“prescribing medication”
story

80   Chapter 3  ■  Agile software development

used immediately to deliver useful business support. The intention is to identify
useful functionality that can be implemented in about two weeks, when the next
release of the system is made available to the customer.

Of course, as requirements change, the unimplemented stories change or may be
discarded. If changes are required for a system that has already been delivered, new
story cards are developed and again, the customer decides whether these changes
should have priority over new functionality.

The idea of user stories is a powerful one—people find it much easier to relate to
these stories than to a conventional requirements document or use cases. User stories can
be helpful in getting users involved in suggesting requirements during an initial prede-
velopment requirements elicitation activity. I discuss this in more detail in Chapter 4.

The principal problem with user stories is completeness. It is difficult to judge if
enough user stories have been developed to cover all of the essential requirements
of a system. It is also difficult to judge if a single story gives a true picture of an
activity. Experienced users are often so familiar with their work that they leave
things out when describing it.

	 3.2.2 	 Refactoring

A fundamental precept of traditional software engineering is that you should design
for change. That is, you should anticipate future changes to the software and design
it so that these changes can be easily implemented. Extreme programming, however,
has discarded this principle on the basis that designing for change is often wasted
effort. It isn’t worth taking time to add generality to a program to cope with change.
Often the changes anticipated never materialize, or completely different change
requests may actually be made.

Of course, in practice, changes will always have to be made to the code being devel-
oped. To make these changes easier, the developers of XP suggested that the code being
developed should be constantly refactored. Refactoring (Fowler et al. 1999) means that
the programming team look for possible improvements to the software and implements

Task 1: Change dose of prescribed drug

Task 2: Formulary selection

Task 3: Dose checking

Dose checking is a safety precaution to check that
the doctor has not prescribed a dangerously small or
large dose.

Using the formulary id for the generic drug name,
look up the formulary and retrieve the recommended
maximum and minimum dose.

Check the prescribed dose against the minimum and
maximum. If outside the range, issue an error
message saying that the dose is too high or too low.
If within the range, enable the ‘Confirm’ button.

Figure 3.6  Examples of
task cards for prescribing
medication

	 3.2   ■  Agile development techniques   81

them immediately. When team members see code that can be improved, they make
these improvements even in situations where there is no immediate need for them.

A fundamental problem of incremental development is that local changes tend to
degrade the software structure. Consequently, further changes to the software become
harder and harder to implement. Essentially, the development proceeds by finding
workarounds to problems, with the result that code is often duplicated, parts of the
software are reused in inappropriate ways, and the overall structure degrades as code is
added to the system. Refactoring improves the software structure and readability and
so avoids the structural deterioration that naturally occurs when software is changed.

Examples of refactoring include the reorganization of a class hierarchy to remove
duplicate code, the tidying up and renaming of attributes and methods, and the
replacement of similar code sections, with calls to methods defined in a program
library. Program development environments usually include tools for refactoring.
These simplify the process of finding dependencies between code sections and mak-
ing global code modifications.

In principle, when refactoring is part of the development process, the software
should always be easy to understand and change as new requirements are proposed.
In practice, this is not always the case. Sometimes development pressure means that
refactoring is delayed because the time is devoted to the implementation of new
functionality. Some new features and changes cannot readily be accommodated by
code-level refactoring and require that the architecture of the system be modified.

	 3.2.3 	 Test-first development

As I discussed in the introduction to this chapter, one of the important differences
between incremental development and plan-driven development is in the way that
the system is tested. With incremental development, there is no system specification
that can be used by an external testing team to develop system tests. As a conse-
quence, some approaches to incremental development have a very informal testing
process, in comparison with plan-driven testing.

Extreme Programming developed a new approach to program testing to address
the difficulties of testing without a specification. Testing is automated and is central
to the development process, and development cannot proceed until all tests have
been successfully executed. The key features of testing in XP are:

1.	 test-first development,

2.	 incremental test development from scenarios,

3.	 user involvement in the test development and validation, and

4.	 the use of automated testing frameworks.

XP’s test-first philosophy has now evolved into more general test-driven develop-
ment techniques (Jeffries and Melnik 2007). I believe that test-driven development is
one of the most important innovations in software engineering. Instead of writing code
and then writing tests for that code, you write the tests before you write the code. This

82   Chapter 3  ■  Agile software development

means that you can run the test as the code is being written and discover problems dur-
ing development. I discuss test-driven development in more depth in Chapter 8.

Writing tests implicitly defines both an interface and a specification of behavior for
the functionality being developed. Problems of requirements and interface misunder-
standings are reduced. Test-first development requires there to be a clear relationship
between system requirements and the code implementing the corresponding require-
ments. In XP, this relationship is clear because the story cards representing the require-
ments are broken down into tasks and the tasks are the principal unit of implementation.

In test-first development, the task implementers have to thoroughly understand
the specification so that they can write tests for the system. This means that ambi-
guities and omissions in the specification have to be clarified before implementation
begins. Furthermore, it also avoids the problem of “test-lag.” This may happen when
the developer of the system works at a faster pace than the tester. The implementa-
tion gets further and further ahead of the testing and there is a tendency to skip tests,
so that the development schedule can be maintained.

XP’s test-first approach assumes that user stories have been developed, and these
have been broken down into a set of task cards, as shown in Figure 3.6. Each task
generates one or more unit tests that check the implementation described in that task.
Figure 3.7 is a shortened description of a test case that has been developed to check
that the prescribed dose of a drug does not fall outside known safe limits.

The role of the customer in the testing process is to help develop acceptance tests
for the stories that are to be implemented in the next release of the system. As I
explain in Chapter 8, acceptance testing is the process whereby the system is tested
using customer data to check that it meets the customer’s real needs.

Test automation is essential for test-first development. Tests are written as exe-
cutable components before the task is implemented. These testing components
should be stand-alone, should simulate the submission of input to be tested, and
should check that the result meets the output specification. An automated test frame-
work is a system that makes it easy to write executable tests and submit a set of tests
for execution. Junit (Tahchiev et al. 2010) is a widely used example of an automated
testing framework for Java programs.

Input:
1. A number in mg representing a single dose of the drug.
2. A number representing the number of single doses per day.

Tests:
1. Test for inputs where the single dose is correct but the frequency is too

high.
2. Test for inputs where the single dose is too high and too low.
3. Test for inputs where the single dose * frequency is too high and too low.
4. Test for inputs where single dose * frequency is in the permitted range.

Output:
OK or error message indicating that the dose is outside the safe range.

Test 4: Dose checking

Figure 3.7  Test case
description for dose
checking

	 3.2   ■  Agile development techniques   83

As testing is automated, there is always a set of tests that can be quickly and eas-
ily executed. Whenever any functionality is added to the system, the tests can be run
and problems that the new code has introduced can be caught immediately.

Test-first development and automated testing usually result in a large number of
tests being written and executed. However, there are problems in ensuring that test
coverage is complete:

1.	 Programmers prefer programming to testing, and sometimes they take shortcuts
when writing tests. For example, they may write incomplete tests that do not
check for all possible exceptions that may occur.

2.	 Some tests can be very difficult to write incrementally. For example, in a com-
plex user interface, it is often difficult to write unit tests for the code that imple-
ments the “display logic” and workflow between screens.

It is difficult to judge the completeness of a set of tests. Although you may have a lot
of system tests, your test set may not provide complete coverage. Crucial parts of
the system may not be executed and so will remain untested. Therefore, although a
large set of frequently executed tests may give the impression that the system is complete
and correct, this may not be the case. If the tests are not reviewed and further tests are
written after development, then undetected bugs may be delivered in the system release.

	 3.2.4 	 Pair programming

Another innovative practice that was introduced in XP is that programmers work in
pairs to develop the software. The programming pair sits at the same computer to
develop the software. However, the same pair do not always program together.
Rather, pairs are created dynamically so that all team members work with each other
during the development process.

Pair programming has a number of advantages.

1.	 It supports the idea of collective ownership and responsibility for the system.
This reflects Weinberg’s idea of egoless programming (Weinberg 1971) where
the software is owned by the team as a whole and individuals are not held
responsible for problems with the code. Instead, the team has collective respon-
sibility for resolving these problems.

2.	 It acts as an informal review process because each line of code is looked at by at least
two people. Code inspections and reviews (Chapter 24) are effective in discovering
a high percentage of software errors. However, they are time consuming to organize
and, typically, introduce delays into the development process. Pair programming is a
less formal process that probably doesn’t find as many errors as code inspections.
However, it is cheaper and easier to organize than formal program inspections.

3.	 It encourages refactoring to improve the software structure. The problem with ask-
ing programmers to refactor in a normal development environment is that effort

84   Chapter 3  ■  Agile software development

involved is expended for long-term benefit. An developer who spends time refac-
toring may be judged to be less efficient than one who simply carries on developing
code. Where pair programming and collective ownership are used, others benefit
immediately from the refactoring so they are likely to support the process.

You might think that pair programming would be less efficient than individual
programming. In a given time, a pair of developers would produce half as much code
as two individuals working alone. Many companies that have adopted agile methods
are suspicious of pair programming and do not use it. Other companies mix pair and
individual programming with an experienced programmer working with a less expe-
rienced colleague when they have problems.

Formal studies of the value of pair programming have had mixed results. Using
student volunteers, Williams and her collaborators (Williams et al. 2000) found that
productivity with pair programming seems to be comparable to that of two people
working independently. The reasons suggested are that pairs discuss the software
before development and so probably have fewer false starts and less rework.
Furthermore, the number of errors avoided by the informal inspection is such that
less time is spent repairing bugs discovered during the testing process.

However, studies with more experienced programmers did not replicate these
results (Arisholm et al. 2007). They found that there was a significant loss of produc-
tivity compared with two programmers working alone. There were some quality
benefits, but these did not fully compensate for the pair-programming overhead.
Nevertheless, the sharing of knowledge that happens during pair programming is
very important as it reduces the overall risks to a project when team members leave.
In itself, this may make pair programming worthwhile.

	 3.3 	 Agile project management

In any software business, managers need to know what is going on and whether or not
a project is likely to meet its objectives and deliver the software on time with the pro-
posed budget. Plan-driven approaches to software development evolved to meet this
need. As I discussed in Chapter 23, managers draw up a plan for the project showing
what should be delivered, when it should be delivered, and who will work on the devel-
opment of the project deliverables. A plan-based approach requires a manager to have
a stable view of everything that has to be developed and the development processes.

The informal planning and project control that was proposed by the early adher-
ents of agile methods clashed with this business requirement for visibility. Teams
were self-organizing, did not produce documentation, and planned development in
very short cycles. While this can and does work for small companies developing
software products, it is inappropriate for larger companies who need to know what is
going on in their organization.

Like every other professional software development process, agile development
has to be managed so that the best use is made of the time and resources available to

	 3.3   ■  Agile project management   85

the team. To address this issue, the Scrum agile method was developed (Schwaber
and Beedle 2001; Rubin 2013) to provide a framework for organizing agile projects
and, to some extent at least, provide external visibility of what is going on. The devel-
opers of Scrum wished to make clear that Scrum was not a method for project man-
agement in the conventional sense, so they deliberately invented new terminology,
such as ScrumMaster, which replaced names such as project manager. Figure 3.8
summarizes Scrum terminology and what it means.

Scrum is an agile method insofar as it follows the principles from the agile mani-
festo, which I showed in Figure 3.2. However, it focuses on providing a framework
for agile project organization, and it does not mandate the use of specific development

Scrum term Definition

Development team A self-organizing group of software developers, which should be no
more than seven people. They are responsible for developing the
software and other essential project documents.

Potentially shippable product
increment

The software increment that is delivered from a sprint. The idea is that
this should be “potentially shippable,” which means that it is in a
finished state and no further work, such as testing, is needed to
incorporate it into the final product. In practice, this is not always
achievable.

Product backlog This is a list of “to do” items that the Scrum team must tackle. They
may be feature definitions for the software, software requirements, user
stories, or descriptions of supplementary tasks that are needed, such as
architecture definition or user documentation.

Product owner An individual (or possibly a small group) whose job is to identify
product features or requirements, prioritize these for development, and
continuously review the product backlog to ensure that the project
continues to meet critical business needs. The Product Owner can be a
customer but might also be a product manager in a software company
or other stakeholder representative.

Scrum A daily meeting of the Scrum team that reviews progress and prioritizes
work to be done that day. Ideally, this should be a short face-to-face
meeting that includes the whole team.

ScrumMaster The ScrumMaster is responsible for ensuring that the Scrum process is
followed and guides the team in the effective use of Scrum. He or she
is responsible for interfacing with the rest of the company and for
ensuring that the Scrum team is not diverted by outside interference.
The Scrum developers are adamant that the ScrumMaster should not
be thought of as a project manager. Others, however, may not always
find it easy to see the difference.

Sprint A development iteration. Sprints are usually 2 to 4 weeks long.

Velocity An estimate of how much product backlog effort a team can cover in a
single sprint. Understanding a team’s velocity helps them estimate what
can be covered in a sprint and provides a basis for measuring
improving performance.

Figure 3.8  Scrum
terminology

86   Chapter 3  ■  Agile software development

practices such as pair programming and test-first development. This means that it
can be more easily integrated with existing practice in a company. Consequently, as
agile methods have become a mainstream approach to software development, Scrum
has emerged as the most widely used method.

The Scrum process or sprint cycle is shown in Figure 3.9. The input to the process
is the product backlog. Each process iteration produces a product increment that
could be delivered to customers.

The starting point for the Scrum sprint cycle is the product backlog—the list of
items such as product features, requirements, and engineering improvement that
have to be worked on by the Scrum team. The initial version of the product backlog
may be derived from a requirements document, a list of user stories, or other descrip-
tion of the software to be developed.

While the majority of entries in the product backlog are concerned with the imple-
mentation of system features, other activities may also be included. Sometimes, when
planning an iteration, questions that cannot be easily answered come to light and addi-
tional work is required to explore possible solutions. The team may carry out some pro-
totyping or trial development to understand the problem and solution. There may also be
backlog items to design the system architecture or to develop system documentation.

The product backlog may be specified at varying levels of detail, and it is the
responsibility of the Product Owner to ensure that the level of detail in the specifica-
tion is appropriate for the work to be done. For example, a backlog item could be a
complete user story such as that shown in Figure 3.5, or it could simply be an instruc-
tion such as “Refactor user interface code” that leaves it up to the team to decide on
the refactoring to be done.

Each sprint cycle lasts a fixed length of time, which is usually between 2 and 4 weeks.
At the beginning of each cycle, the Product Owner prioritizes the items on the product
backlog to define which are the most important items to be developed in that cycle.
Sprints are never extended to take account of unfinished work. Items are returned to the
product backlog if these cannot be completed within the allocated time for the sprint.

The whole team is then involved in selecting which of the highest priority items
they believe can be completed. They then estimate the time required to complete
these items. To make these estimates, they use the velocity attained in previous

Review work
to be done

Select
items

Plan
sprint

Review
sprintSprint

Scrum

Product
backlog

Sprint
backlog

Potentially
shippable
softwareFigure 3.9  The Scrum

sprint cycle

	 3.3   ■  Agile project management   87

sprints, that is, how much of the backlog could be covered in a single sprint. This
leads to the creation of a sprint backlog—the work to be done during that sprint. The
team self-organizes to decide who will work on what, and the sprint begins.

During the sprint, the team holds short daily meetings (Scrums) to review pro-
gress and, where necessary, to re-prioritize work. During the Scrum, all team mem-
bers share information, describe their progress since the last meeting, bring up
problems that have arisen, and state what is planned for the following day. Thus,
everyone on the team knows what is going on and, if problems arise, can re-plan
short-term work to cope with them. Everyone participates in this short-term plan-
ning; there is no top-down direction from the ScrumMaster.

The daily interactions among Scrum teams may be coordinated using a Scrum
board. This is an office whiteboard that includes information and post-it notes about
the Sprint backlog, work done, unavailability of staff, and so on. This is a shared
resource for the whole team, and anyone can change or move items on the board. It
means that any team member can, at a glance, see what others are doing and what
work remains to be done.

At the end of each sprint, there is a review meeting, which involves the whole
team. This meeting has two purposes. First, it is a means of process improvement.
The team reviews the way they have worked and reflects on how things could have
been done better. Second, it provides input on the product and the product state for
the product backlog review that precedes the next sprint.

While the ScrumMaster is not formally a project manager, in practice ScrumMasters
take this role in many organizations that have a conventional management structure.
They report on progress to senior management and are involved in longer-term plan-
ning and project budgeting. They may be involved in project administration (agreeing
on holidays for staff, liaising with HR, etc.) and hardware and software purchases.

In various Scrum success stories (Schatz and Abdelshafi 2005; Mulder and van
Vliet 2008; Bellouiti 2009), the things that users like about the Scrum method are:

1.	 The product is broken down into a set of manageable and understandable chunks
that stakeholders can relate to.

2.	 Unstable requirements do not hold up progress.

3.	 The whole team has visibility of everything, and consequently team communi-
cation and morale are improved.

4.	 Customers see on-time delivery of increments and gain feedback on how the
product works. They are not faced with last-minute surprises when a team
announces that software will not be delivered as expected.

5.	 Trust between customers and developers is established, and a positive culture is
created in which everyone expects the project to succeed.

Scrum, as originally designed, was intended for use with co-located teams where
all team members could get together every day in stand-up meetings. However,
much software development now involves distributed teams, with team members
located in different places around the world. This allows companies to take advantage

88   Chapter 3  ■  Agile software development

of lower cost staff in other countries, makes access to specialist skills possible, and
allows for 24-hour development, with work going on in different time zones.

Consequently, there have been developments of Scrum for distributed development
environments and multi-team working. Typically, for offshore development, the prod-
uct owner is in a different country from the development team, which may also be
distributed. Figure 3.10 shows the requirements for Distributed Scrum (Deemer 2011).

	 3.4 	 Scaling agile methods

Agile methods were developed for use by small programming teams that could work
together in the same room and communicate informally. They were originally used
by for the development of small and medium-sized systems and software products.
Small companies, without formal processes or bureaucracy, were enthusiastic initial
adopters of these methods.

Of course, the need for faster delivery of software, which is more suited to cus-
tomer needs, also applies to both larger systems and larger companies. Consequently,
over the past few years, a lot of work has been put into evolving agile methods for
both large software systems and for use in large companies.

Scaling agile methods has closely related facets:

1.	 Scaling up these methods to handle the development of large systems that are
too big to be developed by a single small team.

2.	 Scaling out these methods from specialized development teams to more widespread
use in a large company that has many years of software development experience.

Videoconferencing
between the product
owner and the
development team

Distributed Scrum

The ScrumMaster
should be located with
the development team
so that he or she is
aware of everyday
problems.

The Product Owner
should visit the
developers and try to
establish a good
relationship with them.
It is essential that they
trust each other.

Real-time communica-
tions between team
members for informal
communication,
particularly instant
messaging and video
calls.

Continuous integration,
so that all team
members can be aware
of the state of the
product at any time.

A common development
environment for all teams

Figure 3.10  Distributed
Scrum

	 3.4   ■  Scaling agile methods   89

Of course, scaling up and scaling out are closely related. Contracts to develop
large software systems are usually awarded to large organizations, with multiple
teams working on the development project. These large companies have often exper-
imented with agile methods in smaller projects, so they face the problems of scaling
up and scaling out at the same time.

There are many anecdotes about the effectiveness of agile methods, and it has
been suggested that these can lead to orders of magnitude improvements in produc-
tivity and comparable reductions in defects. Ambler (Ambler 2010), an influential
agile method developer, suggests that these productivity improvements are exagger-
ated for large systems and organizations. He suggests that an organization moving to
agile methods can expect to see productivity improvement across the organization of
about 15% over 3 years, with similar reductions in the number of product defects.

	 3.4.1 	 Practical problems with agile methods

In some areas, particularly in the development of software products and apps, agile
development has been incredibly successful. It is by far the best approach to use for
this type of system. However, agile methods may not be suitable for other types of
software development, such as embedded systems engineering or the development
of large and complex systems.

For large, long-lifetime systems that are developed by a software company for an
external client, using an agile approach presents a number of problems.

1.	 The informality of agile development is incompatible with the legal approach to
contract definition that is commonly used in large companies.

2.	 Agile methods are most appropriate for new software development rather than
for software maintenance. Yet the majority of software costs in large companies
come from maintaining their existing software systems.

3.	 Agile methods are designed for small co-located teams, yet much software
development now involves worldwide distributed teams.

Contractual issues can be a major problem when agile methods are used. When
the system customer uses an outside organization for system development, a contract
for the software development is drawn up between them. The software requirements
document is usually part of that contract between the customer and the supplier.
Because the interleaved development of requirements and code is fundamental to
agile methods, there is no definitive statement of requirements that can be included
in the contract.

Consequently, agile methods have to rely on contracts in which the customer
pays for the time required for system development rather than the development of a
specific set of requirements. As long as all goes well, this benefits both the customer
and the developer. However, if problems arise, then there may be difficult disputes
over who is to blame and who should pay for the extra time and resources required
to resolve the problems.

90   Chapter 3  ■  Agile software development

As I explain in Chapter 9, a huge amount of software engineering effort goes into the
maintenance and evolution of existing software systems. Agile practices, such as incre-
mental delivery, design for change, and maintaining simplicity all make sense when soft-
ware is being changed. In fact, you can think of an agile development process as a process
that supports continual change. If agile methods are used for software product develop-
ment, new releases of the product or app simply involve continuing the agile approach.

However, where maintenance involves a custom system that must be changed in
response to new business requirements, there is no clear consensus on the suitability
of agile methods for software maintenance (Bird 2011; Kilner 2012). Three types of
problems can arise:

■	 lack of product documentation

■	 keeping customers involved

■	 development team continuity

Formal documentation is supposed to describe the system and so make it easier
for people changing the system to understand. In practice, however, formal docu-
mentation is rarely updated and so does not accurately reflect the program code. For
this reason, agile methods enthusiasts argue that it is a waste of time to write this
documentation and that the key to implementing maintainable software is to produce
high-quality, readable code. The lack of documentation should not be a problem in
maintaining systems developed using an agile approach.

However, my experience of system maintenance is that the most important docu-
ment is the system requirements document, which tells the software engineer what the
system is supposed to do. Without such knowledge, it is difficult to assess the impact of
proposed system changes. Many agile methods collect requirements informally and
incrementally and do not create a coherent requirements document. The use of agile
methods may therefore make subsequent system maintenance more difficult and expen-
sive. This is a particular problem if development team continuity cannot be maintained.

A key challenge in using an agile approach to maintenance is keeping customers
involved in the process. While a customer may be able to justify the full-time involve-
ment of a representative during system development, this is less likely during mainte-
nance where changes are not continuous. Customer representatives are likely to lose
interest in the system. Therefore, it is likely that alternative mechanisms, such as change
proposals, discussed in Chapter 25, will have to be adapted to fit in with an agile approach.

Another potential problem that may arise is maintaining continuity of the devel-
opment team. Agile methods rely on team members understanding aspects of the
system without having to consult documentation. If an agile development team is
broken up, then this implicit knowledge is lost and it is difficult for new team mem-
bers to build up the same understanding of the system and its components. Many
programmers prefer to work on new development to software maintenance, and so
they are unwilling to continue to work on a software system after the first release has
been delivered. Therefore, even when the intention is to keep the development team
together, people leave if they are assigned maintenance tasks.

	 3.4   ■  Scaling agile methods   91

	 3.4.2 	 Agile and plan-driven methods

A fundamental requirement of scaling agile methods is to integrate them with plan-
driven approaches. Small startup companies can work with informal and short-term
planning, but larger companies have to have longer-term plans and budgets for
investment, staffing, and business development. Their software development must
support these plans, so longer-term software planning is essential.

Early adopters of agile methods in the first decade of the 21st century were enthu-
siasts and deeply committed to the agile manifesto. They deliberately rejected the
plan-driven approach to software engineering and were reluctant to change the ini-
tial vision of agile methods in any way. However, as organizations saw the value and
benefits of an agile approach, they adapted these methods to suit their own culture
and ways of working. They had to do this because the principles underlying agile
methods are sometimes difficult to realize in practice (Figure 3.11).

To address these problems, most large “agile” software development projects com-
bine practices from plan-driven and agile approaches. Some are mostly agile, and others
are mostly plan-driven but with some agile practices. To decide on the balance between
a plan-based and an agile approach, you have to answer a range of technical, human and
organizational questions. These relate to the system being developed, the development
team, and the organizations that are developing and procuring the system (Figure 3.12).

Agile methods were developed and refined in projects to develop small to medium-
sized business systems and software products, where the software developer controls
the specification of the system. Other types of system have attributes such as size, com-
plexity, real-time response, and external regulation that mean a “pure” agile approach is

Principle Practice

Customer involvement This depends on having a customer who is willing and able to spend time with
the development team and who can represent all system stakeholders. Often,
customer representatives have other demands on their time and cannot play a
full part in the software development. Where there are external stakeholders,
such as regulators, it is difficult to represent their views to the agile team.

Embrace change Prioritizing changes can be extremely difficult, especially in systems for which
there are many stakeholders. Typically, each stakeholder gives different
priorities to different changes.

Incremental delivery Rapid iterations and short-term planning for development does not always fit
in with the longer-term planning cycles of business planning and marketing.
Marketing managers may need to know product features several months in
advance to prepare an effective marketing campaign.

Maintain simplicity Under pressure from delivery schedules, team members may not have time to
carry out desirable system simplifications.

People, not process Individual team members may not have suitable personalities for the intense
involvement that is typical of agile methods and therefore may not interact
well with other team members.

Figure 3.11  Agile
principles and
organizational practice

92   Chapter 3  ■  Agile software development

unlikely to work. There needs to be some up-front planning, design, and documentation

in the systems engineering process. Some of the key issues are as follows:

1.	 How large is the system that is being developed? Agile methods are most effective
when the system can be developed with a relatively small co-located team who
can communicate informally. This may not be possible for large systems that
require larger development teams, so a plan-driven approach may have to be used.

2.	 What type of system is being developed? Systems that require a lot of analysis
before implementation (e.g., real-time system with complex timing require-
ments) usually need a fairly detailed design to carry out this analysis. A plan-
driven approach may be best in those circumstances.

3.	 What is the expected system lifetime? Long-lifetime systems may require more
design documentation to communicate the original intentions of the system
developers to the support team. However, supporters of agile methods rightly
argue that documentation is frequently not kept up to date and is not of much
use for long-term system maintenance.

4.	 Is the system subject to external regulation? If a system has to be approved
by an external regulator (e.g., the Federal Aviation Administration approves
software that is critical to the operation of an aircraft), then you will probably be
required to produce detailed documentation as part of the system safety case.

Agile methods place a great deal of responsibility on the development team to
cooperate and communicate during the development of the system. They rely on indi-
vidual engineering skills and software support for the development process. However,
in reality, not everyone is a highly skilled engineer, people do not communicate effec-
tively, and it is not always possible for teams to work together. Some planning may be
required to make the most effective use of the people available. Key issues are:

1.	 How good are the designers and programmers in the development team?
It is sometimes argued that agile methods require higher skill levels than plan-
based approaches in which programmers simply translate a detailed design into
code. If you have a team with relatively low skill levels, you may need to use
the best people to develop the design, with others responsible for programming.

System Team Organization

Scale

Technology Distribution Contracts Delivery

Regulation

Type Lifetime

Competence Culture

Figure 3.12  Factors
influencing the choice
of plan-based or agile
development

	 3.4   ■  Scaling agile methods   93

2.	 How is the development team organized? If the development team is distributed
or if part of the development is being outsourced, then you may need to develop
design documents to communicate across the development teams.

3.	 What technologies are available to support system development? Agile methods
often rely on good tools to keep track of an evolving design. If you are develop-
ing a system using an IDE that does not have good tools for program visualiza-
tion and analysis, then more design documentation may be required.

Television and films have created a popular vision of software companies as
informal organizations run by young men (mostly) who provide a fashionable work-
ing environment, with a minimum of bureaucracy and organizational procedures.
This is far from the truth. Most software is developed in large companies that have
established their own working practices and procedures. Management in these
companies may be uncomfortable with the lack of documentation and the informal
decision making in agile methods. Key issues are:

1.	 Is it important to have a very detailed specification and design before moving to
implementation, perhaps for contractual reasons? If so, you probably need to
use a plan-driven approach for requirements engineering but may use agile
development practices during system implementation.

2.	 Is an incremental delivery strategy, where you deliver the software to customers
or other system stakeholders and get rapid feedback from them, realistic? Will
customer representatives be available, and are they willing to participate in the
development team?

3.	 Are there cultural issues that may affect system development? Traditional engi-
neering organizations have a culture of plan-based development, as this is the
norm in engineering. This usually requires extensive design documentation
rather than the informal knowledge used in agile processes.

In reality, the issue of whether a project can be labeled as plan-driven or agile
is not very important. Ultimately, the primary concern of buyers of a software system
is whether or not they have an executable software system that meets their needs and
does useful things for the individual user or the organization. Software developers
should be pragmatic and should choose those methods that are most effective for the
type of system being developed, whether or not these are labeled agile or plan-driven.

	 3.4.3 	 Agile methods for large systems

Agile methods have to evolve to be used for large-scale software development.
The fundamental reason for this is that large-scale software systems are much
more complex and difficult to understand and manage than small-scale systems
or software products. Six principal factors (Figure 3.13) contribute to this
complexity:

94   Chapter 3  ■  Agile software development

1.	 Large systems are usually systems of systems—collections of separate, com-
municating systems, where separate teams develop each system. Frequently,
these teams are working in different places, sometimes in different time zones.
It is practically impossible for each team to have a view of the whole system.
Consequently, their priorities are usually to complete their part of the system
without regard for wider systems issues.

2.	 Large systems are brownfield systems (Hopkins and Jenkins 2008); that is, they
include and interact with a number of existing systems. Many of the system require-
ments are concerned with this interaction and so don’t really lend themselves to
flexibility and incremental development. Political issues can also be significant
here—often the easiest solution to a problem is to change an existing system.
However, this requires negotiation with the managers of that system to convince
them that the changes can be implemented without risk to the system’s operation.

3.	 Where several systems are integrated to create a system, a significant fraction of
the development is concerned with system configuration rather than original
code development. This is not necessarily compatible with incremental devel-
opment and frequent system integration.

4.	 Large systems and their development processes are often constrained by exter-
nal rules and regulations limiting the way that they can be developed, that
require certain types of system documentation to be produced, and so on.
Customers may have specific compliance requirements that may have to be fol-
lowed, and these may require process documentation to be completed.

5.	 Large systems have a long procurement and development time. It is difficult to
maintain coherent teams who know about the system over that period as, inevi-
tably, people move on to other jobs and projects.

6.	 Large systems usually have a diverse set of stakeholders with different perspec-
tives and objectives. For example, nurses and administrators may be the end-users
of a medical system, but senior medical staff, hospital managers, and others, are
also stakeholders in the system. It is practically impossible to involve all of
these different stakeholders in the development process.

Large software system

System of
systems

Brownfield
development Diverse

stakeholders

Prolonged
procurement System

configuration

Regulatory
constraints

Figure 3.13  Large
project characteristics

	 3.4   ■  Scaling agile methods   95

Dean Leffingwell, who has a great deal of experience in scaling agile methods,
has developed the Scaled Agile Framework (Leffingwell 2007, 2011) to support
large-scale, multi-team software development. He reports how this method has been
used successfully in a number of large companies. IBM has also developed a frame-
work for the large-scale use of agile methods called the Agile Scaling Model (ASM).
Figure 3.14, taken from Ambler’s white paper that discusses ASM (Ambler 2010),
shows an overview of this model.

The ASM recognizes that scaling is a staged process where development teams
move from the core agile practices discussed here to what is called Disciplined Agile
Delivery. Essentially, this stage involves adapting these practices to a disciplined
organizational setting and recognizing that teams cannot simply focus on develop-
ment but must also take into account other stages of the software engineering
process, such as requirements and architectural design.

The final scaling stage in ASM is to move to Agility at Scale where the com-
plexity that is inherent in large projects is recognized. This involves taking account
of factors such as distributed development, complex legacy environments, and
regulatory compliance requirements. The practices used for disciplined agile
delivery may have to be modified on a project-by-project basis to take these into
account and, sometimes, additional plan-based practices added to the process.

No single model is appropriate for all large-scale agile products as the type of
product, the customer requirements, and the people available are all different.
However, approaches to scaling agile methods have a number of things in common:

Core agile
development

Disciplined
agile delivery

Agility at
scale

Agility at scale
Disciplined agile delivery where

scaling factors apply:
Large team size

Geographic distribution
Regulatory compliance

Domain complexity
Organization distribution

Technical complexity
Organizational complexity

Enterprise discipline

Disciplined agile delivery
Risk+value driven life-cycle

Self-organizing with appropriate
governance framework
Full delivery life-cycle

Core agile development
Value-driven life-cycle
Self-organizing teams
Focus on construction

Figure 3.14  IBM’s
Agility at Scale model
(© IBM 2010)

96   Chapter 3  ■  Agile software development

1.	 A completely incremental approach to requirements engineering is impossible.
Some early work on initial software requirements is essential. You need this
work to identify the different parts of the system that may be developed by
different teams and, often, to be part of the contract for the system development.
However, these requirements should not normally be specified in detail; details
are best developed incrementally.

2.	 There cannot be a single product owner or customer representative. Different
people have to be involved for different parts of the system, and they have to
continuously communicate and negotiate throughout the development process.

3.	 It is not possible to focus only on the code of the system. You need to do more
up-front design and system documentation. The software architecture has to be
designed, and there has to be documentation produced to describe critical
aspects of the system, such as database schemas and the work breakdown
across teams.

4.	 Cross-team communication mechanisms have to be designed and used. This
should involve regular phone and videoconferences between team members and
frequent, short electronic meetings where teams update each other on progress.
A range of communication channels such as email, instant messaging, wikis,
and social networking systems should be provided to facilitate communications.

5.	 Continuous integration, where the whole system is built every time any devel-
oper checks in a change, is practically impossible when several separate
programs have to be integrated to create the system. However, it is essential
to maintain frequent system builds and regular releases of the system.
Configuration management tools that support multi-team software develop-
ment are essential.

Scrum has been adapted for large-scale development. In essence, the Scrum team
model described in Section 3.3 is maintained, but multiple Scrum teams are set up.
The key characteristics of multi-team Scrum are:

1.	 Role replication Each team has a Product Owner for its work component and
ScrumMaster. There may be a chief Product Owner and ScrumMaster for the
entire project.

2.	 Product architects Each team chooses a product architect, and these architects
collaborate to design and evolve the overall system architecture.

3.	 Release alignment The dates of product releases from each team are aligned so
that a demonstrable and complete system is produced.

4.	 Scrum of Scrums There is a daily Scrum of Scrums where representatives from
each team meet to discuss progress, identify problems, and plan the work to be
done that day. Individual team Scrums may be staggered in time so that repre-
sentatives from other teams can attend if necessary.

	 3.4   ■  Scaling agile methods   97

	 3.4.4 	 Agile methods across organizations

Small software companies that develop software products have been among the
most enthusiastic adopters of agile methods. These companies are not constrained by
organizational bureaucracies or process standards, and they can change quickly to
adopt new ideas. Of course, larger companies have also experimented with agile
methods in specific projects, but it is much more difficult for them to “scale out”
these methods across the organization.

It can be difficult to introduce agile methods into large companies for a number of
reasons:

1.	 Project managers who do not have experience of agile methods may be reluctant
to accept the risk of a new approach, as they do not know how this will affect
their particular projects.

2.	 Large organizations often have quality procedures and standards that all pro-
jects are expected to follow, and, because of their bureaucratic nature, these are
likely to be incompatible with agile methods. Sometimes, these are supported
by software tools (e.g., requirements management tools), and the use of these
tools is mandated for all projects.

3.	 Agile methods seem to work best when team members have a relatively high
skill level. However, within large organizations, there are likely to be a wide
range of skills and abilities, and people with lower skill levels may not be effec-
tive team members in agile processes.

4.	 There may be cultural resistance to agile methods, especially in those organiza-
tions that have a long history of using conventional systems engineering processes.

Change management and testing procedures are examples of company procedures
that may not be compatible with agile methods. Change management is the process of
controlling changes to a system, so that the impact of changes is predictable and costs are
controlled. All changes have to be approved in advance before they are made, and this
conflicts with the notion of refactoring. When refactoring is part of an agile process, any
developer can improve any code without getting external approval. For large systems,
there are also testing standards where a system build is handed over to an external testing
team. This may conflict with test-first approaches used in agile development methods.

Introducing and sustaining the use of agile methods across a large organization is
a process of cultural change. Cultural change takes a long time to implement and
often requires a change of management before it can be accomplished. Companies
wishing to use agile methods need evangelists to promote change. Rather than try-
ing to force agile methods onto unwilling developers, companies have found that the
best way to introduce agile is bit by bit, starting with an enthusiastic group of devel-
opers. A successful agile project can act as a starting point, with the project team
spreading agile practice across the organization. Once the notion of agile is widely
known, explicit actions can then be taken to spread it across the organization.

98   Chapter 3  ■  Agile software development

K e y P o i n t s

■	 Agile methods are iterative development methods that focus on reducing process overheads and
documentation and on incremental software delivery. They involve customer representatives
directly in the development process.

■	 The decision on whether to use an agile or a plan-driven approach to development should depend on
the type of software being developed, the capabilities of the development team, and the culture of the
company developing the system. In practice, a mix of agile and plan-based techniques may be used.

■	 Agile development practices include requirements expressed as user stories, pair programming,
refactoring, continuous integration, and test-first development.

■	 Scrum is an agile method that provides a framework for organizing agile projects. It is centered
around a set of sprints, which are fixed time periods when a system increment is developed. Plan-
ning is based on prioritizing a backlog of work and selecting the highest priority tasks for a sprint.

■	 To scale agile methods, some plan-based practices have to be integrated with agile practice.
These include up-front requirements, multiple customer representatives, more documentation,
common tooling across project teams, and the alignment of releases across teams.

F u r t h e r R e a d i n g

“Get Ready for Agile Methods, With Care.” A thoughtful critique of agile methods that discusses their
strengths and weaknesses, written by a vastly experienced software engineer. Still very relevant, although
almost 15 years old. (B. Boehm, IEEE Computer, January 2002) http://dx.doi.org/10.1109/2.976920

Extreme Programming Explained. This was the first book on XP and is still, perhaps, the most read-
able. It explains the approach from the perspective of one of its inventors, and his enthusiasm comes
through very clearly in the book. (K. Beck and C. Andres, Addison-Wesley, 2004) Essential Scrum: A
Practical Guide to the Most Popular Agile Process. This is a comprehensive and readable description
of the 2011 development of the Scrum method (K.S. Rubin, Addison-Wesley, 2013).

“Agility at Scale: Economic Governance, Measured Improvement and Disciplined Delivery.” This
paper discusses IBM's approach to scale agile methods, where they have a systematic approach to
integrating plan-based and agile development. It is an excellent and thoughtful discussion of the key
issues in scaling agile (A.W. Brown, S.W. Ambler, and W. Royce, Proc. 35th Int. Conf. on Software
Engineering, 2013) http://dx.doi.org/10.1145/12944.12948

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/agile-methods/

http://dx.doi.org/10.1109/2.976920
http://dx.doi.org/10.1145/12944.12948
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/agile-methods

	 3.4   ■  Agile development techniques   99

E x e r c i s e s

  3.1. 	At the end of their study program, students in a software engineering course are typically
expected to complete a major project. Explain how the agile methodology may be very useful
for the students to use in this case.

  3.2. 	Explain how the principles underlying agile methods lead to the accelerated development and
deployment of software.

  3.3. 	Extreme programming expresses user requirements as stories, with each story written on a
card. Discuss the advantages and disadvantages of this approach to requirements description.

  3.4. 	In test-first development, tests are written before the code. Explain how the test suite may
compromise the quality of the software system being developed.

  3.5. 	Suggest four reasons why the productivity rate of programmers working as a pair might be
more than half that of two programmers working individually.

  3.6. 	Compare and contrast the Scrum approach to project management with conventional plan-based
approaches as discussed in Chapter 23. Your comparison should be based on the effectiveness
of each approach for planning the allocation of people to projects, estimating the cost of
projects, maintaining team cohesion, and managing changes in project team membership.

  3.7. 	To reduce costs and the environmental impact of commuting, your company decides to close a
number of offices and to provide support for staff to work from home. However, the senior
management who introduce the policy are unaware that software is developed using Scrum.
Explain how you could use technology to support Scrum in a distributed environment to make
this possible. What problems are you likely to encounter using this approach?

  3.8. 	Why is it necessary to introduce some methods and documentation from plan-based
approaches when scaling agile methods to larger projects that are developed by distributed
development teams?

  3.9. 	Explain why agile methods may not work well in organizations that have teams with a wide
range of skills and abilities and well-established processes.

3.10. 	One of the problems of having a user closely involved with a software development team is
that they “go native.” That is, they adopt the outlook of the development team and lose sight
of the needs of their user colleagues. Suggest three ways how you might avoid this problem,
and discuss the advantages and disadvantages of each approach.

R e f e r e n c e s

Ambler, S. W. 2010. “Scaling Agile: A Executive Guide.” http://www.ibm.com/developerworks/
community/blogs/ambler/entry/scaling_agile_an_executive_guide10/

Arisholm, E., H. Gallis, T. Dyba, and D. I. K. Sjoberg. 2007. “Evaluating Pair Programming with
Respect to System Complexity and Programmer Expertise.” IEEE Trans. on Software Eng. 33 (2):
65–86. doi:10.1109/TSE.2007.17.

Beck, K. 1998. “Chrysler Goes to ‘Extremes.’” Distributed Computing (10): 24–28.

	 Chapter 3  ■  References   99

http://www.ibm.com/developerworks/community/blogs/ambler/entry/scaling_agile_an_executive_guide10
http://www.ibm.com/developerworks/community/blogs/ambler/entry/scaling_agile_an_executive_guide10

100   Chapter 3  ■  Agile Software Development

	   . 1999. “Embracing Change with Extreme Programming.” IEEE Computer 32 (10): 70–78.
doi:10.1109/2.796139.

Bellouiti, S. 2009. “How Scrum Helped Our A-Team.” http://www.scrumalliance.org/community/
articles/2009/2009-june/how-scrum-helped-our team

Bird, J. 2011. “You Can't Be Agile in Maintenance.” http://swreflections.blogspot.co.uk/2011/10/
you-cant-be-agile-in-maintenance.html

Deemer, P. 2011. “The Distributed Scrum Primer.” http://www.goodagile.com/distributedscrumprimer/.

Fowler, M., K. Beck, J. Brant, W. Opdyke, and D. Roberts. 1999. Refactoring: Improving the Design of
Existing Code. Boston: Addison-Wesley.

Hopkins, R., and K. Jenkins. 2008. Eating the IT Elephant: Moving from Greenfield Development to
Brownfield. Boston: IBM Press.

Jeffries, R., and G. Melnik. 2007. “TDD: The Art of Fearless Programming.” IEEE Software 24: 24–30.
doi:10.1109/MS.2007.75.

Kilner, S. 2012. “Can Agile Methods Work for Software Maintenance.” http://www.vlegaci.com/can-
agile-methods-work-for-software-maintenance-part-1/

Larman, C., and V. R. Basili. 2003. “Iterative and Incremental Development: A Brief History.” IEEE
Computer 36 (6): 47–56. doi:10.1109/MC.2003.1204375.

Leffingwell, D. 2007. Scaling Software Agility: Best Practices for Large Enterprises. Boston: Addison-Wesley.

Leffingwell, D. 2011. Agile Software Requirements: Lean Requirements Practices for Teams,
Programs and the Enterprise. Boston: Addison-Wesley.

Mulder, M., and M. van Vliet. 2008. “Case Study: Distributed Scrum Project for Dutch Railways.”
InfoQ. http://www.infoq.com/articles/dutch-railway-scrum

Rubin, K. S. 2013. Essential Scrum. Boston: Addison-Wesley.

Schatz, B., and I. Abdelshafi. 2005. “Primavera Gets Agile: A Successful Transition to Agile Develop-
ment.” IEEE Software 22 (3): 36–42. doi:10.1109/MS.2005.74.

Schwaber, K., and M. Beedle. 2001. Agile Software Development with Scrum. Englewood Cliffs, NJ:
Prentice-Hall.

Stapleton, J. 2003. DSDM: Business Focused Development, 2nd ed. Harlow, UK: Pearson Education.

Tahchiev, P., F. Leme, V. Massol, and G. Gregory. 2010. JUnit in Action, 2/e. Greenwich, CT: Manning
Publications.

Weinberg, G. 1971. The Psychology of Computer Programming. New York: Van Nostrand.

Williams, L., R. R. Kessler, W. Cunningham, and R. Jeffries. 2000. “Strengthening the Case for Pair
Programming.” IEEE Software 17 (4): 19–25. doi:10.1109/52.854064.

100   Chapter 3  ■  Agile software development

http://www.scrumalliance.org/community/articles/2009/2009-june/how-scrum-helped-our team
http://swreflections.blogspot.co.uk/2011/10/you-cant-be-agile-in-maintenance.html
http://www.goodagile.com/distributedscrumprimer
http://www.vlegaci.com/can-agile-methods-work-for-software-maintenance-part-1
http://www.infoq.com/articles/dutch-railway-scrum
http://www.scrumalliance.org/community/articles/2009/2009-june/how-scrum-helped-our team
http://swreflections.blogspot.co.uk/2011/10/you-cant-be-agile-in-maintenance.html
http://www.vlegaci.com/can-agile-methods-work-for-software-maintenance-part-1

Requirements	
engineering

4

Objectives
The objective of this chapter is to introduce software requirements and to
explain the processes involved in discovering and documenting these
requirements. When you have read the chapter, you will:

■	 understand the concepts of user and system requirements and why
these requirements should be written in different ways;

■	 understand the differences between functional and non-functional
software requirements;

■	 understand the main requirements engineering activities of elicitation,
analysis, and validation, and the relationships between these
activities;

■	 understand why requirements management is necessary and how it
supports other requirements engineering activities.

Contents
4.1 	Functional and non-functional requirements

4.2 	Requirements engineering processes

4.3 	Requirements elicitation

4.4 	Requirements specification

4.5 	Requirements validation

4.6 	Requirements change

102    Chapter 4  ■  Requirements engineering

The requirements for a system are the descriptions of the services that a system should
provide and the constraints on its operation. These requirements reflect the needs of
customers for a system that serves a certain purpose such as controlling a device, placing
an order, or finding information. The process of finding out, analyzing, documenting
and checking these services and constraints is called requirements engineering (RE).

The term requirement is not used consistently in the software industry. In some
cases, a requirement is simply a high-level, abstract statement of a service that a
system should provide or a constraint on a system. At the other extreme, it is a
detailed, formal definition of a system function. Davis (Davis 1993) explains why
these differences exist:

If a company wishes to let a contract for a large software development project,
it must define its needs in a sufficiently abstract way that a solution is not pre-
defined. The requirements must be written so that several contractors can bid
for the contract, offering, perhaps, different ways of meeting the client organi-
zation’s needs. Once a contract has been awarded, the contractor must write a
system definition for the client in more detail so that the client understands
and can validate what the software will do. Both of these documents may be
called the requirements document for the system†.

Some of the problems that arise during the requirements engineering process are
a result of failing to make a clear separation between these different levels of descrip-
tion. I distinguish between them by using the term user requirements to mean the
high-level abstract requirements and system requirements to mean the detailed
description of what the system should do. User requirements and system require-
ments may be defined as follows:

1.	 User requirements are statements, in a natural language plus diagrams, of what ser-
vices the system is expected to provide to system users and the constraints under
which it must operate. The user requirements may vary from broad statements of the
system features required to detailed, precise descriptions of the system functionality.

2.	 System requirements are more detailed descriptions of the software system’s
functions, services, and operational constraints. The system requirements docu-
ment (sometimes called a functional specification) should define exactly what is
to be implemented. It may be part of the contract between the system buyer and
the software developers.

Different kinds of requirement are needed to communicate information about a
system to different types of reader. Figure 4.1 illustrates the distinction between user
and system requirements. This example from the mental health care patient informa-
tion system (Mentcare) shows how a user requirement may be expanded into several
system requirements. You can see from Figure 4.1 that the user requirement is quite

†Davis, A. M. 1993. Software Requirements: Objects, Functions and States. Englewood Cliffs, NJ:
Prentice-Hall.

	 Chapter 4  ■  Requirements engineering    103

general. The system requirements provide more specific information about the ser-
vices and functions of the system that is to be implemented.

You need to write requirements at different levels of detail because different
types of readers use them in different ways. Figure 4.2 shows the types of readers of
the user and system requirements. The readers of the user requirements are not usu-
ally concerned with how the system will be implemented and may be managers who
are not interested in the detailed facilities of the system. The readers of the system
requirements need to know more precisely what the system will do because they are
concerned with how it will support the business processes or because they are
involved in the system implementation.

The different types of document readers shown in Figure 4.2 are examples of
system stakeholders. As well as users, many other people have some kind of interest
in the system. System stakeholders include anyone who is affected by the system in
some way and so anyone who has a legitimate interest in it. Stakeholders range from
end-users of a system through managers to external stakeholders such as regulators,

The Mentcare system shall generate monthly management reports
showing the cost of drugs prescribed by each clinic during that month.

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost and the prescribing clinics shall be generated.
1.2 The system shall generate the report for printing after 17.30 on the
last working day of the month.
1.3 A report shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed and the total cost of the prescribed drugs.
1.4 If drugs are available in different dose units (e.g. 10mg, 20mg, etc.)
separate reports shall be created for each dose unit.
1.5 Access to drug cost reports shall be restricted to authorized users as
listed on a management access control list.

1.

User requirements definition

System requirements specification

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

User
requirements

System
requirements

Figure 4.2  Readers of
different types of
requirements
specification

Figure 4.1  User and
system requirements

104    Chapter 4  ■  Requirements engineering

who certify the acceptability of the system. For example, system stakeholders for the
Mentcare system include:

1.	 Patients whose information is recorded in the system and relatives of these patients.

2.	 Doctors who are responsible for assessing and treating patients.

3.	 Nurses who coordinate the consultations with doctors and administer some
treatments.

4.	 Medical receptionists who manage patients’ appointments.

5.	 IT staff who are responsible for installing and maintaining the system.

6.	 A medical ethics manager who must ensure that the system meets current ethi-
cal guidelines for patient care.

7.	 Health care managers who obtain management information from the system.

8.	 Medical records staff who are responsible for ensuring that system information
can be maintained and preserved, and that record keeping procedures have been
properly implemented.

Requirements engineering is usually presented as the first stage of the software
engineering process. However, some understanding of the system requirements may
have to be developed before a decision is made to go ahead with the procurement or
development of a system. This early-stage RE establishes a high-level view of what
the system might do and the benefits that it might provide. These may then be con-
sidered in a feasibility study, which tries to assess whether or not the system is tech-
nically and financially feasible. The results of that study help management decide
whether or not to go ahead with the procurement or development of the system.

In this chapter, I present a “traditional” view of requirements rather than require-
ments in agile processes, which I discussed in Chapter 3. For the majority of large
systems, it is still the case that there is a clearly identifiable requirements engineering
phase before implementation of the system begins. The outcome is a requirements
document, which may be part of the system development contract. Of course, subsequent
changes are made to the requirements, and user requirements may be expanded into

Feasibility studies

A feasibility study is a short, focused study that should take place early in the RE process. It should answer three
key questions: (1) Does the system contribute to the overall objectives of the organization? (2) Can the system
be implemented within schedule and budget using current technology? and (3) Can the system be integrated
with other systems that are used?

If the answer to any of these questions is no, you should probably not go ahead with the project.

http://software-engineering-book.com/web/feasibility-study/

http://software-engineering-book.com/web/feasibility-study

	 4.1  ■  Functional and non-functional requirements    105

more detailed system requirements. Sometimes an agile approach of concurrently
eliciting the requirements as the system is developed may be used to add detail and
to refine the user requirements.

	 4.1 	 Functional and non-functional requirements

Software system requirements are often classified as functional or non-functional
requirements:

1.	 Functional requirements These are statements of services the system should
provide, how the system should react to particular inputs, and how the system
should behave in particular situations. In some cases, the functional require-
ments may also explicitly state what the system should not do.

2.	 Non-functional requirements These are constraints on the services or functions
offered by the system. They include timing constraints, constraints on the devel-
opment process, and constraints imposed by standards. Non-functional require-
ments often apply to the system as a whole rather than individual system features
or services.

In reality, the distinction between different types of requirements is not as clear-
cut as these simple definitions suggest. A user requirement concerned with security,
such as a statement limiting access to authorized users, may appear to be a non-
functional requirement. However, when developed in more detail, this requirement
may generate other requirements that are clearly functional, such as the need to
include user authentication facilities in the system.

This shows that requirements are not independent and that one requirement often
generates or constrains other requirements. The system requirements therefore do not
just specify the services or the features of the system that are required; they also specify
the necessary functionality to ensure that these services/features are delivered effectively.

	 4.1.1 	 Functional requirements

The functional requirements for a system describe what the system should do. These
requirements depend on the type of software being developed, the expected users of the
software, and the general approach taken by the organization when writing requirements.
When expressed as user requirements, functional requirements should be written in natu-
ral language so that system users and managers can understand them. Functional system
requirements expand the user requirements and are written for system developers. They
should describe the system functions, their inputs and outputs, and exceptions in detail.

Functional system requirements vary from general requirements covering what
the system should do to very specific requirements reflecting local ways of working
or an organization’s existing systems. For example, here are examples of functional

106    Chapter 4  ■  Requirements engineering

requirements for the Mentcare system, used to maintain information about patients
receiving treatment for mental health problems:

1.	 A user shall be able to search the appointments lists for all clinics.

2.	 The system shall generate each day, for each clinic, a list of patients who are
expected to attend appointments that day.

3.	 Each staff member using the system shall be uniquely identified by his or her
eight-digit employee number.

These user requirements define specific functionality that should be included in
the system. The requirements show that functional requirements may be written at
different levels of detail (contrast requirements 1 and 3).

Functional requirements, as the name suggests, have traditionally focused on
what the system should do. However, if an organization decides that an existing off-
the-shelf system software product can meet its needs, then there is very little point in
developing a detailed functional specification. In such cases, the focus should be on
the development of information requirements that specify the information needed
for people to do their work. Information requirements specify the information needed
and how it is to be delivered and organized. Therefore, an information requirement
for the Mentcare system might specify what information is to be included in the list
of patients expected for appointments that day.

Imprecision in the requirements specification can lead to disputes between custom-
ers and software developers. It is natural for a system developer to interpret an ambig-
uous requirement in a way that simplifies its implementation. Often, however, this is
not what the customer wants. New requirements have to be established and changes
made to the system. Of course, this delays system delivery and increases costs.

For example, the first Mentcare system requirement in the above list states that a
user shall be able to search the appointments lists for all clinics. The rationale for this
requirement is that patients with mental health problems are sometimes confused.
They may have an appointment at one clinic but actually go to a different clinic. If they
have an appointment, they will be recorded as having attended, regardless of the clinic.

Domain requirements

Domain requirements are derived from the application domain of the system rather than from the specific
needs of system users. They may be new functional requirements in their own right, constrain existing func-
tional requirements, or set out how particular computations must be carried out.

The problem with domain requirements is that software engineers may not understand the characteristics of
the domain in which the system operates. This means that these engineers may not know whether or not a
domain requirement has been missed out or conflicts with other requirements.

http://software-engineering-book.com/web/domain-requirements/

http://software-engineering-book.com/web/domain-requirements

	 4.1  ■  Functional and non-functional requirements    107

A medical staff member specifying a search requirement may expect “search” to
mean that, given a patient name, the system looks for that name in all appointments at all
clinics. However, this is not explicit in the requirement. System developers may interpret
the requirement so that it is easier to implement. Their search function may require the
user to choose a clinic and then carry out the search of the patients who attended that
clinic. This involves more user input and so takes longer to complete the search.

Ideally, the functional requirements specification of a system should be both
complete and consistent. Completeness means that all services and information
required by the user should be defined. Consistency means that requirements should
not be contradictory.

In practice, it is only possible to achieve requirements consistency and complete-
ness for very small software systems. One reason is that it is easy to make mistakes
and omissions when writing specifications for large, complex systems. Another rea-
son is that large systems have many stakeholders, with different backgrounds and
expectations. Stakeholders are likely to have different—and often inconsistent—
needs. These inconsistencies may not be obvious when the requirements are origi-
nally specified, and the inconsistent requirements may only be discovered after
deeper analysis or during system development.

	 4.1.2 	 Non-functional requirements

Non-functional requirements, as the name suggests, are requirements that are not
directly concerned with the specific services delivered by the system to its users.
These non-functional requirements usually specify or constrain characteristics of the
system as a whole. They may relate to emergent system properties such as reliability,
response time, and memory use. Alternatively, they may define constraints on the
system implementation, such as the capabilities of I/O devices or the data represen-
tations used in interfaces with other systems.

Non-functional requirements are often more critical than individual functional
requirements. System users can usually find ways to work around a system function
that doesn’t really meet their needs. However, failing to meet a non-functional
requirement can mean that the whole system is unusable. For example, if an aircraft
system does not meet its reliability requirements, it will not be certified as safe for
operation; if an embedded control system fails to meet its performance requirements,
the control functions will not operate correctly.

While it is often possible to identify which system components implement spe-
cific functional requirements (e.g., there may be formatting components that imple-
ment reporting requirements), this is often more difficult with non-functional
requirements. The implementation of these requirements may be spread throughout
the system, for two reasons:

1.	 Non-functional requirements may affect the overall architecture of a system
rather than the individual components. For example, to ensure that performance
requirements are met in an embedded system, you may have to organize the
system to minimize communications between components.

108    Chapter 4  ■  Requirements engineering

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Dependability
requirements

Security
requirements

Regulatory
requirements

Ethical
requirements

Legislative
requirements

Operational
requirements

Development
requirements

Environmental
requirements

Safety/security
requirements

Accounting
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

Figure 4.3  Types of
non-functional
requirements

2.	 An individual non-functional requirement, such as a security requirement, may
generate several, related functional requirements that define new system ser-
vices that are required if the non-functional requirement is to be implemented.
In addition, it may also generate requirements that constrain existing require-
ments; for example, it may limit access to information in the system.

Nonfunctional requirements arise through user needs because of budget con-
straints, organizational policies, the need for interoperability with other software or
hardware systems, or external factors such as safety regulations or privacy legisla-
tion. Figure 4.3 is a classification of non-functional requirements. You can see from
this diagram that the non-functional requirements may come from required charac-
teristics of the software (product requirements), the organization developing the
software (organizational requirements), or external sources:

1.	 Product requirements These requirements specify or constrain the runtime
behavior of the software. Examples include performance requirements for how
fast the system must execute and how much memory it requires; reliability
requirements that set out the acceptable failure rate; security requirements; and
usability requirements.

2.	 Organizational requirements These requirements are broad system require-
ments derived from policies and procedures in the customer’s and developer’s
organizations. Examples include operational process requirements that define
how the system will be used; development process requirements that specify the

	 4.1  ■  Functional and non-functional requirements    109

programming language; the development environment or process standards to
be used; and environmental requirements that specify the operating environ-
ment of the system.

3.	 External requirements This broad heading covers all requirements that are
derived from factors external to the system and its development process. These
may include regulatory requirements that set out what must be done for the sys-
tem to be approved for use by a regulator, such as a nuclear safety authority;
legislative requirements that must be followed to ensure that the system oper-
ates within the law; and ethical requirements that ensure that the system will be
acceptable to its users and the general public.

Figure 4.4 shows examples of product, organizational, and external requirements
that could be included in the Mentcare system specification. The product require-
ment is an availability requirement that defines when the system has to be available
and the allowed downtime each day. It says nothing about the functionality of the
Mentcare system and clearly identifies a constraint that has to be considered by
the system designers.

The organizational requirement specifies how users authenticate themselves to
the system. The health authority that operates the system is moving to a standard
authentication procedure for all software where, instead of users having a login
name, they swipe their identity card through a reader to identify themselves. The
external requirement is derived from the need for the system to conform to privacy
legislation. Privacy is obviously a very important issue in health care systems, and
the requirement specifies that the system should be developed in accordance with a
national privacy standard.

A common problem with non-functional requirements is that stakeholders pro-
pose requirements as general goals, such as ease of use, the ability of the system to
recover from failure, or rapid user response. Goals set out good intentions but cause
problems for system developers as they leave scope for interpretation and subse-
quent dispute once the system is delivered. For example, the following system goal
is typical of how a manager might express usability requirements:

The system should be easy to use by medical staff and should be organized in
such a way that user errors are minimized.

Figure 4.4  Examples of
possible non-functional
requirements for the
Mentcare system

Product requirement
The Mentcare system shall be available to all clinics during normal working hours (Mon–Fri, 08:30–17:30).
Downtime within normal working hours shall not exceed 5 seconds in any one day.

Organizational requirement
Users of the Mentcare system shall identify themselves using their health authority identity card.

External requirement
The system shall implement patient privacy provisions as set out in HStan-03-2006-priv.

110    Chapter 4  ■  Requirements engineering

I have rewritten this to show how the goal could be expressed as a “testable” non-
functional requirement. It is impossible to objectively verify the system goal, but in
the following description you can at least include software instrumentation to count
the errors made by users when they are testing the system.

Medical staff shall be able to use all the system functions after two hours of
training. After this training, the average number of errors made by experienced
users shall not exceed two per hour of system use.

Whenever possible, you should write non-functional requirements quantitatively
so that they can be objectively tested. Figure 4.5 shows metrics that you can use to
specify non-functional system properties. You can measure these characteristics
when the system is being tested to check whether or not the system has met its non-
functional requirements.

In practice, customers for a system often find it difficult to translate their goals into
measurable requirements. For some goals, such as maintainability, there are no sim-
ple metrics that can be used. In other cases, even when quantitative specification is
possible, customers may not be able to relate their needs to these specifications. They
don’t understand what some number defining the reliability (for example) means in
terms of their everyday experience with computer systems. Furthermore, the cost of
objectively verifying measurable, non-functional requirements can be very high, and
the customers paying for the system may not think these costs are justified.

Non-functional requirements often conflict and interact with other functional or
non-functional requirements. For example, the identification requirement in
Figure 4.4 requires a card reader to be installed with each computer that connects to
the system. However, there may be another requirement that requests mobile access
to the system from doctors’ or nurses’ tablets or smartphones. These are not normally

Figure 4.5  Metrics for
specifying non-
functional requirements

Property Measure

Speed Processed transactions/second
User/event response time
Screen refresh time

Size Megabytes/Number of ROM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

	 4.2  ■  Requirements engineering processes    111

equipped with card readers so, in these circumstances, some alternative identifica-
tion method may have to be supported.

It is difficult to separate functional and non-functional requirements in the
requirements document. If the non-functional requirements are stated separately
from the functional requirements, the relationships between them may be hard to
understand. However, you should, ideally, highlight requirements that are clearly
related to emergent system properties, such as performance or reliability. You can do
this by putting them in a separate section of the requirements document or by distin-
guishing them, in some way, from other system requirements.

Non-functional requirements such as reliability, safety, and confidentiality
requirements are particularly important for critical systems. I cover these dependa-
bility requirements in Part 2, which describes ways of specifying reliability, safety,
and security requirements.

	 4.2 	 Requirements engineering processes

As I discussed in Chapter 2, requirements engineering involves three key activities.
These are discovering requirements by interacting with stakeholders (elicitation and
analysis); converting these requirements into a standard form (specification); and
checking that the requirements actually define the system that the customer wants
(validation). I have shown these as sequential processes in Figure 2.4. However,
in practice, requirements engineering is an iterative process in which the activities
are interleaved.

Figure 4.6 shows this interleaving. The activities are organized as an iterative
process around a spiral. The output of the RE process is a system requirements docu-
ment. The amount of time and effort devoted to each activity in an iteration depends
on the stage of the overall process, the type of system being developed, and the
budget that is available.

Early in the process, most effort will be spent on understanding high-level business
and non-functional requirements, and the user requirements for the system. Later in the
process, in the outer rings of the spiral, more effort will be devoted to eliciting and
understanding the non-functional requirements and more detailed system requirements.

This spiral model accommodates approaches to development where the require-
ments are developed to different levels of detail. The number of iterations around the
spiral can vary so that the spiral can be exited after some or all of the user require-
ments have been elicited. Agile development can be used instead of prototyping so
that the requirements and the system implementation are developed together.

In virtually all systems, requirements change. The people involved develop a bet-
ter understanding of what they want the software to do; the organization buying the
system changes; and modifications are made to the system’s hardware, software, and
organizational environment. Changes have to be managed to understand the impact
on other requirements and the cost and system implications of making the change.
I discuss this process of requirements management in Section 4.6.

112    Chapter 4  ■  Requirements engineering

	 4.3 	 Requirements elicitation

The aims of the requirements elicitation process are to understand the work that
stakeholders do and how they might use a new system to help support that work.
During requirements elicitation, software engineers work with stakeholders to find
out about the application domain, work activities, the services and system features
that stakeholders want, the required performance of the system, hardware con-
straints, and so on.

Eliciting and understanding requirements from system stakeholders is a difficult
process for several reasons:

1.	 Stakeholders often don’t know what they want from a computer system except
in the most general terms; they may find it difficult to articulate what they want
the system to do; they may make unrealistic demands because they don’t know
what is and isn’t feasible.

Requirements
specification

Requirements
validation

Requirements
elicitation

System requirements
specification and

modeling

System
req.

elicitation

User requirements
specification

User
requirements

elicitation

Business requirements
specification

Prototyping

Feasibility
study

Reviews

System requirements
document

Start

Figure 4.6  A spiral view
of the requirements
engineering process

	 4.3  ■  Requirements elicitation    113

2.	 Stakeholders in a system naturally express requirements in their own terms and
with implicit knowledge of their own work. Requirements engineers, without
experience in the customer’s domain, may not understand these requirements.

3.	 Different stakeholders, with diverse requirements, may express their require-
ments in different ways. Requirements engineers have to discover all potential
sources of requirements and discover commonalities and conflict.

4.	 Political factors may influence the requirements of a system. Managers may
demand specific system requirements because these will allow them to increase
their influence in the organization.

5.	 The economic and business environment in which the analysis takes place is
dynamic. It inevitably changes during the analysis process. The importance of
particular requirements may change. New requirements may emerge from new
stakeholders who were not originally consulted.

A process model of the elicitation and analysis process is shown in Figure 4.7.
Each organization will have its own version or instantiation of this general model,
depending on local factors such as the expertise of the staff, the type of system being
developed, and the standards used.

The process activities are:

1.	 Requirements discovery and understanding This is the process of interacting with
stakeholders of the system to discover their requirements. Domain requirements
from stakeholders and documentation are also discovered during this activity.

2.	 Requirements classification and organization This activity takes the unstruc-
tured collection of requirements, groups related requirements and organizes
them into coherent clusters.

3.	 Requirements prioritization and negotiation Inevitably, when multiple stake-
holders are involved, requirements will conflict. This activity is concerned with
prioritizing requirements and finding and resolving requirements conflicts

2. Requirements
classification and

organization

3. Requirements
prioritization and

negotiation

4. Requirements
documentation

1. Requirements
discovery and
understanding

Figure 4.7  The
requirements elicitation
and analysis process

114    Chapter 4  ■  Requirements engineering

through negotiation. Usually, stakeholders have to meet to resolve differences
and agree on compromise requirements.

4.	 Requirements documentation The requirements are documented and input into
the next round of the spiral. An early draft of the software requirements docu-
ments may be produced at this stage, or the requirements may simply be main-
tained informally on whiteboards, wikis, or other shared spaces.

Figure 4.7 shows that requirements elicitation and analysis is an iterative process
with continual feedback from each activity to other activities. The process cycle
starts with requirements discovery and ends with the requirements documentation.
The analyst’s understanding of the requirements improves with each round of the
cycle. The cycle ends when the requirements document has been produced.

To simplify the analysis of requirements, it is helpful to organize and group the
stakeholder information. One way of doing so is to consider each stakeholder group
to be a viewpoint and to collect all requirements from that group into the viewpoint.
You may also include viewpoints to represent domain requirements and constraints
from other systems. Alternatively, you can use a model of the system architecture to
identify subsystems and to associate requirements with each subsystem.

Inevitably, different stakeholders have different views on the importance and pri-
ority of requirements, and sometimes these views are conflicting. If some stakehold-
ers feel that their views have not been properly considered, then they may deliberately
attempt to undermine the RE process. Therefore, it is important that you organize
regular stakeholder meetings. Stakeholders should have the opportunity to express
their concerns and agree on requirements compromises.

At the requirements documentation stage, it is important that you use simple lan-
guage and diagrams to describe the requirements. This makes it possible for stake-
holders to understand and comment on these requirements. To make information
sharing easier, it is best to use a shared document (e.g., on Google Docs or Office 365)
or a wiki that is accessible to all interested stakeholders.

	 4.3.1 	 Requirements elicitation techniques

Requirements elicitation involves meeting with stakeholders of different kinds to
discover information about the proposed system. You may supplement this information

Viewpoints

A viewpoint is a way of collecting and organizing a set of requirements from a group of stakeholders who have
something in common. Each viewpoint therefore includes a set of system requirements. Viewpoints might come
from end-users, managers, or others. They help identify the people who can provide information about their
requirements and structure the requirements for analysis.

http://www.software-engineering-book.com/web/viewpoints/

http://www.software-engineering-book.com/web/viewpoints

	 4.3  ■  Requirements elicitation    115

with knowledge of existing systems and their usage and information from docu-
ments of various kinds. You need to spend time understanding how people work,
what they produce, how they use other systems, and how they may need to change to
accommodate a new system.

There are two fundamental approaches to requirements elicitation:

1.	 Interviewing, where you talk to people about what they do.

2.	 Observation or ethnography, where you watch people doing their job to see
what artifacts they use, how they use them, and so on.

You should use a mix of interviewing and observation to collect information and,
from that, you derive the requirements, which are then the basis for further discussions.

4.3.1.1 Interviewing

Formal or informal interviews with system stakeholders are part of most require-
ments engineering processes. In these interviews, the requirements engineering team
puts questions to stakeholders about the system that they currently use and the sys-
tem to be developed. Requirements are derived from the answers to these questions.
Interviews may be of two types:

1.	 Closed interviews, where the stakeholder answers a predefined set of questions.

2.	 Open interviews, in which there is no predefined agenda. The requirements
engineering team explores a range of issues with system stakeholders and hence
develops a better understanding of their needs.

In practice, interviews with stakeholders are normally a mixture of both of these.
You may have to obtain the answer to certain questions, but these usually lead to
other issues that are discussed in a less structured way. Completely open-ended dis-
cussions rarely work well. You usually have to ask some questions to get started and
to keep the interview focused on the system to be developed.

Interviews are good for getting an overall understanding of what stakeholders do,
how they might interact with the new system, and the difficulties that they face with
current systems. People like talking about their work, and so they are usually happy
to get involved in interviews. However, unless you have a system prototype to dem-
onstrate, you should not expect stakeholders to suggest specific and detailed require-
ments. Everyone finds it difficult to visualize what a system might be like. You need
to analyze the information collected and to generate the requirements from this.

Eliciting domain knowledge through interviews can be difficult, for two reasons:

1.	 All application specialists use jargon specific to their area of work. It is impos-
sible for them to discuss domain requirements without using this terminology.
They normally use words in a precise and subtle way that requirements engi-
neers may misunderstand.

116    Chapter 4  ■  Requirements engineering

2.	 Some domain knowledge is so familiar to stakeholders that they either find it
difficult to explain or they think it is so fundamental that it isn’t worth mention-
ing. For example, for a librarian, it goes without saying that all acquisitions are
catalogued before they are added to the library. However, this may not be obvi-
ous to the interviewer, and so it isn’t taken into account in the requirements.

Interviews are not an effective technique for eliciting knowledge about organiza-
tional requirements and constraints because there are subtle power relationships
between the different people in the organization. Published organizational structures
rarely match the reality of decision making in an organization, but interviewees may
not wish to reveal the actual rather than the theoretical structure to a stranger. In
general, most people are generally reluctant to discuss political and organizational
issues that may affect the requirements.

To be an effective interviewer, you should bear two things in mind:

1.	 You should be open-minded, avoid preconceived ideas about the requirements,
and willing to listen to stakeholders. If the stakeholder comes up with surprising
requirements, then you should be willing to change your mind about the system.

2.	 You should prompt the interviewee to get discussions going by using a spring-
board question or a requirements proposal, or by working together on a proto-
type system. Saying to people “tell me what you want” is unlikely to result in
useful information. They find it much easier to talk in a defined context rather
than in general terms.

Information from interviews is used along with other information about the sys-
tem from documentation describing business processes or existing systems, user
observations, and developer experience. Sometimes, apart from the information in
the system documents, the interview information may be the only source of informa-
tion about the system requirements. However, interviewing on its own is liable to
miss essential information, and so it should be used in conjunction with other
requirements elicitation techniques.

4.3.1.2 Ethnography

Software systems do not exist in isolation. They are used in a social and organiza-
tional environment, and software system requirements may be generated or con-
strained by that environment. One reason why many software systems are delivered
but never used is that their requirements do not take proper account of how social
and organizational factors affect the practical operation of the system. It is therefore
very important that, during the requirements engineering process, you try to under-
stand the social and organizational issues that affect the use of the system.

Ethnography is an observational technique that can be used to understand opera-
tional processes and help derive requirements for software to support these pro-
cesses. An analyst immerses himself or herself in the working environment where

	 4.3  ■  Requirements elicitation    117

the system will be used. The day-to-day work is observed, and notes are made of the
actual tasks in which participants are involved. The value of ethnography is that it
helps discover implicit system requirements that reflect the actual ways that people
work, rather than the formal processes defined by the organization.

People often find it very difficult to articulate details of their work because it is
second nature to them. They understand their own work but may not understand its
relationship to other work in the organization. Social and organizational factors that
affect the work, but that are not obvious to individuals, may only become clear when
noticed by an unbiased observer. For example, a workgroup may self-organize so
that members know of each other’s work and can cover for each other if someone is
absent. This may not be mentioned during an interview as the group might not see it
as an integral part of their work.

Suchman (Suchman 1983) pioneered the use of ethnography to study office work.
She found that actual work practices were far richer, more complex, and more
dynamic than the simple models assumed by office automation systems. The differ-
ence between the assumed and the actual work was the most important reason why
these office systems had no significant effect on productivity. Crabtree (Crabtree
2003) discusses a wide range of studies since then and describes, in general, the use
of ethnography in systems design. In my own research, I have investigated methods
of integrating ethnography into the software engineering process by linking it with
requirements engineering methods (Viller and Sommerville 2000) and documenting
patterns of interaction in cooperative systems (Martin and Sommerville 2004).

Ethnography is particularly effective for discovering two types of requirements:

1.	 Requirements derived from the way in which people actually work, rather than
the way in which business process definitions say they ought to work. In prac-
tice, people never follow formal processes. For example, air traffic controllers
may switch off a conflict alert system that detects aircraft with intersecting
flight paths, even though normal control procedures specify that it should be
used. The conflict alert system is sensitive and issues audible warnings even
when planes are far apart. Controllers may find these distracting and prefer to
use other strategies to ensure that planes are not on conflicting flight paths.

2.	 Requirements derived from cooperation and awareness of other people’s activi-
ties. For example, air traffic controllers (ATCs) may use an awareness of other
controlles’ work to predict the number of aircraft that will be entering their con-
trol sector. They then modify their control strategies depending on that pre-
dicted workload. Therefore, an automated ATC system should allow controllers
in a sector to have some visibility of the work in adjacent sectors.

Ethnography can be combined with the development of a system prototype
(Figure 4.8). The ethnography informs the development of the prototype so that
fewer prototype refinement cycles are required. Furthermore, the prototyping
focuses the ethnography by identifying problems and questions that can then be dis-
cussed with the ethnographer. He or she should then look for the answers to these
questions during the next phase of the system study (Sommerville et al. 1993).

118    Chapter 4  ■  Requirements engineering

Ethnography is helpful to understand existing systems, but this understanding
does not always help with innovation. Innovation is particularly relevant for new
product development. Commentators have suggested that Nokia used ethnography
to discover how people used their phones and developed new phone models on that
basis; Apple, on the other hand, ignored current use and revolutionized the mobile
phone industry with the introduction of the iPhone.

Ethnographic studies can reveal critical process details that are often missed by
other requirements elicitation techniques. However, because of its focus on the end-
user, this approach is not effective for discovering broader organizational or domain
requirements or for suggestion innovations. You therefore have to use ethnography
as one of a number of techniques for requirements elicitation.

	 4.3.2 	 Stories and scenarios

People find it easier to relate to real-life examples than abstract descriptions. They
are not good at telling you the system requirements. However, they may be able to
describe how they handle particular situations or imagine things that they might do
in a new way of working. Stories and scenarios are ways of capturing this kind of
information. You can then use these when interviewing groups of stakeholders to
discuss the system with other stakeholders and to develop more specific system
requirements.

Stories and scenarios are essentially the same thing. They are a description of how
the system can be used for some particular task. They describe what people do, what
information they use and produce, and what systems they may use in this process.
The difference is in the ways that descriptions are structured and in the level of detail
presented. Stories are written as narrative text and present a high-level description of
system use; scenarios are usually structured with specific information collected such
as inputs and outputs. I find stories to be effective in setting out the “big picture.”
Parts of stories can then be developed in more detail and represented as scenarios.

Figure 4.9 is an example of a story that I developed to understand the requirements
for the iLearn digital learning environment that I introduced in Chapter 1. This story
describes a situation in a primary (elementary) school where the teacher is using the
environment to support student projects on the fishing industry. You can see this is a
very high-level description. Its purpose is to facilitate discussion of how the iLearn
system might be used and to act as a starting point for eliciting the requirements for
that system.

Ethnographic
analysis

Debriefing
meetings

Focused
ethnography

Prototype
evaluation

Generic system
development

System
protoyping

Figure 4.8  Ethnography
and prototyping for
requirements analysis

	 4.3  ■  Requirements elicitation    119

The advantage of stories is that everyone can easily relate to them. We found this
approach to be particularly useful to get information from a wider community than
we could realistically interview. We made the stories available on a wiki and invited
teachers and students from across the country to comment on them.

These high-level stories do not go into detail about a system, but they can be
developed into more specific scenarios. Scenarios are descriptions of example user
interaction sessions. I think that it is best to present scenarios in a structured way
rather than as narrative text. User stories used in agile methods such as Extreme
Programming, are actually narrative scenarios rather than general stories to help
elicit requirements.

A scenario starts with an outline of the interaction. During the elicitation process,
details are added to create a complete description of that interaction. At its most
general, a scenario may include:

1.	 A description of what the system and users expect when the scenario starts.

2.	 A description of the normal flow of events in the scenario.

3.	 A description of what can go wrong and how resulting problems can be handled.

4.	 Information about other activities that might be going on at the same time.

5.	 A description of the system state when the scenario ends.

As an example of a scenario, Figure 4.10 describes what happens when a student
uploads photos to the KidsTakePics system, as explained in Figure 4.9. The key dif-
ference between this system and other systems is that a teacher moderates the
uploaded photos to check that they are suitable for sharing.

You can see this is a much more detailed description than the story in Figure 4.9,
and so it can be used to propose requirements for the iLearn system. Like stories,
scenarios can be used to facilitate discussions with stakeholders who sometimes may
have different ways of achieving the same result.

Figure 4.9  A user story
for the iLearn system

Photo sharing in the classroom

Jack is a primary school teacher in Ullapool (a village in northern Scotland). He has decided that a class project
should be focused on the fishing industry in the area, looking at the history, development, and economic impact
of fishing. As part of this project, pupils are asked to gather and share reminiscences from relatives, use newspa-
per archives, and collect old photographs related to fishing and fishing communities in the area. Pupils use an
iLearn wiki to gather together fishing stories and SCRAN (a history resources site) to access newspaper archives
and photographs. However, Jack also needs a photo-sharing site because he wants pupils to take and comment
on each other’s photos and to upload scans of old photographs that they may have in their families.

Jack sends an email to a primary school teachers’ group, which he is a member of, to see if anyone can rec-
ommend an appropriate system. Two teachers reply, and both suggest that he use KidsTakePics, a photo-sharing
site that allows teachers to check and moderate content. As KidsTakePics is not integrated with the iLearn
authentication service, he sets up a teacher and a class account. He uses the iLearn setup service to add
KidsTakePics to the services seen by the pupils in his class so that when they log in, they can immediately use
the system to upload photos from their mobile devices and class computers.

120    Chapter 4  ■  Requirements engineering

	 4.4 	 Requirements specification

Requirements specification is the process of writing down the user and system require-
ments in a requirements document. Ideally, the user and system requirements should
be clear, unambiguous, easy to understand, complete, and consistent. In practice, this
is almost impossible to achieve. Stakeholders interpret the requirements in different
ways, and there are often inherent conflicts and inconsistencies in the requirements.

User requirements are almost always written in natural language supplemented
by appropriate diagrams and tables in the requirements document. System require-
ments may also be written in natural language, but other notations based on forms,
graphical, or mathematical system models can also be used. Figure 4.11 summarizes
possible notations for writing system requirements.

The user requirements for a system should describe the functional and nonfunctional
requirements so that they are understandable by system users who don’t have detailed
technical knowledge. Ideally, they should specify only the external behavior of the sys-
tem. The requirements document should not include details of the system architecture
or design. Consequently, if you are writing user requirements, you should not use soft-
ware jargon, structured notations, or formal notations. You should write user require-
ments in natural language, with simple tables, forms, and intuitive diagrams.

Figure 4.10  Scenario
for uploading photos
in KidsTakePics

Uploading photos to KidsTakePics

Initial assumption: A user or a group of users have one or more digital photographs to be uploaded to the
picture-sharing site. These photos are saved on either a tablet or a laptop computer. They have successfully
logged on to KidsTakePics.

Normal: The user chooses to upload photos and is prompted to select the photos to be uploaded on the
computer and to select the project name under which the photos will be stored. Users should also be given the
option of inputting keywords that should be associated with each uploaded photo. Uploaded photos are named
by creating a conjunction of the user name with the filename of the photo on the local computer.

On completion of the upload, the system automatically sends an email to the project moderator, asking them to
check new content, and generates an on-screen message to the user that this checking has been done.

What can go wrong: No moderator is associated with the selected project. An email is automatically generated to
the school administrator asking them to nominate a project moderator. Users should be informed of a possible
delay in making their photos visible.

Photos with the same name have already been uploaded by the same user. The user should be asked if he or she
wishes to re-upload the photos with the same name, rename the photos, or cancel the upload. If users choose to
re-upload the photos, the originals are overwritten. If they choose to rename the photos, a new name is
automatically generated by adding a number to the existing filename.

Other activities: The moderator may be logged on to the system and may approve photos as they are uploaded.

System state on completion: User is logged on. The selected photos have been uploaded and assigned a status
“awaiting moderation.” Photos are visible to the moderator and to the user who uploaded them.

	 4.4  ■  Requirements specification    121

System requirements are expanded versions of the user requirements that soft-
ware engineers use as the starting point for the system design. They add detail and
explain how the system should provide the user requirements. They may be used as
part of the contract for the implementation of the system and should therefore be a
complete and detailed specification of the whole system.

Ideally, the system requirements should only describe the external behavior of the
system and its operational constraints. They should not be concerned with how the
system should be designed or implemented. However, at the level of detail required
to completely specify a complex software system, it is neither possible nor desirable
to exclude all design information. There are several reasons for this:

1.	 You may have to design an initial architecture of the system to help structure the
requirements specification. The system requirements are organized according to
the different subsystems that make up the system. We did this when we were
defining the requirements for the iLearn system, where we proposed the archi-
tecture shown in Figure 1.8.

2.	 In most cases, systems must interoperate with existing systems, which constrain
the design and impose requirements on the new system.

3.	 The use of a specific architecture to satisfy non-functional requirements, such as
N-version programming to achieve reliability, discussed in Chapter 11, may be
necessary. An external regulator who needs to certify that the system is safe may
specify that an architectural design that has already been certified should be used.

	 4.4.1 	 Natural language specification

Natural language has been used to write requirements for software since the 1950s.
It is expressive, intuitive, and universal. It is also potentially vague and ambiguous,
and its interpretation depends on the background of the reader. As a result, there

Figure 4.11  Notations
for writing system
requirements

Notation Description

Natural language
sentences

The requirements are written using numbered sentences in natural language.
Each sentence should express one requirement.

Structured natural
language

The requirements are written in natural language on a standard form or
template. Each field provides information about an aspect of the requirement.

Graphical notations Graphical models, supplemented by text annotations, are used to define the
functional requirements for the system. UML (unified modeling language) use
case and sequence diagrams are commonly used.

Mathematical
specifications

These notations are based on mathematical concepts such as finite-state
machines or sets. Although these unambiguous specifications can reduce the
ambiguity in a requirements document, most customers don’t understand a
formal specification. They cannot check that it represents what they want, and
they are reluctant to accept it as a system contract. (I discuss this approach, in
Chapter 10, which covers system dependability.)

122    Chapter 4  ■  Requirements engineering

have been many proposals for alternative ways to write requirements. However,
none of these proposals has been widely adopted, and natural language will continue
to be the most widely used way of specifying system and software requirements.

To minimize misunderstandings when writing natural language requirements, I
recommend that you follow these simple guidelines:

1.	 Invent a standard format and ensure that all requirement definitions adhere to
that format. Standardizing the format makes omissions less likely and requirements
easier to check. I suggest that, wherever possible, you should write the requirement
in one or two sentences of natural language.

2.	 Use language consistently to distinguish between mandatory and desirable
requirements. Mandatory requirements are requirements that the system must
support and are usually written using “shall.” Desirable requirements are not
essential and are written using “should.”

3.	 Use text highlighting (bold, italic, or color) to pick out key parts of the requirement.

4.	 Do not assume that readers understand technical, software engineering language.
It is easy for words such as “architecture” and “module” to be misunderstood.
Wherever possible, you should avoid the use of jargon, abbreviations, and acronyms.

5.	 Whenever possible, you should try to associate a rationale with each user
requirement. The rationale should explain why the requirement has been
included and who proposed the requirement (the requirement source), so that
you know whom to consult if the requirement has to be changed. Requirements
rationale is particularly useful when requirements are changed, as it may help
decide what changes would be undesirable.

Figure 4.12 illustrates how these guidelines may be used. It includes two require-
ments for the embedded software for the automated insulin pump, introduced in
Chapter 1. Other requirements for this embedded system are defined in the insulin
pump requirements document, which can be downloaded from the book’s web pages.

	 4.4.2 	 Structured specifications

Structured natural language is a way of writing system requirements where require-
ments are written in a standard way rather than as free-form text. This approach
maintains most of the expressiveness and understandability of natural language but

Figure 4.12  Example
requirements for the
insulin pump software
system

3.2 The system shall measure the blood sugar and deliver insulin, if required, every 10 minutes. (Changes in
blood sugar are relatively slow, so more frequent measurement is unnecessary; less frequent measurement
could lead to unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with the conditions to be tested and the associated
actions defined in Table 1. (A self-test routine can discover hardware and software problems and alert the user
to the fact the normal operation may be impossible.)

	 4.4  ■  Requirements specification    123

Problems with using natural language for requirements specification

The flexibility of natural language, which is so useful for specification, often causes problems. There is scope for
writing unclear requirements, and readers (the designers) may misinterpret requirements because they have a
different background to the user. It is easy to amalgamate several requirements into a single sentence, and
structuring natural language requirements can be difficult.

http://software-engineering-book.com/web/natural-language/

ensures that some uniformity is imposed on the specification. Structured language
notations use templates to specify system requirements. The specification may use
programming language constructs to show alternatives and iteration, and may high-
light key elements using shading or different fonts.

The Robertsons (Robertson and Robertson 2013), in their book on the VOLERE
requirements engineering method, recommend that user requirements be initially
written on cards, one requirement per card. They suggest a number of fields on each
card, such as the requirements rationale, the dependencies on other requirements, the
source of the requirements, and supporting materials. This is similar to the approach
used in the example of a structured specification shown in Figure 4.13.

To use a structured approach to specifying system requirements, you define one
or more standard templates for requirements and represent these templates as struc-
tured forms. The specification may be structured around the objects manipulated by
the system, the functions performed by the system, or the events processed by the
system. An example of a form-based specification, in this case, one that defines how
to calculate the dose of insulin to be delivered when the blood sugar is within a safe
band, is shown in Figure 4.13.

When a standard format is used for specifying functional requirements, the fol-
lowing information should be included:

1.	 A description of the function or entity being specified.

2.	 A description of its inputs and the origin of these inputs.

3.	 A description of its outputs and the destination of these outputs.

4.	 Information about the information needed for the computation or other entities
in the system that are required (the “requires” part).

5.	 A description of the action to be taken.

6.	 If a functional approach is used, a precondition setting out what must be true
before the function is called, and a postcondition specifying what is true after
the function is called.

7.	 A description of the side effects (if any) of the operation.

Using structured specifications removes some of the problems of natural language
specification. Variability in the specification is reduced, and requirements are organized

http://software-engineering-book.com/web/natural-language

124    Chapter 4  ■  Requirements engineering

more effectively. However, it is still sometimes difficult to write requirements in a
clear and unambiguous way, particularly when complex computations (e.g., how to
calculate the insulin dose) are to be specified.

To address this problem, you can add extra information to natural language
requirements, for example, by using tables or graphical models of the system. These
can show how computations proceed, how the system state changes, how users inter-
act with the system, and how sequences of actions are performed.

Tables are particularly useful when there are a number of possible alternative
situations and you need to describe the actions to be taken for each of these. The
insulin pump bases its computations of the insulin requirement on the rate of change
of blood sugar levels. The rates of change are computed using the current and previ-
ous readings. Figure 4.14 is a tabular description of how the rate of change of blood
sugar is used to calculate the amount of insulin to be delivered.

Figure 4.14  The
tabular specification
of computation in an
insulin pump

Condition Action

Sugar level falling (r2 6 r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of increase
decreasing ((r2 - r1)<(r1 - r0))

CompDose = 0

Sugar level increasing and rate of increase stable
or increasing r2 7 r1 & ((r2 - r1) Ú (r1 − r0))

CompDose = round ((r2 - r1)/4)
If rounded result = 0 then
CompDose = MinimumDose

Figure 4.13  The
structured specification
of a requirement for
an insulin pump

Insulin Pump/Control Software/SRS/3.3.2

Function	 Compute insulin dose: Safe sugar level.

Description	� Computes the dose of insulin to be delivered when the current measured sugar level is in the
safe zone between 3 and 7 units.

Inputs	 Current sugar reading (r2), the previous two readings (r0 and r1).

Source	 Current sugar reading from sensor. Other readings from memory.

Outputs	 CompDose—the dose in insulin to be delivered.

Destination	 Main control loop.

Action:	� CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of
increase is decreasing. If the level is increasing and the rate of increase is increasing, then
CompDose is computed by dividing the difference between the current sugar level and the
previous level by 4 and rounding the result. If the result, is rounded to zero then CompDose is
set to the minimum dose that can be delivered. (see Figure 4.14)

Requires	 Two previous readings so that the rate of change of sugar level can be computed.

Precondition	 The insulin reservoir contains at least the maximum allowed single dose of insulin.

Postcondition	 r0 is replaced by r1 then r1 is replaced by r2.

Side effects	 None.

	 4.4  ■  Requirements specification    125

	 4.4.3 	 Use cases

Use cases are a way of describing interactions between users and a system using a
graphical model and structured text. They were first introduced in the Objectory
method (Jacobsen et al. 1993) and have now become a fundamental feature of the
Unified Modeling Language (UML). In their simplest form, a use case identifies the
actors involved in an interaction and names the type of interaction. You then add
additional information describing the interaction with the system. The additional
information may be a textual description or one or more graphical models such as
the UML sequence or state charts (see Chapter 5).

Use cases are documented using a high-level use case diagram. The set of use
cases represents all of the possible interactions that will be described in the system
requirements. Actors in the process, who may be human or other systems, are repre-
sented as stick figures. Each class of interaction is represented as a named ellipse.
Lines link the actors with the interaction. Optionally, arrowheads may be added to
lines to show how the interaction is initiated. This is illustrated in Figure 4.15, which
shows some of the use cases for the Mentcare system.

Use cases identify the individual interactions between the system and its users or
other systems. Each use case should be documented with a textual description. These
can then be linked to other models in the UML that will develop the scenario in more
detail. For example, a brief description of the Setup Consultation use case from
Figure 4.15 might be:

Setup consultation allows two or more doctors, working in different offices, to
view the same patient record at the same time. One doctor initiates the consul-
tation by choosing the people involved from a dropdown menu of doctors who
are online. The patient record is then displayed on their screens, but only the
initiating doctor can edit the record. In addition, a text chat window is created

Nurse

Medical receptionist
Manager

Register
patient

View
personal info.

View record

Generate
report

Export
statistics

Doctor
Edit record

Setup
consultationFigure 4.15  Use cases

for the Mentcare system

126    Chapter 4  ■  Requirements engineering

to help coordinate actions. It is assumed that a phone call for voice communi-
cation can be separately arranged.

The UML is a standard for object-oriented modeling, so use cases and use case-
based elicitation are used in the requirements engineering process. However, my
experience with use cases is that they are too fine-grained to be useful in discussing
requirements. Stakeholders don’t understand the term use case; they don’t find the
graphical model to be useful, and they are often not interested in a detailed descrip-
tion of each and every system interaction. Consequently, I find use cases to be more
helpful in systems design than in requirements engineering. I discuss use cases fur-
ther in Chapter 5, which shows how they are used alongside other system models to
document a system design.

Some people think that each use case is a single, low-level interaction scenario.
Others, such as Stevens and Pooley (Stevens and Pooley 2006), suggest that each use
case includes a set of related, low-level scenarios. Each of these scenarios is a single
thread through the use case. Therefore, there would be a scenario for the normal
interaction plus scenarios for each possible exception. In practice, you can use them
in either way.

	 4.4.4 	 The software requirements document

The software requirements document (sometimes called the software requirements
specification or SRS) is an official statement of what the system developers should
implement. It may include both the user requirements for a system and a detailed
specification of the system requirements. Sometimes the user and system require-
ments are integrated into a single description. In other cases, the user requirements
are described in an introductory chapter in the system requirements specification.

Requirements documents are essential when systems are outsourced for development,
when different teams develop different parts of the system, and when a detailed analysis
of the requirements is mandatory. In other circumstances, such as software product or
business system development, a detailed requirements document may not be needed.

Agile methods argue that requirements change so rapidly that a requirements
document is out of date as soon as it is written, so the effort is largely wasted. Rather
than a formal document, agile approaches often collect user requirements incremen-
tally and write these on cards or whiteboards as short user stories. The user then
prioritizes these stories for implementation in the next increment of the system.

For business systems where requirements are unstable, I think that this approach
is a good one. However, I think that it is still useful to write a short supporting docu-
ment that defines the business and dependability requirements for the system; it is
easy to forget the requirements that apply to the system as a whole when focusing on
the functional requirements for the next system release.

The requirements document has a diverse set of users, ranging from the senior
management of the organization that is paying for the system to the engineers
responsible for developing the software. Figure 4.16 shows possible users of the
document and how they use it.

	 4.4  ■  Requirements specification    127

Use the requirements to
develop validation tests for
the system.

Use the requirements
document to plan a bid for
the system and to plan the
system development process.

Use the requirements to
understand what system is
to be developed.

System test
engineers

Managers

System
engineers

Specify the requirements and
read them to check that they
meet their needs. Customers
specify changes to the
requirements.

System
customers

Use the requirements to
understand the system and
the relationships between its
parts.

System
maintenance

engineers
Figure 4.16  Users of a
requirements document

The diversity of possible users means that the requirements document has to be a
compromise. It has to describe the requirements for customers, define the require-
ments in precise detail for developers and testers, as well as include information
about future system evolution. Information on anticipated changes helps system
designers to avoid restrictive design decisions and maintenance engineers to adapt
the system to new requirements.

The level of detail that you should include in a requirements document depends
on the type of system that is being developed and the development process used.
Critical systems need detailed requirements because safety and security have to be
analyzed in detail to find possible requirements errors. When the system is to be
developed by a separate company (e.g., through outsourcing), the system specifica-
tions need to be detailed and precise. If an in-house, iterative development process is
used, the requirements document can be less detailed. Details can be added to the
requirements and ambiguities resolved during development of the system.

Figure 4.17 shows one possible organization for a requirements document that is
based on an IEEE standard for requirements documents (IEEE 1998). This standard
is a generic one that can be adapted to specific uses. In this case, the standard has
been extended to include information about predicted system evolution. This infor-
mation helps the maintainers of the system and allows designers to include support
for future system features.

128    Chapter 4  ■  Requirements engineering

Figure 4.17  The
structure of a
requirements
document

Chapter Description

Preface This defines the expected readership of the document and describe its version history,
including a rationale for the creation of a new version and a summary of the changes
made in each version.

Introduction This describes the need for the system. It should briefly describe the system’s functions
and explain how it will work with other systems. It should also describe how the system
fits into the overall business or strategic objectives of the organization commissioning the
software.

Glossary This defines the technical terms used in the document. You should not make assumptions
about the experience or expertise of the reader.

User
requirements
definition

Here, you describe the services provided for the user. The nonfunctional system
requirements should also be described in this section. This description may use natural
language, diagrams, or other notations that are understandable to customers. Product and
process standards that must be followed should be specified.

System
architecture

This chapter presents a high-level overview of the anticipated system architecture, showing
the distribution of functions across system modules. Architectural components that are
reused should be highlighted.

System
requirements
specification

This describes the functional and nonfunctional requirements in more detail. If necessary,
further detail may also be added to the nonfunctional requirements. Interfaces to other
systems may be defined.

System
models

This chapter includes graphical system models showing the relationships between the
system components and the system and its environment. Examples of possible models are
object models, data-flow models, or semantic data models.

System
evolution

This describes the fundamental assumptions on which the system is based, and any
anticipated changes due to hardware evolution, changing user needs, and so on. This
section is useful for system designers as it may help them avoid design decisions that
would constrain likely future changes to the system.

Appendices These provide detailed, specific information that is related to the application being
developed—for example, hardware and database descriptions. Hardware requirements
define the minimal and optimal configurations for the system. Database requirements define
the logical organization of the data used by the system and the relationships between data.

Index Several indexes to the document may be included. As well as a normal alphabetic index,
there may be an index of diagrams, an index of functions, and so on.

Naturally, the information included in a requirements document depends on the
type of software being developed and the approach to development that is to be used.
A requirements document with a structure like that shown in Figure 4.17 might be
produced for a complex engineering system that includes hardware and software
developed by different companies. The requirements document is likely to be long
and detailed. It is therefore important that a comprehensive table of contents and doc-
ument index be included so that readers can easily find the information they need.

By contrast, the requirements document for an in-house software product will
leave out many of detailed chapters suggested above. The focus will be on defining
the user requirements and high-level, nonfunctional system requirements. The sys-
tem designers and programmers use their judgment to decide how to meet the out-
line user requirements for the system.

	 4.5  ■  Requirements validation    129

	 4.5 	 Requirements validation

Requirements validation is the process of checking that requirements define the sys-
tem that the customer really wants. It overlaps with elicitation and analysis, as it is
concerned with finding problems with the requirements. Requirements validation is
critically important because errors in a requirements document can lead to extensive
rework costs when these problems are discovered during development or after the
system is in service.

The cost of fixing a requirements problem by making a system change is usually
much greater than repairing design or coding errors. A change to the requirements
usually means that the system design and implementation must also be changed.
Furthermore, the system must then be retested.

During the requirements validation process, different types of checks should be
carried out on the requirements in the requirements document. These checks include:

1.	 Validity checks These check that the requirements reflect the real needs of sys-
tem users. Because of changing circumstances, the user requirements may have
changed since they were originally elicited.

2.	 Consistency checks Requirements in the document should not conflict. That is,
there should not be contradictory constraints or different descriptions of the
same system function.

3.	 Completeness checks The requirements document should include requirements
that define all functions and the constraints intended by the system user.

4.	 Realism checks By using knowledge of existing technologies, the requirements
should be checked to ensure that they can be implemented within the proposed
budget for the system. These checks should also take account of the budget and
schedule for the system development.

5.	 Verifiability To reduce the potential for dispute between customer and contrac-
tor, system requirements should always be written so that they are verifiable.
This means that you should be able to write a set of tests that can demonstrate
that the delivered system meets each specified requirement.

Requirements document standards

A number of large organizations, such as the U.S. Department of Defense and the IEEE, have defined standards
for requirements documents. These are usually very generic but are nevertheless useful as a basis for develop-
ing more detailed organizational standards. The U.S. Institute of Electrical and Electronic Engineers (IEEE) is one
of the best-known standards providers, and they have developed a standard for the structure of requirements
documents. This standard is most appropriate for systems such as military command and control systems that
have a long lifetime and are usually developed by a group of organizations.

http://software-engineering-book.com/web/requirements-standard/

http://software-engineering-book.com/web/requirements-standard

130    Chapter 4  ■  Requirements engineering

A number of requirements validation techniques can be used individually or in
conjunction with one another:

1.	 Requirements reviews The requirements are analyzed systematically by a team
of reviewers who check for errors and inconsistencies.

2.	 Prototyping This involves developing an executable model of a system and
using this with end-users and customers to see if it meets their needs and expec-
tations. Stakeholders experiment with the system and feed back requirements
changes to the development team.

3.	 Test-case generation Requirements should be testable. If the tests for the
requirements are devised as part of the validation process, this often reveals
requirements problems. If a test is difficult or impossible to design, this usually
means that the requirements will be difficult to implement and should be recon-
sidered. Developing tests from the user requirements before any code is written
is an integral part of test-driven development.

You should not underestimate the problems involved in requirements validation.
Ultimately, it is difficult to show that a set of requirements does in fact meet a user’s
needs. Users need to picture the system in operation and imagine how that system
would fit into their work. It is hard even for skilled computer professionals to per-
form this type of abstract analysis and harder still for system users.

As a result, you rarely find all requirements problems during the requirements
validation process. Inevitably, further requirements changes will be needed to cor-
rect omissions and misunderstandings after agreement has been reached on the
requirements document.

	 4.6 	 Requirements change

The requirements for large software systems are always changing. One reason for
the frequent changes is that these systems are often developed to address “wicked”
problems—problems that cannot be completely defined (Rittel and Webber 1973).
Because the problem cannot be fully defined, the software requirements are bound to

Requirements reviews

A requirements review is a process in which a group of people from the system customer and the system devel-
oper read the requirements document in detail and check for errors, anomalies, and inconsistencies. Once these
have been detected and recorded, it is then up to the customer and the developer to negotiate how the identi-
fied problems should be solved.

http://software-engineering-book.com/web/requirements-reviews/

http://software-engineering-book.com/web/requirements-reviews

	 4.6  ■  Requirements change    131

be incomplete. During the software development process, the stakeholders’ under-
standing of the problem is constantly changing (Figure 4.18). The system require-
ments must then evolve to reflect this changed problem understanding.

Once a system has been installed and is regularly used, new requirements inevita-
bly emerge. This is partly a consequence of errors and omissions in the original
requirements that have to be corrected. However, most changes to system require-
ments arise because of changes to the business environment of the system:

1.	 The business and technical environment of the system always changes after
installation. New hardware may be introduced and existing hardware updated. It
may be necessary to interface the system with other systems. Business priorities
may change (with consequent changes in the system support required), and new
legislation and regulations may be introduced that require system compliance.

2.	 The people who pay for a system and the users of that system are rarely the
same people. System customers impose requirements because of organizational
and budgetary constraints. These may conflict with end-user requirements, and,
after delivery, new features may have to be added for user support if the system
is to meet its goals.

3.	 Large systems usually have a diverse stakeholder community, with stakeholders
having different requirements. Their priorities may be conflicting or contradic-
tory. The final system requirements are inevitably a compromise, and some
stakeholders have to be given priority. With experience, it is often discovered
that the balance of support given to different stakeholders has to be changed and
the requirements re-prioritized.

As requirements are evolving, you need to keep track of individual requirements
and maintain links between dependent requirements so that you can assess the
impact of requirements changes. You therefore need a formal process for making
change proposals and linking these to system requirements. This process of “require-
ments management” should start as soon as a draft version of the requirements docu-
ment is available.

Agile development processes have been designed to cope with requirements that
change during the development process. In these processes, when a user proposes a
requirements change, this change does not go through a formal change management

Time

Changed
understanding

of problem

Initial
understanding

of problem

Changed
requirements

Initial
requirements

Figure 4.18 
Requirements evolution

132    Chapter 4  ■  Requirements engineering

process. Rather, the user has to prioritize that change and, if it is high priority, decide
what system features that were planned for the next iteration should be dropped for
the change to be implemented.

The problem with this approach is that users are not necessarily the best people to
decide on whether or not a requirements change is cost-effective. In systems with
multiple stakeholders, changes will benefit some stakeholders and not others. It is
often better for an independent authority, who can balance the needs of all stake-
holders, to decide on the changes that should be accepted.

	 4.6.1 	 Requirements management planning

Requirements management planning is concerned with establishing how a set of
evolving requirements will be managed. During the planning stage, you have to
decide on a number of issues:

1.	 Requirements identification Each requirement must be uniquely identified so
that it can be cross-referenced with other requirements and used in traceability
assessments.

2.	 A change management process This is the set of activities that assess the impact
and cost of changes. I discuss this process in more detail in the following section.

3.	 Traceability policies These policies define the relationships between each require-
ment and between the requirements and the system design that should be recorded.
The traceability policy should also define how these records should be maintained.

4.	 Tool support Requirements management involves the processing of large
amounts of information about the requirements. Tools that may be used range
from specialist requirements management systems to shared spreadsheets and
simple database systems.

Requirements management needs automated support, and the software tools for
this should be chosen during the planning phase. You need tool support for:

1.	 Requirements storage The requirements should be maintained in a secure, man-
aged data store that is accessible to everyone involved in the requirements engi-
neering process.

Enduring and volatile requirements

Some requirements are more susceptible to change than others. Enduring requirements are the requirements
that are associated with the core, slow-to-change activities of an organization. Enduring requirements are asso-
ciated with fundamental work activities. Volatile requirements are more likely to change. They are usually asso-
ciated with supporting activities that reflect how the organization does its work rather than the work itself.

http://software-engineering-book.com/web/changing-requirements/

http://software-engineering-book.com/web/changing-requirements

	 4.6  ■  Requirements change    133

2.	 Change management The process of change management (Figure 4.19) is sim-
plified if active tool support is available. Tools can keep track of suggested
changes and responses to these suggestions.

3.	 Traceability management As discussed above, tool support for traceability
allows related requirements to be discovered. Some tools are available which
use natural language processing techniques to help discover possible relation-
ships between requirements.

For small systems, you do not need to use specialized requirements management
tools. Requirements management can be supported using shared web documents,
spreadsheets, and databases. However, for larger systems, more specialized tool sup-
port, using systems such as DOORS (IBM 2013), makes it much easier to keep track
of a large number of changing requirements.

	 4.6.2 	 Requirements change management

Requirements change management (Figure 4.19) should be applied to all proposed
changes to a system’s requirements after the requirements document has been approved.
Change management is essential because you need to decide if the benefits of imple-
menting new requirements are justified by the costs of implementation. The advantage
of using a formal process for change management is that all change proposals are treated
consistently and changes to the requirements document are made in a controlled way.

There are three principal stages to a change management process:

1.	 Problem analysis and change specification The process starts with an identi-
fied requirements problem or, sometimes, with a specific change proposal.
During this stage, the problem or the change proposal is analyzed to check that
it is valid. This analysis is fed back to the change requestor who may respond
with a more specific requirements change proposal, or decide to withdraw
the request.

2.	 Change analysis and costing The effect of the proposed change is assessed
using traceability information and general knowledge of the system require-
ments. The cost of making the change is estimated in terms of modifications to
the requirements document and, if appropriate, to the system design and imple-
mentation. Once this analysis is completed, a decision is made as to whether or
not to proceed with the requirements change.

Change
implementation

Change analysis
and costing

Problem analysis and
change specification

Identified
problem

Revised
requirements

Figure 4.19 
Requirements change
management

134    Chapter 4  ■  Requirements engineering

3.	 Change implementation The requirements document and, where necessary, the
system design and implementation, are modified. You should organize the
requirements document so that you can make changes to it without extensive
rewriting or reorganization. As with programs, changeability in documents is
achieved by minimizing external references and making the document sections
as modular as possible. Thus, individual sections can be changed and replaced
without affecting other parts of the document.

If a new requirement has to be urgently implemented, there is always a tempta-
tion to change the system and then retrospectively modify the requirements docu-
ment. This almost inevitably leads to the requirements specification and the system
implementation getting out of step. Once system changes have been made, it is easy
to forget to include these changes in the requirements document. In some circum-
stances, emergency changes to a system have to be made. In those cases, it is impor-
tant that you update the requirements document as soon as possible in order to
include the revised requirements.

K e y P o i n t s

■	 Requirements for a software system set out what the system should do and define constraints
on its operation and implementation.

■	 Functional requirements are statements of the services that the system must provide or are
descriptions of how some computations must be carried out.

■	 Non-functional requirements often constrain the system being developed and the development
process being used. These might be product requirements, organizational requirements, or
external requirements. They often relate to the emergent properties of the system and therefore
apply to the system as a whole.

■	 The requirements engineering process includes requirements elicitation, requirements
specification, requirements validation, and requirements management.

■	 Requirements elicitation is an iterative process that can be represented as a spiral of activities—
requirements discovery, requirements classification and organization, requirements
negotiation, and requirements documentation.

Requirements traceability

You need to keep track of the relationships between requirements, their sources, and the system design so that
you can analyze the reasons for proposed changes and the impact that these changes are likely to have on
other parts of the system. You need to be able to trace how a change ripples its way through the system. Why?

http://software-engineering-book.com/web/traceability/

http://software-engineering-book.com/web/traceability

	 Chapter 4  ■  Website    135

■	 Requirements specification is the process of formally documenting the user and system require-
ments and creating a software requirements document.

■	 The software requirements document is an agreed statement of the system requirements. It
should be organized so that both system customers and software developers can use it.

■	 Requirements validation is the process of checking the requirements for validity, consistency,
completeness, realism, and verifiability.

■	 Business, organizational, and technical changes inevitably lead to changes to the requirements
for a software system. Requirements management is the process of managing and controlling
these changes.

F u r t h er R e a d i n g

“Integrated Requirements Engineering: A Tutorial.” This is a tutorial paper that discusses require-
ments engineering activities and how these can be adapted to fit with modern software engineering
practice. (I. Sommerville, IEEE Software, 22(1), January–February 2005) http://dx.doi.org/10.1109/
MS.2005.13.

“Research Directions in Requirements Engineering.” This is a good survey of requirements engineer-
ing research that highlights future research challenges in the area to address issues such as scale
and agility. (B. H. C. Cheng and J. M. Atlee, Proc. Conf. on Future of Software Engineering, IEEE Com-
puter Society, 2007) http://dx.doi.org/10.1109/FOSE.2007.17.

Mastering the Requirements Process, 3rd ed. A well-written, easy-to-read book that is based on a
particular method (VOLERE) but that also includes lots of good general advice about requirements
engineering. (S. Robertson and J. Robertson, 2013, Addison-Wesley).

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/requirements-and-design/

Requirements document for the insulin pump:

http://software-engineering-book.com/case-studies/insulin-pump/

Mentcare system requirements information:

http://software-engineering-book.com/case-studies/mentcare-system/

http://dx.doi.org/10.1109/MS.2005.13
http://dx.doi.org/10.1109/FOSE.2007.17
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/requirements-and-design
http://software-engineering-book.com/case-studies/insulin-pump
http://software-engineering-book.com/case-studies/mentcare-system
http://dx.doi.org/10.1109/MS.2005.13

136    Chapter 4  ■  Requirements engineering

E x erci s e s

4.1. 	 Identify and briefly describe four types of requirements that may be defined for a computer-
based system.

4.2. 	 Discover ambiguities or omissions in the following statement of the requirements for part of a
drone system intended for search and recovery:

The drone, a quad chopper, will be very useful in search and recovery operations, especially in
remote areas or in extreme weather conditions. It will click high-resolution images. It will fly
according to a path preset by a ground operator, but will be able to avoid obstacles on its
own, returning to its original path whenever possible. The drone will also be able to identify
various objects and match them to the target it is looking for.

4.3. 	 Rewrite the above description using the structured approach described in this chapter.
Resolve the identified ambiguities in a sensible way.

4.4. 	 Write a set of non-functional requirements for the drone system, setting out its expected
safety and response time.

4.5. 	 Using the technique suggested here, where natural language descriptions are presented in a
standard format, write plausible user requirements for the following functions:

An unattended petrol (gas) pump system that includes a credit card reader. The customer
swipes the card through the reader, then specifies the amount of fuel required. The fuel is
delivered and the customer’s account debited.

The cash-dispensing function in a bank ATM.

In an Internet banking system, a facility that allows customers to transfer funds from one
account held with the bank to another account with the same bank.

4.6. 	 Suggest how an engineer responsible for drawing up a system requirements specification
might keep track of the relationships between functional and non-functional requirements.

4.7. 	 Using your knowledge of how an ATM is used, develop a set of use cases that could serve as a
basis for understanding the requirements for an ATM system.

4.8. 	 To minimize mistakes during a requirements review, an organization decides to allocate two
scribes to document the review session. Explain how this can be done.

4.9. 	 When emergency changes have to be made to systems, the system software may have to be
modified before changes to the requirements have been approved. Suggest a model of a pro-
cess for making these modifications that will ensure that the requirements document and the
system implementation do not become inconsistent.

4.10. 	 You have taken a job with a software user who has contracted your previous employer to
develop a system for them. You discover that your company’s interpretation of the require-
ments is different from the interpretation taken by your previous employer. Discuss what you

	 Chapter 4  ■  References    137

should do in such a situation. You know that the costs to your current employer will increase if
the ambiguities are not resolved. However, you also have a responsibility of confidentiality to
your previous employer.

R efere n ce s

Crabtree, A. 2003. Designing Collaborative Systems: A Practical Guide to Ethnography. London:
Springer-Verlag.

Davis, A. M. 1993. Software Requirements: Objects, Functions and States. Englewood Cliffs, NJ:
Prentice-Hall.

IBM. 2013. “Rational Doors Next Generation: Requirements Engineering for Complex Systems.”
https://jazz.net/products/rational-doors-next-generation/

IEEE. 1998. “IEEE Recommended Practice for Software Requirements Specifications.” In IEEE Soft-
ware Engineering Standards Collection. Los Alamitos, CA: IEEE Computer Society Press.

Jacobsen, I., M. Christerson, P. Jonsson, and G. Overgaard. 1993. Object-Oriented Software Engineering.
Wokingham, UK: Addison-Wesley.

Martin, D., and I. Sommerville. 2004. “Patterns of Cooperative Interaction: Linking Ethnomethodol-
ogy and Design.” ACM Transactions on Computer-Human Interaction 11 (1) (March 1): 59–89.
doi:10.1145/972648.972651.

Rittel, H., and M. Webber. 1973. “Dilemmas in a General Theory of Planning.” Policy Sciences 4:
155–169. doi:10.1007/BF01405730.

Robertson, S., and J. Robertson. 2013. Mastering the Requirements Process, 3rd ed. Boston:
Addison-Wesley.

Sommerville, I., T. Rodden, P. Sawyer, R. Bentley, and M. Twidale. 1993. “Integrating Ethnography
into the Requirements Engineering Process.” In RE’93, 165–173. San Diego, CA: IEEE Computer
Society Press. doi:10.1109/ISRE.1993.324821.

Stevens, P., and R. Pooley. 2006. Using UML: Software Engineering with Objects and Components,
2nd ed. Harlow, UK: Addison-Wesley.

Suchman, L. 1983. “Office Procedures as Practical Action: Models of Work and System Design.” ACM
Transactions on Office Information Systems 1 (3): 320–328. doi:10.1145/357442.357445.

Viller, S., and I. Sommerville. 2000. “Ethnographically Informed Analysis for Software Engineers.”
Int. J. of Human-Computer Studies 53 (1): 169–196. doi:10.1006/ijhc.2000.0370.

https://jazz.net/products/rational-doors-next-generation

Objectives
The aim of this chapter is to introduce system models that may be
developed as part of requirements engineering and system design
processes. When you have read the chapter, you will:

■	 understand how graphical models can be used to represent
software systems and why several types of model are needed to
fully represent a system;

■	 understand the fundamental system modeling perspectives of
context, interaction, structure, and behavior;

■	 understand the principal diagram types in the Unified Modeling
Language (UML) and how these diagrams may be used in system
modeling;

■	 have been introduced to model-driven engineering, where an
executable system is automatically generated from structural and
behavioral models.

Contents
5.1	 Context models

5.2	 Interaction models

5.3	 Structural models

5.4	 Behavioral models

5.5	 Model-driven engineering

System modeling
5

	 Chapter 5  ■  System modeling   139

System modeling is the process of developing abstract models of a system, with each
model presenting a different view or perspective of that system. System modeling
now usually means representing a system using some kind of graphical notation
based on diagram types in the Unified Modeling Language (UML). However, it is
also possible to develop formal (mathematical) models of a system, usually as a
detailed system specification. I cover graphical modeling using the UML here, and
formal modeling is briefly discussed in Chapter 10.

Models are used during the requirements engineering process to help derive the
detailed requirements for a system, during the design process to describe the system
to engineers implementing the system, and after implementation to document the
system’s structure and operation. You may develop models of both the existing sys-
tem and the system to be developed:

1.	 Models of the existing system are used during requirements engineering. They
help clarify what the existing system does, and they can be used to focus a stake-
holder discussion on its strengths and weaknesses.

2.	 Models of the new system are used during requirements engineering to help
explain the proposed requirements to other system stakeholders. Engineers use
these models to discuss design proposals and to document the system for imple-
mentation. If you use a model-driven engineering process (Brambilla, Cabot,
and Wimmer 2012), you can generate a complete or partial system implementa-
tion from system models.

It is important to understand that a system model is not a complete representation of
system. It purposely leaves out detail to make it easier to understand. A model is an
abstraction of the system being studied rather than an alternative representation of that
system. A representation of a system should maintain all the information about the entity
being represented. An abstraction deliberately simplifies a system design and picks out
the most salient characteristics. For example, the PowerPoint slides that accompany this
book are an abstraction of the book’s key points. However, if the book were translated
from English into Italian, this would be an alternative representation. The translator’s
intention would be to maintain all the information as it is presented in English.

You may develop different models to represent the system from different
perspectives. For example:

1.	 An external perspective, where you model the context or environment of the
system.

2.	 An interaction perspective, where you model the interactions between a system
and its environment, or between the components of a system.

3.	 A structural perspective, where you model the organization of a system or the
structure of the data processed by the system.

4.	 A behavioral perspective, where you model the dynamic behavior of the system
and how it responds to events.

140   Chapter 5  ■  System modeling

When developing system models, you can often be flexible in the way that the
graphical notation is used. You do not always need to stick rigidly to the details of a
notation. The detail and rigor of a model depend on how you intend to use it. There
are three ways in which graphical models are commonly used:

1.	 As a way to stimulate and focus discussion about an existing or proposed sys-
tem. The purpose of the model is to stimulate and focus discussion among the
software engineers involved in developing the system. The models may be
incomplete (as long as they cover the key points of the discussion), and they
may use the modeling notation informally. This is how models are normally
used in agile modeling (Ambler and Jeffries 2002).

2.	 As a way of documenting an existing system. When models are used as docu-
mentation, they do not have to be complete, as you may only need to use models
to document some parts of a system. However, these models have to be correct—
they should use the notation correctly and be an accurate description of the
system.

3.	 As a detailed system description that can be used to generate a system imple-
mentation. Where models are used as part of a model-based development pro-
cess, the system models have to be both complete and correct. They are used as
a basis for generating the source code of the system, and you therefore have to
be very careful not to confuse similar symbols, such as stick and block arrow-
heads, that may have different meanings.

In this chapter, I use diagrams defined in the Unified Modeling Language
(UML) (Rumbaugh, Jacobson, and Booch 2004; Booch, Rumbaugh, and
Jacobson 2005), which has become a standard language for object-oriented mod-
eling. The UML has 13 diagram types and so supports the creation of many
different types of system model. However, a survey (Erickson and Siau 2007)
showed that most users of the UML thought that five diagram types could repre-
sent the essentials of a system. I therefore concentrate on these five UML diagram
types here:

The Unified Modeling Language

The Unified Modeling Language (UML) is a set of 13 different diagram types that may be used to model soft-
ware systems. It emerged from work in the 1990s on object-oriented modeling, where similar object-oriented
notations were integrated to create the UML. A major revision (UML 2) was finalized in 2004. The UML is uni-
versally accepted as the standard approach for developing models of software systems. Variants, such as SysML,
have been proposed for more general system modeling.

http://software-engineering-book.com/web/uml/

http://software-engineering-book.com/web/uml

	 5.1  ■  Context models   141

1.	 Activity diagrams, which show the activities involved in a process or in data
processing.

2.	 Use case diagrams, which show the interactions between a system and its
environment.

3.	 Sequence diagrams, which show interactions between actors and the system and
between system components.

4.	 Class diagrams, which show the object classes in the system and the associa-
tions between these classes.

5.	 State diagrams, which show how the system reacts to internal and external events.

	 5.1 	 Context models

At an early stage in the specification of a system, you should decide on the system
boundaries, that is, on what is and is not part of the system being developed. This
involves working with system stakeholders to decide what functionality should be
included in the system and what processing and operations should be carried out in
the system’s operational environment. You may decide that automated support for
some business processes should be implemented in the software being developed but
that other processes should be manual or supported by different systems. You should
look at possible overlaps in functionality with existing systems and decide where
new functionality should be implemented. These decisions should be made early in
the process to limit the system costs and the time needed for understanding the sys-
tem requirements and design.

In some cases, the boundary between a system and its environment is relatively
clear. For example, where an automated system is replacing an existing manual or
computerized system, the environment of the new system is usually the same as the
existing system’s environment. In other cases, there is more flexibility, and you
decide what constitutes the boundary between the system and its environment during
the requirements engineering process.

For example, say you are developing the specification for the Mentcare patient
information system. This system is intended to manage information about patients
attending mental health clinics and the treatments that have been prescribed. In devel-
oping the specification for this system, you have to decide whether the system should
focus exclusively on collecting information about consultations (using other systems
to collect personal information about patients) or whether it should also collect per-
sonal patient information. The advantage of relying on other systems for patient
information is that you avoid duplicating data. The major disadvantage, however, is
that using other systems may make it slower to access information, and if these sys-
tems are unavailable, then it may be impossible to use the Mentcare system.

In some situations, the user base for a system is very diverse, and users have a
wide range of different system requirements. You may decide not to define

142   Chapter 5  ■  System modeling

boundaries explicitly but instead to develop a configurable system that can be
adapted to the needs of different users. This was the approach that we adopted in the
iLearn systems, introduced in Chapter 1. There, users range from very young
children who can’t read through to young adults, their teachers, and school adminis-
trators. Because these groups need different system boundaries, we specified a
configuration system that would allow the boundaries to be specified when the
system was deployed.

The definition of a system boundary is not a value-free judgment. Social and
organizational concerns may mean that the position of a system boundary may be
determined by nontechnical factors. For example, a system boundary may be delib-
erately positioned so that the complete analysis process can be carried out on one
site; it may be chosen so that a particularly difficult manager need not be consulted;
and it may be positioned so that the system cost is increased and the system develop-
ment division must therefore expand to design and implement the system.

Once some decisions on the boundaries of the system have been made, part of the
analysis activity is the definition of that context and the dependencies that a system
has on its environment. Normally, producing a simple architectural model is the first
step in this activity.

Figure 5.1 is a context model that shows the Mentcare system and the other
systems in its environment. You can see that the Mentcare system is connected to
an appointments system and a more general patient record system with which it
shares data. The system is also connected to systems for management reporting and
hospital admissions, and a statistics system that collects information for research.
Finally, it makes use of a prescription system to generate prescriptions for patients’
medication.

Context models normally show that the environment includes several other auto-
mated systems. However, they do not show the types of relationships between the
systems in the environment and the system that is being specified. External systems
might produce data for or consume data from the system. They might share data with
the system, or they might be connected directly, through a network or not connected
at all. They might be physically co-located or located in separate buildings. All of

«system»
Mentcare

«system»
Patient record

system

«system»
Appointments

system

«system»
Admissions

system

«system»
Management

reporting
system

«system»
Prescription

system

«system»
HC statistics

system

Figure 5.1  The context
of the Mentcare system

	 5.1  ■  Context models   143

Confirm
detention
decision Find secure

place

Admit to
hospital

Transfer to
police station

Transfer to
secure hospital

Inform next
of kin

Inform
social care

Inform
patient of

rights

Update
register

«system»
Admissions

system

«system»
Mentcare

«system»
Mentcare

Record
detention
decision

[dangerous]

[not available]

[not
dangerous]

[available]

Figure 5.2  A process
model of involuntary
detention

these relations may affect the requirements and design of the system being defined
and so must be taken into account. Therefore, simple context models are used along
with other models, such as business process models. These describe human and auto-
mated processes in which particular software systems are used.

UML activity diagrams may be used to show the business processes in which
systems are used. Figure 5.2 is a UML activity diagram that shows where the
Mentcare system is used in an important mental health care process—involuntary
detention.

Sometimes, patients who are suffering from mental health problems may be a
danger to others or to themselves. They may therefore have to be detained against
their will in a hospital so that treatment can be administered. Such detention is sub-
ject to strict legal safeguards—for example, the decision to detain a patient must be
regularly reviewed so that people are not held indefinitely without good reason. One
critical function of the Mentcare system is to ensure that such safeguards are imple-
mented and that the rights of patients are respected.

UML activity diagrams show the activities in a process and the flow of control
from one activity to another. The start of a process is indicated by a filled circle, the
end by a filled circle inside another circle. Rectangles with round corners represent
activities, that is, the specific subprocesses that must be carried out. You may include
objects in activity charts. Figure 5.2 shows the systems that are used to support dif-
ferent subprocesses within the involuntary detection process. I have shown that these
are separate systems by using the UML stereotype feature where the type of entity in
the box between chevrons is shown.

Arrows represent the flow of work from one activity to another, and a solid bar
indicates activity coordination. When the flow from more than one activity leads to a

144   Chapter 5  ■  System modeling

solid bar, then all of these activities must be complete before progress is possible.
When the flow from a solid bar leads to a number of activities, these may be exe-
cuted in parallel. Therefore, in Figure 5.2, the activities to inform social care and the
patient’s next of kin, as well as to update the detention register, may be concurrent.

Arrows may be annotated with guards (in square brackets) that specify when that
flow is followed. In Figure 5.2, you can see guards showing the flows for patients
who are dangerous and not dangerous to society. Patients who are dangerous to soci-
ety must be detained in a secure facility. However, patients who are suicidal and are
a danger to themselves may be admitted to an appropriate ward in a hospital, where
they can be kept under close supervision.

	 5.2 	 Interaction models

All systems involve interaction of some kind. This can be user interaction, which
involves user inputs and outputs; interaction between the software being developed and
other systems in its environment; or interaction between the components of a software
system. User interaction modeling is important as it helps to identify user requirements.
Modeling system-to-system interaction highlights the communication problems that
may arise. Modeling component interaction helps us understand if a proposed system
structure is likely to deliver the required system performance and dependability.

This section discusses two related approaches to interaction modeling:

1.	 Use case modeling, which is mostly used to model interactions between a sys-
tem and external agents (human users or other systems).

2.	 Sequence diagrams, which are used to model interactions between system com-
ponents, although external agents may also be included.

Use case models and sequence diagrams present interactions at different levels of
detail and so may be used together. For example, the details of the interactions
involved in a high-level use case may be documented in a sequence diagram. The
UML also includes communication diagrams that can be used to model interactions.
I don’t describe this diagram type because communication diagrams are simply an
alternative representation of sequence diagrams.

	 5.2.1 	 Use case modeling

Use case modeling was originally developed by Ivar Jacobsen in the 1990s (Jacobsen
et al. 1993), and a UML diagram type to support use case modeling is part of the

Medical receptionist Patient record system

Transfer data

Figure 5.3  Transfer-data
use case

	 5.2  ■  Interaction models   145

UML. A use case can be taken as a simple description of what a user expects from a
system in that interaction. I have discussed use cases for requirements elicitation in
Chapter 4. As I said in Chapter 4, I find use case models to be more useful in the
early stages of system design rather than in requirements engineering.

Each use case represents a discrete task that involves external interaction with a
system. In its simplest form, a use case is shown as an ellipse, with the actors
involved in the use case represented as stick figures. Figure 5.3 shows a use case
from the Mentcare system that represents the task of uploading data from the
Mentcare system to a more general patient record system. This more general system
maintains summary data about a patient rather than data about each consultation,
which is recorded in the Mentcare system.

Notice that there are two actors in this use case—the operator who is transferring
the data and the patient record system. The stick figure notation was originally devel-
oped to cover human interaction, but it is also used to represent other external sys-
tems and hardware. Formally, use case diagrams should use lines without arrows as
arrows in the UML indicate the direction of flow of messages. Obviously, in a use
case, messages pass in both directions. However, the arrows in Figure 5.3 are used
informally to indicate that the medical receptionist initiates the transaction and data
is transferred to the patient record system.

Use case diagrams give a simple overview of an interaction, and you need to add
more detail for complete interaction description. This detail can either be a simple
textual description, a structured description in a table, or a sequence diagram. You
choose the most appropriate format depending on the use case and the level of detail
that you think is required in the model. I find a standard tabular format to be the most
useful. Figure 5.4 shows a tabular description of the “Transfer data” use case.

Composite use case diagrams show a number of different use cases. Sometimes it
is possible to include all possible interactions within a system in a single composite
use case diagram. However, this may be impossible because of the number of use
cases. In such cases, you may develop several diagrams, each of which shows related
use cases. For example, Figure 5.5 shows all of the use cases in the Mentcare system

Figure 5.4  Tabular
description of the
Transfer-data use case

Mentcare system: Transfer data

Actors Medical receptionist, Patient records system (PRS)

Description A receptionist may transfer data from the Mentcare system to a
general patient record database that is maintained by a health
authority. The information transferred may either be updated
personal information (address, phone number, etc.) or a
summary of the patient’s diagnosis and treatment.

Data Patient’s personal information, treatment summary

Stimulus User command issued by medical receptionist

Response Confirmation that PRS has been updated

Comments The receptionist must have appropriate security permissions to
access the patient information and the PRS.

146   Chapter 5  ■  System modeling

in which the actor “Medical Receptionist” is involved. Each of these should be
accompanied by a more detailed description.

The UML includes a number of constructs for sharing all or part of a use case in
other use case diagrams. While these constructs can sometimes be helpful for system
designers, my experience is that many people, especially end-users, find them diffi-
cult to understand. For this reason, these constructs are not described here.

	 5.2.2 	 Sequence diagrams

Sequence diagrams in the UML are primarily used to model the interactions between
the actors and the objects in a system and the interactions between the objects them-
selves. The UML has a rich syntax for sequence diagrams, which allows many dif-
ferent kinds of interaction to be modeled. As space does not allow covering all
possibilities here, the focus will be on the basics of this diagram type.

As the name implies, a sequence diagram shows the sequence of interactions that
take place during a particular use case or use case instance. Figure 5.6 is an example
of a sequence diagram that illustrates the basics of the notation. This diagram models
the interactions involved in the View patient information use case, where a medical
receptionist can see some patient information.

The objects and actors involved are listed along the top of the diagram, with a
dotted line drawn vertically from these. Annotated arrows indicate interactions
between objects. The rectangle on the dotted lines indicates the lifeline of the object
concerned (i.e., the time that object instance is involved in the computation). You
read the sequence of interactions from top to bottom. The annotations on the arrows
indicate the calls to the objects, their parameters, and the return values. This example
also shows the notation used to denote alternatives. A box named alt is used with the

Medical
receptionist

Register
patient

Transfer data

Contact
patient

View patient
info.

Unregister
patient

Figure 5.5  Use cases
involving the role
“Medical receptionist”

	 5.2  ■  Interaction models   147

conditions indicated in square brackets, with alternative interaction options sepa-
rated by a dotted line.

You can read Figure 5.6 as follows:

1.	 The medical receptionist triggers the ViewInfo method in an instance P of the
PatientInfo object class, supplying the patient’s identifier, PID to identify the
required information. P is a user interface object, which is displayed as a form
showing patient information.

2.	 The instance P calls the database to return the information required, supplying
the receptionist’s identifier to allow security checking. (At this stage, it is not
important where the receptionist’s UID comes from.)

3.	 The database checks with an authorization system that the receptionist is author-
ized for this action.

4.	 If authorized, the patient information is returned and is displayed on a form on
the user’s screen. If authorization fails, then an error message is returned. The
box denoted by “alt” in the top-left corner is a choice box indicating that one of
the contained interactions will be executed. The condition that selects the choice
is shown in square brackets.

Figure 5.7 is a further example of a sequence diagram from the same system that
illustrates two additional features. These are the direct communication between the
actors in the system and the creation of objects as part of a sequence of operations. In
this example, an object of type Summary is created to hold the summary data that is

P: PatientInfo

ViewInfo (PID)
report (Info, PID,
UID)

authorize (Info,
UID)

Patient info

D: Mentcare-DB AS: Authorization

authorization

Error (no access)

[authorization OK]

[authorization fail]

Medical Receptionist

alt

Figure 5.6  Sequence
diagram for View patient
information

148   Chapter 5  ■  System modeling

to be uploaded to a national PRS (patient records system). You can read this diagram
as follows:

1.	 The receptionist logs on to the PRS.

2.	 Two options are available (as shown in the “alt” box). These allow the direct
transfer of updated patient information from the Mentcare database to the
PRS and the transfer of summary health data from the Mentcare database to
the PRS.

3.	 In each case, the receptionist’s permissions are checked using the authorization
system.

P: PatientInfo

login ()

D: Mentcare-DB AS: Authorization

authorization

[sendInfo]

[sendSummary]

Medical Receptionist PRS

ok

updateInfo() updatePRS (UID)

update (PID)

update OKMessage (OK)

summarize (UID)

authorize (TF, UID)

authorization

authorize (TF, UID)

:summary

update (PID)

UpdateSummary()

logout ()

alt

update OK
Message (OK)

Figure 5.7  Sequence
diagram for
Transfer Data

	 5.3  ■  Structural models   149

4.	 Personal information may be transferred directly from the user interface object
to the PRS. Alternatively, a summary record may be created from the database,
and that record is then transferred.

5.	 On completion of the transfer, the PRS issues a status message and the user logs off.

Unless you are using sequence diagrams for code generation or detailed docu-
mentation, you don’t have to include every interaction in these diagrams. If you
develop system models early in the development process to support requirements
engineering and high-level design, there will be many interactions that depend on
implementation decisions. For example, in Figure 5.7 the decision on how to get the
user identifier to check authorization is one that can be delayed. In an implementa-
tion, this might involve interacting with a User object. As this is not important at this
stage, you do not need to include it in the sequence diagram.

	 5.3 	 Structural models

Structural models of software display the organization of a system in terms of the
components that make up that system and their relationships. Structural models may
be static models, which show the organization of the system design, or dynamic
models, which show the organization of the system when it is executing. These are
not the same things—the dynamic organization of a system as a set of interacting
threads may be very different from a static model of the system components.

You create structural models of a system when you are discussing and designing
the system architecture. These can be models of the overall system architecture or
more detailed models of the objects in the system and their relationships.

In this section, I focus on the use of class diagrams for modeling the static struc-
ture of the object classes in a software system. Architectural design is an important
topic in software engineering, and UML component, package, and deployment dia-
grams may all be used when presenting architectural models. I cover architectural
modeling in Chapters 6 and 17.

	 5.3.1 	 Class diagrams

Class diagrams are used when developing an object-oriented system model to show
the classes in a system and the associations between these classes. Loosely, an object
class can be thought of as a general definition of one kind of system object. An asso-
ciation is a link between classes indicating that some relationship exists between
these classes. Consequently, each class may have to have some knowledge of its
associated class.

When you are developing models during the early stages of the software engi-
neering process, objects represent something in the real world, such as a patient, a

150   Chapter 5  ■  System modeling

prescription, or a doctor. As an implementation is developed, you define implemen-
tation objects to represent data that is manipulated by the system. In this section, the
focus is on the modeling of real-world objects as part of the requirements or early
software design processes. A similar approach is used for data structure modeling.

Class diagrams in the UML can be expressed at different levels of detail. When
you are developing a model, the first stage is usually to look at the world, identify
the essential objects, and represent these as classes. The simplest way of writing
these diagrams is to write the class name in a box. You can also note the existence of
an association by drawing a line between classes. For example, Figure 5.8 is a sim-
ple class diagram showing two classes, Patient and Patient Record, with an associa-
tion between them. At this stage, you do not need to say what the association is.

Figure 5.9 develops the simple class diagram in Figure 5.8 to show that objects of
class Patient are also involved in relationships with a number of other classes. In this
example, I show that you can name associations to give the reader an indication of
the type of relationship that exists.

Figures 5.8 and 5.9, shows an important feature of class diagrams—the ability to
show how many objects are involved in the association. In Figure 5.8 each end of the
association is annotated with a 1, meaning that there is a 1:1 relationship between
objects of these classes. That is, each patient has exactly one record, and each record
maintains information about exactly one patient.

As you can see from Figure 5.9, other multiplicities are possible. You can define
that an exact number of objects are involved (e.g., 1..4) or, by using a *, indicate that
there are an indefinite number of objects involved in the association. For example,
the (1..*) multiplicity in Figure 5.9 on the relationship between Patient and Condition
shows that a patient may suffer from several conditions and that the same condition
may be associated with several patients.

Patient
Patient
record

1 1
Figure 5.8  UML Classes
and association

Patient General
practitioner

Consultation

Consultant

Medication

Treatment

Hospital
Doctor

Condition
referred-by

referred-to

diagnosed-
with

attends

prescribes

prescribesinvolves

1..*

1

1..* 11..*

1..*

1..*

1..*

1..4

1..*

1..*
1..*

1..*

1..*

Figure 5.9  Classes and
associations in the
Mentcare system

	 5.3  ■  Structural models   151

At this level of detail, class diagrams look like semantic data models. Semantic
data models are used in database design. They show the data entities, their associated
attributes, and the relations between these entities (Hull and King 1987). The UML
does not include a diagram type for database modeling, as it models data using
objects and their relationships. However, you can use the UML to represent a seman-
tic data model. You can think of entities in a semantic data model as simplified
object classes (they have no operations), attributes as object class attributes, and rela-
tions as named associations between object classes.

When showing the associations between classes, it is best to represent these classes
in the simplest possible way, without attributes or operations. To define objects in
more detail, you add information about their attributes (the object’s characteristics)
and operations (the object’s functions). For example, a Patient object has the attribute
Address, and you may include an operation called ChangeAddress, which is called
when a patient indicates that he or she has moved from one address to another.

In the UML, you show attributes and operations by extending the simple rectangle
that represents a class. I illustrate this in Figure 5.10 that shows an object represent-
ing a consultation between doctor and patient:

1.	 The name of the object class is in the top section.

2.	 The class attributes are in the middle section. This includes the attribute names
and, optionally, their types. I don’t show the types in Figure 5.10.

3.	 The operations (called methods in Java and other OO programming languages)
associated with the object class are in the lower section of the rectangle. I show
some but not all operations in Figure 5.10.

In the example shown in Figure 5.10, it is assumed that doctors record voice notes
that are transcribed later to record details of the consultation. To prescribe medication,
the doctor involved must use the Prescribe method to generate an electronic prescription.

Consultation

Doctors
Date
Time
Clinic
Reason
Medication prescribed
Treatment prescribed
Voice notes
Transcript
...

New ()
Prescribe ()
RecordNotes ()
Transcribe ()
...Figure 5.10  A

Consultation class

152   Chapter 5  ■  System modeling

	 5.3.2 	 Generalization

Generalization is an everyday technique that we use to manage complexity.
Rather than learn the detailed characteristics of everything that we experience, we
learn about general classes (animals, cars, houses, etc.) and learn the characteris-
tics of these classes. We then reuse knowledge by classifying things and focus on
the differences between them and their class. For example, squirrels and rats are
members of the class “rodents,” and so share the characteristics of rodents.
General statements apply to all class members; for example, all rodents have teeth
for gnawing.

When you are modeling systems, it is often useful to examine the classes in a
system to see if there is scope for generalization and class creation. This means
that common information will be maintained in one place only. This is good design
practice as it means that, if changes are proposed, then you do not have to look at
all classes in the system to see if they are affected by the change. You can make the
changes at the most general level. In object-oriented languages, such as Java,
generalization is implemented using the class inheritance mechanisms built into
the language.

The UML has a specific type of association to denote generalization, as illus-
trated in Figure 5.11. The generalization is shown as an arrowhead pointing up to
the more general class. This indicates that general practitioners and hospital doctors
can be generalized as doctors and that there are three types of Hospital Doctor:
those who have just graduated from medical school and have to be supervised
(Trainee Doctor); those who can work unsupervised as part of a consultant’s team
(Registered Doctor); and consultants, who are senior doctors with full decision-
making responsibilities.

In a generalization, the attributes and operations associated with higher-level
classes are also associated with the lower-level classes. The lower-level classes are
subclasses that inherit the attributes and operations from their superclasses. These
lower-level classes then add more specific attributes and operations.

Doctor

General
practitioner

Hospital
doctor

Consultant Team doctor

Trainee
doctor

Qualified
doctorFigure 5.11  A

generalization hierarchy

	 5.3  ■  Structural models   153

For example, all doctors have a name and phone number, and all hospital doc-
tors have a staff number and carry a pager. General practitioners don’t have these
attributes, as they work independently, but they have an individual practice name
and address. Figure 5.12 shows part of the generalization hierarchy, which I have
extended with class attributes, for the class Doctor. The operations associated with
the class Doctor are intended to register and de-register that doctor with the
Mentcare system.

	 5.3.3 	 Aggregation

Objects in the real world are often made up of different parts. For example, a study
pack for a course may be composed of a book, PowerPoint slides, quizzes, and rec-
ommendations for further reading. Sometimes in a system model, you need to illus-
trate this. The UML provides a special type of association between classes called
aggregation, which means that one object (the whole) is composed of other objects
(the parts). To define aggregation, a diamond shape is added to the link next to the
class that represents the whole.

Figure 5.13 shows that a patient record is an aggregate of Patient and an indefinite
number of Consultations. That is, the record maintains personal patient information
as well as an individual record for each consultation with a doctor.

Doctor

General practitionerHospital doctor

Name
Phone #
Email

register ()
de-register ()

Staff #
Pager #

Practice
AddressFigure 5.12  A

generalization hierarchy
with added detail

Patient record

Patient Consultation

11

1 1..*

Figure 5.13  The
aggregation association

154   Chapter 5  ■  System modeling

	 5.4 	 Behavioral models

Behavioral models are models of the dynamic behavior of a system as it is execut-
ing. They show what happens or what is supposed to happen when a system responds
to a stimulus from its environment. These stimuli may be either data or events:

1.	 Data becomes available that has to be processed by the system. The availability
of the data triggers the processing.

2.	 An event happens that triggers system processing. Events may have associated
data, although this is not always the case.

Many business systems are data-processing systems that are primarily driven by
data. They are controlled by the data input to the system, with relatively little exter-
nal event processing. Their processing involves a sequence of actions on that data
and the generation of an output. For example, a phone billing system will accept
information about calls made by a customer, calculate the costs of these calls, and
generate a bill for that customer.

By contrast, real-time systems are usually event-driven, with limited data pro-
cessing. For example, a landline phone switching system responds to events such as
“handset activated” by generating a dial tone, pressing keys on a handset by captur-
ing the phone number, and so on.

	 5.4.1 	 Data-driven modeling

Data-driven models show the sequence of actions involved in processing input data
and generating an associated output. They can be used during the analysis of require-
ments as they show end-to-end processing in a system. That is, they show the entire
sequence of actions that takes place from an initial input being processed to the cor-
responding output, which is the system’s response.

Data-driven models were among the first graphical software models. In the 1970s,
structured design methods used data-flow diagrams (DFDs) as a way to illustrate the

Data flow diagrams

Data-flow diagrams (DFDs) are system models that show a functional perspective where each transformation
represents a single function or process. DFDs are used to show how data flows through a sequence of process-
ing steps. For example, a processing step could be the filtering of duplicate records in a customer database. The
data is transformed at each step before moving on to the next stage. These processing steps or transformations
represent software processes or functions, where data-flow diagrams are used to document a software design.
Activity diagrams in the UML may be used to represent DFDs.

http://software-engineering-book.com/web/dfds/

http://software-engineering-book.com/web/dfds

	 5.4  ■  Behavioral models   155

processing steps in a system. Data-flow models are useful because tracking and doc-
umenting how data associated with a particular process moves through the system
help analysts and designers understand what is going on in the process. DFDs are
simple and intuitive and so are more accessible to stakeholders than some other types
of model. It is usually possible to explain them to potential system users who can
then participate in validating the model.

Data-flow diagrams can be represented in the UML using the activity diagram
type, described in Section 5.1. Figure 5.14 is a simple activity diagram that shows
the chain of processing involved in the insulin pump software. You can see the
processing steps, represented as activities (rounded rectangles), and the data flowing
between these steps, represented as objects (rectangles).

An alternative way of showing the sequence of processing in a system is to use
UML sequence diagrams. You have seen how these diagrams can be used to model
interaction, but if you draw these so that messages are only sent from left to right,
then they show the sequential data processing in the system. Figure 5.15 illustrates
this, using a sequence model of processing an order and sending it to a supplier.
Sequence models highlight objects in a system, whereas data-flow diagrams high-
light the operations or activities. In practice, nonexperts seem to find data-flow dia-
grams more intuitive, but engineers prefer sequence diagrams.

Calculate
pump

commands

Blood sugar
sensor

Insulin
pump

Blood sugar
level

Pump control
commands

Insulin
requirement

Get sensor
value

Sensor
data

Compute
sugar level

Calculate
insulin
delivery

Control
pump

Figure 5.14  An activity
model of the insulin
pump’s operation

:Order

Fillin ()

Purchase officer

Validate ()

[validation ok]

«datastore»
Orders

Budget

Update (amount)

Save ()

Supplier

Send ()Figure 5.15  Order
processing

156   Chapter 5  ■  System modeling

	 5.4.2 	 Event-driven modeling

Event-driven modeling shows how a system responds to external and internal
events. It is based on the assumption that a system has a finite number of states
and that events (stimuli) may cause a transition from one state to another. For
example, a system controlling a valve may move from a state “Valve open” to a
state “Valve closed” when an operator command (the stimulus) is received. This
view of a system is particularly appropriate for real-time systems. Event-driven
modeling is used extensively when designing and documenting real-time systems
(Chapter 21).

The UML supports event-based modeling using state diagrams, which are based
on Statecharts (Harel 1987). State diagrams show system states and events that cause
transitions from one state to another. They do not show the flow of data within the
system but may include additional information on the computations carried out in
each state.

I use an example of control software for a very simple microwave oven to illus-
trate event-driven modeling (Figure 5.16). Real microwave ovens are much more
complex than this system, but the simplified system is easier to understand. This
simple oven has a switch to select full or half power, a numeric keypad to input the
cooking time, a start/stop button, and an alphanumeric display.

Full power

Enabled

do: operate
oven

Full
power

Half
power

Half
power

Full
power

Number

Door
open

Door
closed

Door
closed

Door
open

Start

do: set power
= 600

Half power
do: set power

= 300

Set time

do: get number
exit: set time

Disabled

Operation

Cancel

Waiting

do: display
time

Waiting

do: display
time

do: display
 'Ready'

do: display
'Waiting'

Timer

Timer

Figure 5.16  A state
diagram of a
microwave oven

	 5.4  ■  Behavioral models   157

Cook
do: run

generator

Done

do: buzzer on
for 5 secs.

Waiting

Alarm

do: display
event

do: check
status

Checking

Turntable
fault

Emitter
fault

Disabled

OK

Timeout

Time

Door open Cancel

Operation

Figure 5.17  A state
model of the
Operation state

I have assumed that the sequence of actions in using the microwave is as follows:

1.	 Select the power level (either half power or full power).

2.	 Input the cooking time using a numeric keypad.

3.	 Press Start and the food is cooked for the given time.

For safety reasons, the oven should not operate when the door is open, and, on
completion of cooking, a buzzer is sounded. The oven has a simple display that is
used to display various alerts and warning messages.

In UML state diagrams, rounded rectangles represent system states. They may
include a brief description (following “do”) of the actions taken in that state. The
labeled arrows represent stimuli that force a transition from one state to another. You
can indicate start and end states using filled circles, as in activity diagrams.

From Figure 5.16, you can see that the system starts in a waiting state and
responds initially to either the full-power or the half-power button. Users can change
their minds after selecting one of these and may press the other button. The time is
set and, if the door is closed, the Start button is enabled. Pushing this button starts the
oven operation, and cooking takes place for the specified time. This is the end of the
cooking cycle, and the system returns to the waiting state.

The problem with state-based modeling is that the number of possible states
increases rapidly. For large system models, therefore, you need to hide detail in the
models. One way to do this is by using the notion of a “superstate” that encapsulates
a number of separate states. This superstate looks like a single state on a high-level
model but is then expanded to show more detail on a separate diagram. To illustrate
this concept, consider the Operation state in Figure 5.16. This is a superstate that can
be expanded, as shown in Figure 5.17.

158   Chapter 5  ■  System modeling

The Operation state includes a number of substates. It shows that operation starts
with a status check and that if any problems are discovered an alarm is indicated and
operation is disabled. Cooking involves running the microwave generator for the
specified time; on completion, a buzzer is sounded. If the door is opened during
operation, the system moves to the disabled state, as shown in Figure 5.17.

State models of a system provide an overview of event processing, but you nor-
mally have to extend this with a more detailed description of the stimuli and the system
states. You may use a table to list the states and events that stimulate state transitions
along with a description of each state and event. Figure 5.18 shows a tabular descrip-
tion of each state and how the stimuli that force state transitions are generated.

	 5.4.3 	 Model-driven engineering

Model-driven engineering (MDE) is an approach to software development whereby
models rather than programs are the principal outputs of the development process

Figure 5.18  States and
stimuli for the
microwave oven

State Description

Waiting The oven is waiting for input. The display shows the
current time.

Half power The oven power is set to 300 watts. The display shows
“Half power.”

Full power The oven power is set to 600 watts. The display shows
“Full power.”

Set time The cooking time is set to the user’s input value. The display
shows the cooking time selected and is updated as the time
is set.

Disabled Oven operation is disabled for safety. Interior oven light is on.
Display shows “Not ready.”

Enabled Oven operation is enabled. Interior oven light is off. Display
shows “Ready to cook.”

Operation Oven in operation. Interior oven light is on. Display shows the
timer countdown. On completion of cooking, the buzzer is
sounded for 5 seconds. Oven light is on. Display shows
“Cooking complete” while buzzer is sounding.

Stimulus Description

Half power The user has pressed the half-power button.

Full power The user has pressed the full-power button.

Timer The user has pressed one of the timer buttons.

Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the Start button.

Cancel The user has pressed the Cancel button.

	 5.5  ■  Model-driven architecture   159

(Brambilla, Cabot, and Wimmer 2012). The programs that execute on a hardware/
software platform are generated automatically from the models. Proponents of MDE
argue that this raises the level of abstraction in software engineering so that engineers
no longer have to be concerned with programming language details or the specifics
of execution platforms.

Model-driven engineering was developed from the idea of model-driven archi-
tecture (MDA). This was proposed by the Object Management Group (OMG) as a
new software development paradigm (Mellor, Scott, and Weise 2004). MDA
focuses on the design and implementation stages of software development, whereas
MDE is concerned with all aspects of the software engineering process. Therefore,
topics such as model-based requirements engineering, software processes for
model-based development, and model-based testing are part of MDE but are not
considered in MDA.

MDA as an approach to system engineering has been adopted by a number of
large companies to support their development processes. This section focuses on the
use of MDA for software implementation rather than discuss more general aspects of
MDE. The take-up of more general model-driven engineering has been slow, and
few companies have adopted this approach throughout their software development
life cycle. In his blog, den Haan discusses possible reasons why MDE has not been
widely adopted (den Haan 2011).

	 5.5 	 Model-driven architecture

Model-driven architecture (Mellor, Scott, and Weise 2004; Stahl and Voelter
2006) is a model-focused approach to software design and implementation that
uses a subset of UML models to describe a system. Here, models at different
levels of abstraction are created. From a high-level, platform independent model,
it is possible, in principle, to generate a working program without manual
intervention.

The MDA method recommends that three types of abstract system model should
be produced:

1.	 A computation independent model (CIM) CIMs model the important domain
abstractions used in a system and so are sometimes called domain models. You
may develop several different CIMs, reflecting different views of the system.
For example, there may be a security CIM in which you identify important secu-
rity abstractions such as an asset, and a role and a patient record CIM, in which
you describe abstractions such as patients and consultations.

2.	 A platform-independent model (PIM) PIMs model the operation of the system
without reference to its implementation. A PIM is usually described using UML
models that show the static system structure and how it responds to external and
internal events.

160   Chapter 5  ■  System modeling

3.	 Platform-specific models (PSM) PSMs are transformations of the platform-
independent model with a separate PSM for each application platform. In
principle, there may be layers of PSM, with each layer adding some platform-
specific detail. So, the first level PSM could be middleware-specific but
database-independent. When a specific database has been chosen, a database-
specific PSM can then be generated.

Model-based engineering allows engineers to think about systems at a high
level of abstraction, without concern for the details of their implementation. This
reduces the likelihood of errors, speeds up the design and implementation process,
and allows for the creation of reusable, platform-independent application models.
By using powerful tools, system implementations can be generated for different
platforms from the same model. Therefore, to adapt the system to some new plat-
form technology, you write a model translator for that platform. When this is
available, all platform-independent models can then be rapidly re-hosted on the
new platform.

Fundamental to MDA is the notion that transformations between models can be
defined and applied automatically by software tools, as illustrated in Figure 5.19.
This diagram also shows a final level of automatic transformation where a transfor-
mation is applied to the PSM to generate the executable code that will run on the
designated software platform. Therefore, in principle at least, executable software
can be generated from a high-level system model.

In practice, completely automated translation of models to code is rarely possi-
ble. The translation of high-level CIM to PIM models remains a research problem,
and for production systems, human intervention, illustrated using a stick figure in
Figure 5.19, is normally required. A particularly difficult problem for automated
model transformation is the need to link the concepts used in different CIMS. For
example, the concept of a role in a security CIM that includes role-driven access
control may have to be mapped onto the concept of a staff member in a hospital
CIM. Only a person who understands both security and the hospital environment can
make this mapping.

Platform
specific model

Platform
independent

model

Executable
code

Translator Translator Translator

Domain specific
guidelines

Platform
specific patterns

and rules

Language
specific
patterns

Computation
independent

model

Figure 5.19  MDA
transformations

	 5.5  ■  Model-driven architecture   161

The translation of platform-independent to platform-specific models is a simpler
technical problem. Commercial tools and open-source tools (Koegel 2012) are avail-
able that provide translators from PIMS to common platforms such as Java and
J2EE. These use an extensive library of platform-specific rules and patterns to
convert a PIM to a PSM. There may be several PSMs for each PIM in the system. If
a software system is intended to run on different platforms (e.g., J2EE and .NET),
then, in principle, you only have to maintain a single PIM. The PSMs for each
platform are automatically generated (Figure 5.20).

Although MDA support tools include platform-specific translators, these
sometimes only offer partial support for translating PIMS to PSMs. The execution
environment for a system is more than the standard execution platform, such as J2EE
or Java. It also includes other application systems, specific application libraries that
may be created for a company, external services, and user interface libraries.

These vary from one company to another, so off-the-shelf tool support is not
available that takes these into account. Therefore, when MDA is introduced into an
organization, special-purpose translators may have to be created to make use of the
facilities available in the local environment. This is one reason why many companies
have been reluctant to take on model-driven approaches to development. They do not
want to develop or maintain their own tools or to rely on small software companies,
who may go out of business, for tool development. Without these specialist tools,
model-based development requires additional manual coding which reduces the
cost-effectiveness of this approach.

I believe that there are several other reasons why MDA has not become a main-
stream approach to software development.

1.	 Models are a good way of facilitating discussions about a software design.
However, it does not always follow that the abstractions that are useful for dis-
cussions are the right abstractions for implementation. You may decide to use a
completely different implementation approach that is based on the reuse of off-
the-shelf application systems.

2.	 For most complex systems, implementation is not the major problem—
requirements engineering, security and dependability, integration with legacy

Platform
independent

model

Java program

C# code
generator

Java code
generator

J2EE Translator

.Net Translator C# program

J2EE specific
model

.NET specific
modelFigure 5.20  Multiple

platform-specific models

162   Chapter 5  ■  System modeling

systems and testing are all more significant. Consequently, the gains from the
use of MDA are limited.

3.	 The arguments for platform independence are only valid for large, long-lifetime
systems, where the platforms become obsolete during a system’s lifetime. For
software products and information systems that are developed for standard plat-
forms, such as Windows and Linux, the savings from the use of MDA are likely
to be outweighed by the costs of its introduction and tooling.

4.	 The widespread adoption of agile methods over the same period that MDA was
evolving has diverted attention away from model-driven approaches.

The success stories for MDA (OMG 2012) have mostly come from companies
that are developing systems products, which include both hardware and software.
The software in these products has a long lifetime and may have to be modified
to reflect changing hardware technologies. The domain of application (automo-
tive, air traffic control, etc.) is often well understood and so can be formalized in
a CIM.

Hutchinson and his colleagues (Hutchinson, Rouncefield, and Whittle 2012)
report on the industrial use of MDA, and their work confirms that successes in the
use of model-driven development have been in systems products. Their assessment
suggests that companies have had mixed results when adopting this approach, but
the majority of users report that using MDA has increased productivity and reduced
maintenance costs. They found that MDA was particularly useful in facilitating
reuse, and this led to major productivity improvements.

There is an uneasy relationship between agile methods and model-driven archi-
tecture. The notion of extensive up-front modeling contradicts the fundamental ideas
in the agile manifesto and I suspect that few agile developers feel comfortable with
model-driven engineering. Ambler, a pioneer in the development of agile methods,
suggests that some aspects of MDA can be used in agile processes (Ambler 2004)
but considers automated code generation to be impractical. However, Zhang and
Patel report on Motorola’s success in using agile development with automated code
generation (Zhang and Patel 2011).

Executable UML

The fundamental notion behind model-driven engineering is that completely automated transformation of
models to code should be possible. To achieve this, you have to be able to construct graphical models with
clearly defined meanings that can be compiled to executable code. You also need a way of adding information
to graphical models about the ways in which the operations defined in the model are implemented. This is
possible using a subset of UML 2, called Executable UML or xUML (Mellor and Balcer 2002).

http://software-engineering-book.com/web/xuml/

http://software-engineering-book.com/web/xuml

K e y P o i n t s

■	 A model is an abstract view of a system that deliberately ignores some system details. Comple-
mentary system models can be developed to show the system’s context, interactions, structure,
and behavior.

■	 Context models show how a system that is being modeled is positioned in an environment with
other systems and processes. They help define the boundaries of the system to be developed.

■	 Use case diagrams and sequence diagrams are used to describe the interactions between users
and systems in the system being designed. Use cases describe interactions between a system
and external actors; sequence diagrams add more information to these by showing interactions
between system objects.

■	 Structural models show the organization and architecture of a system. Class diagrams are used
to define the static structure of classes in a system and their associations.

■	 Behavioral models are used to describe the dynamic behavior of an executing system. This
behavior can be modeled from the perspective of the data processed by the system or by the
events that stimulate responses from a system.

■	 Activity diagrams may be used to model the processing of data, where each activity represents
one process step.

■	 State diagrams are used to model a system’s behavior in response to internal or external events.

■	 Model-driven engineering is an approach to software development in which a system is repre-
sented as a set of models that can be automatically transformed to executable code.

F u r t h e r R e a d i n g

Any of the introductory books on the UML provide more information about the notation than I can
cover here. UML has only changed slightly in the last few years, so although some of these books
are almost 10 years old, they are still relevant.

Using UML: Software Engineering with Objects and Components, 2nd ed. This book is a short, read-
able introduction to the use of the UML in system specification and design. I think that it is excellent
for learning and understanding the UML notation, although it is less comprehensive than the
complete descriptions of UML found in the UML reference manual. (P. Stevens with R. Pooley, Addi-
son-Wesley, 2006)

Model-driven Software Engineering in Practice. This is quite a comprehensive book on model-driven
approaches with a focus on model-driven design and implementation. As well as the UML, it also
covers the development of domain-specific modeling languages. (M. Brambilla, J. Cabot, and
M. Wimmer. Morgan Claypool, 2012)

	 Chapter 5  ■  Further reading   163

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/requirements-and-design/

E x e r c i s e s

  5.1.	 Scope creep can be defined as a continuous increase in the scope of a project that can
significantly increase project cost. Explain how a proper model of the system context can
help prevent scope creeps.

  5.2.	 The way in which a system boundary is defined and an appropriate context model is created
may have serious implications on the complexity and cost of a project. Give two examples
where this may be applicable.

  5.3.	 You have been asked to develop a system that will help with planning large-scale events and
parties such as weddings, graduation celebrations, and birthday parties. Using an activity dia-
gram, model the process context for such a system that shows the activities involved in plan-
ning a party (booking a venue, organizing invitations, etc.) and the system elements that
might be used at each stage.

  5.4.	 For the Mentcare system, propose a set of use cases that illustrates the interactions between a
doctor, who sees patients and prescribes medicine and treatments, and the Mentcare system.

  5.5.	 Develop a sequence diagram showing the interactions involved when a student registers for a
course in a university. Courses may have limited enrollment, so the registration process must
include checks that places are available. Assume that the student accesses an electronic
course catalog to find out about available courses.

  5.6.	 Look carefully at how messages and mailboxes are represented in the email system that you
use. Model the object classes that might be used in the system implementation to represent a
mailbox and an email message.

  5.7.	 Based on your experience with a bank ATM, draw an activity diagram that models the data
processing involved when a customer withdraws cash from the machine.

  5.8.	 Draw a sequence diagram for the same system. Explain why you might want to develop both
activity and sequence diagrams when modeling the behavior of a system.

  5.9.	 Draw state diagrams of the control software for:

■	 an automatic washing machine that has different programs for different types of clothes;

■	 the software for a DVD player;

■	 the control software for the camera on your mobile phone. Ignore the flash if you have one
on your phone.

164    Chapter 5  ■  System modeling

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/requirements-and-design

	 Chapter 5  ■  References   165

5.10. 	In principle, it is possible to generate working programs from a high-level model without
manual intervention when using model-driven architectures. Discuss some of the current
challenges that stand in the way of the existence of completely automated translation tools.

R e f e r e n c e s

Ambler, S. W. 2004. The Object Primer: Agile Model-Driven Development with UML 2.0, 3rd ed.
Cambridge, UK: Cambridge University Press.

Ambler, S. W., and R. Jeffries. 2002. Agile Modeling: Effective Practices for Extreme Programming
and the Unified Process. New York: John Wiley & Sons.

Booch, G., J. Rumbaugh, and I. Jacobson. 2005. The Unified Modeling Language User Guide, 2nd ed.
Boston: Addison-Wesley.

Brambilla, M., J. Cabot, and M. Wimmer. 2012. Model-Driven Software Engineering in Practice. San
Rafael, CA: Morgan Claypool.

Den Haan, J. 2011. “Why There Is No Future for Model Driven Development.” http://www.
theenterprisearchitect.eu/archive/2011/01/25/why-there-is-no-future-for-model-driven-
development/

Erickson, J,, and K Siau. 2007. “Theoretical and Practical Complexity of Modeling Methods.”
Comm. ACM 50 (8): 46–51. doi:10.1145/1278201.1278205.

Harel, D. 1987. “Statecharts: A Visual Formalism for Complex Systems.” Sci. Comput. Programming
8 (3): 231–274. doi:10.1016/0167-6423(87)90035-9.

Hull, R., and R King. 1987. “Semantic Database Modeling: Survey, Applications and Research
Issues.” ACM Computing Surveys 19 (3): 201–260. doi:10.1145/45072.45073.

Hutchinson, J., M. Rouncefield, and J. Whittle. 2012. “Model-Driven Engineering Practices in
Industry.” In 34th Int. Conf. on Software Engineering, 633–642. doi:10.1145/1985793.1985882.

Jacobsen, I., M. Christerson, P. Jonsson, and G. Overgaard. 1993. Object-Oriented Software
Engineering. Wokingham, UK: Addison-Wesley.

Koegel, M. 2012. “EMF Tutorial: What Every Eclipse Developer Should Know about EMF.” http://
eclipsesource.com/blogs/tutorials/emf-tutorial/

Mellor, S. J., and M. J. Balcer. 2002. Executable UML. Boston: Addison-Wesley.

Mellor, S. J., K. Scott, and D. Weise. 2004. MDA Distilled: Principles of Model-Driven Architecture.
Boston: Addison-Wesley.

OMG. 2012. “Model-Driven Architecture: Success Stories.” http://www.omg.org/mda/products_
success.htm

http://www.�theenterprisearchitect.eu/archive/2011/01/25/why-there-is-no-future-for-model-driven-�development
http://eclipsesource.com/blogs/tutorials/emf-tutorial
http://eclipsesource.com/blogs/tutorials/emf-tutorial
http://www.omg.org/mda/products_success.htm
http://www.omg.org/mda/products_success.htm
http://www.�theenterprisearchitect.eu/archive/2011/01/25/why-there-is-no-future-for-model-driven-�development

Rumbaugh, J., I. Jacobson, and G Booch. 2004. The Unified Modelling Language Reference Manual,
2nd ed. Boston: Addison-Wesley.

Stahl, T., and M. Voelter. 2006. Model-Driven Software Development: Technology, Engineering,
Management. New York: John Wiley & Sons.

Zhang, Y., and S. Patel. 2011. “Agile Model-Driven Development in Practice.” IEEE Software 28 (2):
84–91. doi:10.1109/MS.2010.85.

166   Chapter 5  ■  System modeling

Architectural design
6

Objectives
The objective of this chapter is to introduce the concepts of software
architecture and architectural design. When you have read the chapter,
you will:

■	 understand why the architectural design of software is important;

■	 understand the decisions that have to be made about the software
architecture during the architectural design process;

■	 have been introduced to the idea of Architectural patterns, well-tried
ways of organizing software architectures that can be reused in
system designs;

■	 understand how Application-Specific Architectural patterns may be
used in transaction processing and language processing systems.

Contents
6.1	 Architectural design decisions

6.2	 Architectural views

6.3	 Architectural patterns

6.4	 Application architectures

168    Chapter 6  ■  Architectural design

Architectural design is concerned with understanding how a software system should
be organized and designing the overall structure of that system. In the model of the
software development process that I described in Chapter 2, architectural design is
the first stage in the software design process. It is the critical link between design and
requirements engineering, as it identifies the main structural components in a system
and the relationships between them. The output of the architectural design process is
an architectural model that describes how the system is organized as a set of
communicating components.

In agile processes, it is generally accepted that an early stage of an agile develop-
ment process should focus on designing an overall system architecture. Incremental
development of architectures is not usually successful. Refactoring components in
response to changes is usually relatively easy. However, refactoring the system
architecture is expensive because you may need to modify most system components
to adapt them to the architectural changes.

To help you understand what I mean by system architecture, look at Figure 6.1.
This diagram shows an abstract model of the architecture for a packing robot system.
This robotic system can pack different kinds of objects. It uses a vision component
to pick out objects on a conveyor, identify the type of object, and select the right
kind of packaging. The system then moves objects from the delivery conveyor to be
packaged. It places packaged objects on another conveyor. The architectural model
shows these components and the links between them.

In practice, there is a significant overlap between the processes of requirements
engineering and architectural design. Ideally, a system specification should not

Vision
system

Object
identification

system

Arm
controller

Gripper
controller

Packaging
selection
system

Packing
system

Conveyor
controllerFigure 6.1  The

architecture of a packing
robot control system

	 Chapter 6  ■  Architectural design    169

include any design information. This ideal is unrealistic, however, except for very
small systems. You need to identify the main architectural components as these
reflect the high-level features of the system. Therefore, as part of the requirements
engineering process, you might propose an abstract system architecture where you
associate groups of system functions or features with large-scale components or sub-
systems. You then use this decomposition to discuss the requirements and more
detailed features of the system with stakeholders.

You can design software architectures at two levels of abstraction, which I call
architecture in the small and architecture in the large:

1.	 Architecture in the small is concerned with the architecture of individual pro-
grams. At this level, we are concerned with the way that an individual pro-
gram is decomposed into components. This chapter is mostly concerned with
program architectures.

2.	 Architecture in the large is concerned with the architecture of complex enter-
prise systems that include other systems, programs, and program components.
These enterprise systems may be distributed over different computers, which
may be owned and managed by different companies. (I cover architecture in the
large in Chapters 17 and 18.)

Software architecture is important because it affects the performance, robust-
ness, distributability, and maintainability of a system (Bosch 2000). As Bosch
explains, individual components implement the functional system requirements,
but the dominant influence on the non-functional system characteristics is the
system’s architecture. Chen et al. (Chen, Ali Babar, and Nuseibeh 2013) con-
firmed this in a study of “architecturally significant requirements” where they
found that non-functional requirements had the most significant effect on the
system’s architecture.

Bass et al. (Bass, Clements, and Kazman 2012) suggest that explicitly designing
and documenting software architecture has three advantages:

1.	 Stakeholder communication The architecture is a high-level presentation of the sys-
tem that may be used as a focus for discussion by a range of different stakeholders.

2.	 System analysis Making the system architecture explicit at an early stage in the
system development requires some analysis. Architectural design decisions
have a profound effect on whether or not the system can meet critical require-
ments such as performance, reliability, and maintainability.

3.	 Large-scale reuse An architectural model is a compact, manageable description
of how a system is organized and how the components interoperate. The system
architecture is often the same for systems with similar requirements and so can
support large-scale software reuse. As I explain in Chapter 15, product-line
architectures are an approach to reuse where the same architecture is reused
across a range of related systems.

170    Chapter 6  ■  Architectural design

System architectures are often modeled informally using simple block diagrams,
as in Figure 6.1. Each box in the diagram represents a component. Boxes within
boxes indicate that the component has been decomposed to subcomponents. Arrows
mean that data and or control signals are passed from component to component in
the direction of the arrows. You can see many examples of this type of architectural
model in Booch’s handbook of software architecture (Booch 2014).

Block diagrams present a high-level picture of the system structure, which people
from different disciplines, who are involved in the system development process, can
readily understand. In spite of their widespread use, Bass et al. (Bass, Clements, and
Kazman 2012) dislike informal block diagrams for describing an architecture. They
claim that these informal diagrams are poor architectural representations, as they
show neither the type of the relationships among system components nor the compo-
nents’ externally visible properties.

The apparent contradictions between architectural theory and industrial prac-
tice arise because there are two ways in which an architectural model of a program
is used:

1.	 As a way of encouraging discussions about the system design A high-level
architectural view of a system is useful for communication with system stake-
holders and project planning because it is not cluttered with detail.
Stakeholders can relate to it and understand an abstract view of the system.
They can then discuss the system as a whole without being confused by detail.
The architectural model identifies the key components that are to be devel-
oped so that managers can start assigning people to plan the development of
these systems.

2.	 As a way of documenting an architecture that has been designed The aim here
is to produce a complete system model that shows the different components in a
system, their interfaces and their connections. The argument for such a model is
that such a detailed architectural description makes it easier to understand and
evolve the system.

Block diagrams are a good way of supporting communications between the peo-
ple involved in the software design process. They are intuitive, and domain experts
and software engineers can relate to them and participate in discussions about the
system. Managers find them helpful in planning the project. For many projects,
block diagrams are the only architectural description.

Ideally, if the architecture of a system is to be documented in detail, it is better to
use a more rigorous notation for architectural description. Various architectural
description languages (Bass, Clements, and Kazman 2012) have been developed for
this purpose. A more detailed and complete description means that there is less scope
for misunderstanding the relationships between the architectural components.
However, developing a detailed architectural description is an expensive and
time-consuming process. It is practically impossible to know whether or not it is
cost-effective, so this approach is not widely used.

	 6.1  ■  Architectural design decisions    171

	 6.1 	 Architectural design decisions

Architectural design is a creative process in which you design a system organization
that will satisfy the functional and non-functional requirements of a system. There is
no formulaic architectural design process. It depends on the type of system being
developed, the background and experience of the system architect, and the specific
requirements for the system. Consequently, I think it is best to consider architectural
design as a series of decisions to be made rather than a sequence of activities.

During the architectural design process, system architects have to make a number
of structural decisions that profoundly affect the system and its development pro-
cess. Based on their knowledge and experience, they have to consider the fundamen-
tal questions shown in Figure 6.2.

Although each software system is unique, systems in the same application domain
often have similar architectures that reflect the fundamental concepts of the domain. For
example, application product lines are applications that are built around a core architecture
with variants that satisfy specific customer requirements. When designing a system archi-
tecture, you have to decide what your system and broader application classes have in com-
mon, and decide how much knowledge from these application architectures you can reuse.

For embedded systems and apps designed for personal computers and mobile
devices, you do not have to design a distributed architecture for the system. However,
most large systems are distributed systems in which the system software is distrib-
uted across many different computers. The choice of distribution architecture is a

Is there a generic application
architecture that can act as a
template for the system that is
being designed?

How will the system be
distributed across hardware
cores or processors?

What Architectural patterns or
styles might be used?

What will be the fundamental
approach used to structure
the system?

How will the structural
components in the system be
decomposed into
sub-components?

What strategy will be used to
control the operation of the
components in the system?

What architectural organization
is best for delivering the
non-functional requirements
of the system?

How should the architecture
of the system be
documented?

?

Figure 6.2  Architectural
design decisions

172    Chapter 6  ■  Architectural design

key decision that affects the performance and reliability of the system. This is a
major topic in its own right that I cover in Chapter 17.

The architecture of a software system may be based on a particular Architectural
pattern or style (these terms have come to mean the same thing). An Architectural
pattern is a description of a system organization (Garlan and Shaw 1993), such as a
client–server organization or a layered architecture. Architectural patterns capture
the essence of an architecture that has been used in different software systems. You
should be aware of common patterns, where they can be used, and their strengths
and weaknesses when making decisions about the architecture of a system. I cover
several frequently used patterns in Section 6.3.

Garlan and Shaw’s notion of an architectural style covers questions 4 to 6 in the
list of fundamental architectural questions shown in Figure 6.2. You have to choose
the most appropriate structure, such as client–server or layered structuring, that will
enable you to meet the system requirements. To decompose structural system units,
you decide on a strategy for decomposing components into subcomponents. Finally,
in the control modeling process, you develop a general model of the control relation-
ships between the various parts of the system and make decisions about how the
execution of components is controlled.

Because of the close relationship between non-functional system characteristics
and software architecture, the choice of architectural style and structure should
depend on the non-functional requirements of the system:

1.	 Performance If performance is a critical requirement, the architecture should be
designed to localize critical operations within a small number of components,
with these components deployed on the same computer rather than distributed
across the network. This may mean using a few relatively large components
rather than small, finer-grain components. Using large components reduces the
number of component communications, as most of the interactions between
related system features take place within a component. You may also consider
runtime system organizations that allow the system to be replicated and exe-
cuted on different processors.

2.	 Security If security is a critical requirement, a layered structure for the architec-
ture should be used, with the most critical assets protected in the innermost lay-
ers and a high level of security validation applied to these layers.

3.	 Safety If safety is a critical requirement, the architecture should be designed so
that safety-related operations are co-located in a single component or in a small
number of components. This reduces the costs and problems of safety validation
and may make it possible to provide related protection systems that can safely
shut down the system in the event of failure.

4.	 Availability If availability is a critical requirement, the architecture should be
designed to include redundant components so that it is possible to replace and
update components without stopping the system. I describe fault-tolerant sys-
tem architectures for high-availability systems in Chapter 11.

	 6.2  ■  Architectural views    173

5.	 Maintainability If maintainability is a critical requirement, the system architec-
ture should be designed using fine-grain, self-contained components that may
readily be changed. Producers of data should be separated from consumers, and
shared data structures should be avoided.

Obviously, there is potential conflict between some of these architectures. For
example, using large components improves performance, and using small, fine-grain
components improves maintainability. If both performance and maintainability are
important system requirements, however, then some compromise must be found.
You can sometimes do this by using different Architectural patterns or styles for
separate parts of the system. Security is now almost always a critical requirement,
and you have to design an architecture that maintains security while also satisfying
other non-functional requirements.

Evaluating an architectural design is difficult because the true test of an architec-
ture is how well the system meets its functional and non-functional requirements
when it is in use. However, you can do some evaluation by comparing your design
against reference architectures or generic Architectural patterns. Bosch’s description
(Bosch 2000) of the non-functional characteristics of some Architectural patterns can
help with architectural evaluation.

	 6.2 	 Architectural views

I explained in the introduction to this chapter that architectural models of a software
system can be used to focus discussion about the software requirements or design.
Alternatively, they may be used to document a design so that it can be used as a basis
for more detailed design and implementation of the system. In this section, I discuss
two issues that are relevant to both of these:

1.	 What views or perspectives are useful when designing and documenting a sys-
tem’s architecture?

2.	 What notations should be used for describing architectural models?

It is impossible to represent all relevant information about a system’s architecture
in a single diagram, as a graphical model can only show one view or perspective of
the system. It might show how a system is decomposed into modules, how the
runtime processes interact, or the different ways in which system components are
distributed across a network. Because all of these are useful at different times, for
both design and documentation, you usually need to present multiple views of the
software architecture.

There are different opinions as to what views are required. Krutchen (Krutchen 1995)
in his well-known 4  +1 view model of software architecture, suggests that there should

174    Chapter 6  ■  Architectural design

be four fundamental architectural views, which can be linked through common use
cases or scenarios (Figure 6.3). He suggests the following views:

1.	 A logical view, which shows the key abstractions in the system as objects or
object classes. It should be possible to relate the system requirements to entities
in this logical view.

2.	 A process view, which shows how, at runtime, the system is composed of inter-
acting processes. This view is useful for making judgments about non-func-
tional system characteristics such as performance and availability.

3.	 A development view, which shows how the software is decomposed for develop-
ment; that is, it shows the breakdown of the software into components that are
implemented by a single developer or development team. This view is useful for
software managers and programmers.

4.	 A physical view, which shows the system hardware and how software compo-
nents are distributed across the processors in the system. This view is useful for
systems engineers planning a system deployment.

Hofmeister et al. (Hofmeister, Nord, and Soni 2000) suggest the use of similar views
but add to this the notion of a conceptual view. This view is an abstract view of the system
that can be the basis for decomposing high-level requirements into more detailed specifi-
cations, help engineers make decisions about components that can be reused, and repre-
sent a product line (discussed in Chapter 15) rather than a single system. Figure 6.1, which
describes the architecture of a packing robot, is an example of a conceptual system view.

In practice, conceptual views of a system’s architecture are almost always devel-
oped during the design process. They are used to explain the system architecture to
stakeholders and to inform architectural decision making. During the design process,
some of the other views may also be developed when different aspects of the system
are discussed, but it is rarely necessary to develop a complete description from all
perspectives. It may also be possible to associate Architectural patterns, discussed in
the next section, with the different views of a system.

System
architecture

Logical
view

Physical
view

Process
view

Development
view

Figure 6.3  Architectural
views

	 6.3  ■  Architectural patterns    175

There are differing views about whether or not software architects should use the
UML for describing and documenting software architectures. A survey in 2006 (Lange,
Chaudron, and Muskens 2006) showed that, when the UML was used, it was mostly
applied in an informal way. The authors of that paper argued that this was a bad thing.

I disagree with this view. The UML was designed for describing object-oriented
systems, and, at the architectural design stage, you often want to describe systems at a
higher level of abstraction. Object classes are too close to the implementation to be use-
ful for architectural description. I don’t find the UML to be useful during the design
process itself and prefer informal notations that are quicker to write and that can be eas-
ily drawn on a whiteboard. The UML is of most value when you are documenting an
architecture in detail or using model-driven development, as discussed in Chapter 5.

A number of researchers (Bass, Clements, and Kazman 2012) have proposed the
use of more specialized architectural description languages (ADLs) to describe system
architectures. The basic elements of ADLs are components and connectors, and they
include rules and guidelines for well-formed architectures. However, because ADLs
are specialist languages, domain and application specialists find it hard to understand
and use ADLs. There may be some value in using domain-specific ADLs as part of
model-driven development, but I do not think they will become part of mainstream
software engineering practice. Informal models and notations, such as the UML, will
remain the most commonly used ways of documenting system architectures.

Users of agile methods claim that detailed design documentation is mostly
unused. It is, therefore, a waste of time and money to develop these documents. I
largely agree with this view, and I think that, except for critical systems, it is not
worth developing a detailed architectural description from Krutchen’s four perspec-
tives. You should develop the views that are useful for communication and not worry
about whether or not your architectural documentation is complete.

	 6.3 	 Architectural patterns

The idea of patterns as a way of presenting, sharing, and reusing knowledge about
software systems has been adopted in a number of areas of software engineering. The
trigger for this was the publication of a book on object-oriented design patterns
(Gamma et al. 1995). This prompted the development of other types of patterns, such
as patterns for organizational design (Coplien and Harrison 2004), usability patterns
(Usability Group 1998), patterns of cooperative interaction (Martin and Sommerville
2004), and configuration management patterns (Berczuk and Appleton 2002).

Architectural patterns were proposed in the 1990s under the name “architectural
styles” (Shaw and Garlan 1996). A very detailed five-volume series of handbooks on
pattern-oriented software architecture was published between 1996 and 2007
(Buschmann et al. 1996; Schmidt et al. 2000; Buschmann, Henney, and Schmidt
2007a, 2007b; Kircher and Jain 2004).

In this section, I introduce Architectural patterns and briefly describe a selection of
Architectural patterns that are commonly used. Patterns may be described in a stand-
ard way (Figures 6.4 and 6.5) using a mixture of narrative description and diagrams.

176    Chapter 6  ■  Architectural design

Figure 6.4  The
Model-View-Controller
(MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The
system is structured into three logical components that interact with
each other. The Model component manages the system data and
associated operations on that data. The View component defines and
manages how the data is presented to the user. The Controller compo
nent manages user interaction (e.g., key presses, mouse clicks, etc.) and
passes these interactions to the View and the Model. See Figure 6.5.

Example Figure 6.6 shows the architecture of a web-based application system
organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data.
Also used when the future requirements for interaction and
presentation of data are unknown.

Advantages Allows the data to change independently of its representation and vice
versa. Supports presentation of the same data in different ways, with
changes made in one representation shown in all of them.

Disadvantages May involve additional code and code complexity when the data
model and interactions are simple.

Controller View

Model

View
selection

State
change

Change
notification

State query

User events

Maps user actions
to model updates
Selects view

Renders model
Requests model updates
Sends user events to
controller

Encapsulates application
state
Notifies view of state
changes

Figure 6.5  The
organization of the
Model-View-Controller

For more detailed information about patterns and their use, you should refer to the
published pattern handbooks.

You can think of an Architectural pattern as a stylized, abstract description of good
practice, which has been tried and tested in different systems and environments. So,
an Architectural pattern should describe a system organization that has been success-
ful in previous systems. It should include information on when it is and is not appro-
priate to use that pattern, and details on the pattern’s strengths and weaknesses.

Figure 6.4 describes the well-known Model-View-Controller pattern. This pattern
is the basis of interaction management in many web-based systems and is supported
by most language frameworks. The stylized pattern description includes the pattern

	 6.3  ■  Architectural patterns    177

name, a brief description, a graphical model, and an example of the type of system
where the pattern is used. You should also include information about when the
pattern should be used and its advantages and disadvantages.

Graphical models of the architecture associated with the MVC pattern are shown
in Figures 6.5 and 6.6. These present the architecture from different views: Figure 6.5
is a conceptual view, and Figure 6.6 shows a runtime system architecture when this
pattern is used for interaction management in a web-based system.

In this short space, it is impossible to describe all of the generic patterns that
can be used in software development. Instead, I present some selected examples of
patterns that are widely used and that capture good architectural design principles.

	 6.3.1 	 Layered architecture

The notions of separation and independence are fundamental to architectural design
because they allow changes to be localized. The MVC pattern, shown in Figure 6.4,
separates elements of a system, allowing them to change independently. For example,
adding a new view or changing an existing view can be done without any changes to
the underlying data in the model. The Layered Architecture pattern is another way of
achieving separation and independence. This pattern is shown in Figure 6.7. Here, the
system functionality is organized into separate layers, and each layer only relies on
the facilities and services offered by the layer immediately beneath it.

This layered approach supports the incremental development of systems. As a
layer is developed, some of the services provided by that layer may be made availa-
ble to users. The architecture is also changeable and portable. If its interface is
unchanged, a new layer with extended functionality can replace an existing layer

Controller View

Model

Form to
display

Update
request

Change
notification

Refresh request

User events

Browser

HTTP request processing
Application-specific logic
Data validation

Dynamic page
generation
Forms management

Business logic
DatabaseFigure 6.6  Web

application architecture
using the MVC pattern

178    Chapter 6  ■  Architectural design

without changing other parts of the system. Furthermore, when layer interfaces
change or new facilities are added to a layer, only the adjacent layer is affected. As
layered systems localize machine dependencies, this makes it easier to provide
multi-platform implementations of an application system. Only the machine-
dependent layers need be reimplemented to take account of the facilities of a different
operating system or database.

Figure 6.8 is an example of a layered architecture with four layers. The lowest
layer includes system support software—typically, database and operating system
support. The next layer is the application layer, which includes the components
concerned with the application functionality and utility components used by other
application components.

The third layer is concerned with user interface management and providing user
authentication and authorization, with the top layer providing user interface facili-
ties. Of course, the number of layers is arbitrary. Any of the layers in Figure 6.6
could be split into two or more layers.

Figure 6.7  The
Layered Architecture
pattern

Name Layered architecture

Description Organizes the system into layers, with related functionality associated with each layer. A layer
provides services to the layer above it, so the lowest level layers represent core services that
are likely to be used throughout the system. See Figure 6.8.

Example A layered model of a digital learning system to support learning of all subjects in schools (Figure 6.9).

When used Used when building new facilities on top of existing systems; when the development is
spread across several teams with each team responsibility for a layer of functionality; when
there is a requirement for multilevel security.

Advantages Allows replacement of entire layers as long as the interface is maintained. Redundant facilities
(e.g., authentication) can be provided in each layer to increase the dependability of the system.

Disadvantages In practice, providing a clean separation between layers is often difficult, and a high-level layer
may have to interact directly with lower-level layers rather than through the layer immediately
below it. Performance can be a problem because of multiple levels of interpretation of a
service request as it is processed at each layer.

User interface

Core business logic/application functionality

System utilities

System support (OS, database, etc.)

User interface management
Authentication and authorization

Figure 6.8  A generic
layered architecture

	 6.3  ■  Architectural patterns    179

Authentication

Browser-based user interface

Configuration services

Group
management

Application
management

Identity
management

User storage

Logging and monitoring

Application storage

Interfacing

Search

Utility services

Application services

iLearn app

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder

Spreadsheet Virtual learning environment History archive

Figure 6.9  The
architecture of the
iLearn system

Figure 6.9 shows that the iLearn digital learning system, introduced in Chapter 1,
has a four-layer architecture that follows this pattern. You can see another example
of the Layered Architecture pattern in Figure 6.19 (Section 6.4, which shows the
organization of the Mentcare system.

	 6.3.2 	 Repository architecture

The layered architecture and MVC patterns are examples of patterns where the view
presented is the conceptual organization of a system. My next example, the Repository
pattern (Figure 6.10), describes how a set of interacting components can share data.

Name Repository

Description All data in a system is managed in a central repository that is accessible to all system
components. Components do not interact directly, only through the repository.

Example Figure 6.11 is an example of an IDE where the components use a repository of system design
information. Each software tool generates information, which is then available for use by other tools.

When used You should use this pattern when you have a system in which large volumes of information are
generated that has to be stored for a long time. You may also use it in data-driven systems where
the inclusion of data in the repository triggers an action or tool.

Advantages Components can be independent; they do not need to know of the existence of other
components. Changes made by one component can be propagated to all components. All data
can be managed consistently (e.g., backups done at the same time) as it is all in one place.

Disadvantages The repository is a single point of failure so problems in the repository affect the whole
system. May be inefficiencies in organizing all communication through the repository.
Distributing the repository across several computers may be difficult.

Figure 6.10  The
Repository pattern

180    Chapter 6  ■  Architectural design

Project
repository

Design
translator

Java
editor

UML
editors

Code
generators

Design
analyzer

Report
generator

Python
editor

Figure 6.11  A repository
architecture for an IDE

The majority of systems that use large amounts of data are organized around a shared
database or repository. This model is therefore suited to applications in which data is
generated by one component and used by another. Examples of this type of system
include command and control systems, management information systems, Computer-
Aided Design (CAD) systems, and interactive development environments for software.

Figure 6.11 illustrates a situation in which a repository might be used. This diagram
shows an IDE that includes different tools to support model-driven development. The
repository in this case might be a version-controlled environment (as discussed in
Chapter 25) that keeps track of changes to software and allows rollback to earlier versions.

Organizing tools around a repository is an efficient way of sharing large amounts
of data. There is no need to transmit data explicitly from one component to another.
However, components must operate around an agreed repository data model.
Inevitably, this is a compromise between the specific needs of each tool, and it may
be difficult or impossible to integrate new components if their data models do not fit
the agreed schema. In practice, it may be difficult to distribute the repository over a
number of machines. Although it is possible to distribute a logically centralized
repository, this involves maintaining multiple copies of data. Keeping these consist-
ent and up to date adds more overhead to the system.

In the repository architecture shown in Figure 6.11, the repository is passive and
control is the responsibility of the components using the repository. An alternative
approach, which has been derived for artificial intelligence (AI) systems, uses a
“blackboard” model that triggers components when particular data become availa-
ble. This is appropriate when the data in the repository is unstructured. Decisions
about which tool is to be activated can only be made when the data has been ana-
lyzed. This model was introduced by Nii (Nii 1986), and Bosch (Bosch 2000)
includes a good discussion of how this style relates to system quality attributes.

	 6.3.3 	 Client–server architecture

The Repository pattern is concerned with the static structure of a system and does
not show its runtime organization. My next example, the Client–Server pattern
(Figure 6.12), illustrates a commonly used runtime organization for distributed

	 6.3  ■  Architectural patterns    181

systems. A system that follows the Client–Server pattern is organized as a set of ser-
vices and associated servers, and clients that access and use the services. The major
components of this model are:

1.	 A set of servers that offer services to other components. Examples of servers
include print servers that offer printing services, file servers that offer file man-
agement services, and a compile server that offers programming language com-
pilation services. Servers are software components, and several servers may run
on the same computer.

2.	 A set of clients that call on the services offered by servers. There will normally
be several instances of a client program executing concurrently on different
computers.

 3.	 A network that allows the clients to access these services. Client–server sys-
tems are usually implemented as distributed systems, connected using Internet
protocols.

Client–server architectures are usually thought of as distributed systems architec-
tures, but the logical model of independent services running on separate servers can
be implemented on a single computer. Again, an important benefit is separation and
independence. Services and servers can be changed without affecting other parts of
the system.

Clients may have to know the names of the available servers and the services
they provide. However, servers do not need to know the identity of clients or how
many clients are accessing their services. Clients access the services provided by a
server through remote procedure calls using a request–reply protocol (such as http),
where a client makes a request to a server and waits until it receives a reply from
that server.

Figure 6.12  The
Client–Server pattern

Name Client–server

Description In a client–server architecture, the system is presented as a set of services, with each service
delivered by a separate server. Clients are users of these services and access servers to make
use of them.

Example Figure 6.13 is an example of a film and video/DVD library organized as a client–server system.

When used Used when data in a shared database has to be accessed from a range of locations. Because
servers can be replicated, may also be used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be distributed across a network.
General functionality (e.g., a printing service) can be available to all clients and does not
need to be implemented by all services.

Disadvantages Each service is a single point of failure and so is susceptible to denial-of-service attacks
or server failure. Performance may be unpredictable because it depends on the network
as well as the system. Management problems may arise if servers are owned by
different organizations.

182    Chapter 6  ■  Architectural design

Figure 6.13 is an example of a system that is based on the client–server model.
This is a multiuser, web-based system for providing a film and photograph library.
In this system, several servers manage and display the different types of media.
Video frames need to be transmitted quickly and in synchrony but at relatively low
resolution. They may be compressed in a store, so the video server can handle
video compression and decompression in different formats. Still pictures, how-
ever, must be maintained at a high resolution, so it is appropriate to maintain them
on a separate server.

The catalog must be able to deal with a variety of queries and provide links into
the web information system that include data about the film and video clips, and an
e-commerce system that supports the sale of photographs, film, and video clips. The
client program is simply an integrated user interface, constructed using a web
browser, to access these services.

The most important advantage of the client–server model is that it is a distributed
architecture. Effective use can be made of networked systems with many distributed
processors. It is easy to add a new server and integrate it with the rest of the system
or to upgrade servers transparently without affecting other parts of the system. I
cover distributed architectures in Chapter 17, where I explain the client–server
model and its variants in more detail.

	 6.3.4 	 Pipe and filter architecture

My final example of a general Architectural pattern is the Pipe and Filter pattern
(Figure 6.14). This is a model of the runtime organization of a system where
functional transformations process their inputs and produce outputs. Data flows
from one to another and is transformed as it moves through the sequence. Each
processing step is implemented as a transform. Input data flows through these
transforms until converted to output. The transformations may execute sequen-
tially or in parallel. The data can be processed by each transform item by item or
in a single batch.

Catalog
server

Library
catalogue

Video
server

Film store

Picture
server

Photo store

Web
server

Film and
photo info.

Client 1 Client 2 Client 3 Client 4

Internet

Figure 6.13  A client–
server architecture for a
film library

	 6.3  ■  Architectural patterns    183

The name “pipe and filter” comes from the original Unix system where it was
possible to link processes using “pipes.” These passed a text stream from one pro-
cess to another. Systems that conform to this model can be implemented by combin-
ing Unix commands, using pipes and the control facilities of the Unix shell. The
term filter is used because a transformation “filters out” the data it can process from
its input data stream.

Variants of this pattern have been in use since computers were first used for auto-
matic data processing. When transformations are sequential with data processed in
batches, this pipe and filter architectural model becomes a batch sequential model, a
common architecture for data-processing systems such as billing systems. The archi-
tecture of an embedded system may also be organized as a process pipeline, with
each process executing concurrently. I cover use of this pattern in embedded systems
in Chapter 21.

An example of this type of system architecture, used in a batch processing appli-
cation, is shown in Figure 6.15. An organization has issued invoices to customers.
Once a week, payments that have been made are reconciled with the invoices. For

Figure 6.14  The Pipe
and Filter pattern

Name Pipe and filter

Description The processing of the data in a system is organized so that each processing component
(filter) is discrete and carries out one type of data transformation. The data flows (as in a
pipe) from one component to another for processing.

Example Figure 6.15 is an example of a pipe and filter system used for processing invoices.

When used Commonly used in data-processing applications (both batch and transaction-based)
where inputs are processed in separate stages to generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style matches the
structure of many business processes. Evolution by adding transformations is
straightforward. Can be implemented as either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed between communicating transformations.
Each transformation must parse its input and unparse its output to the agreed form. This
increases system overhead and may mean that it is impossible to reuse architectural
components that use incompatible data structures.

Read issued
invoices

Identify
payments

Issue
receipts

Find
payments

due

Receipts

Issue
payment
reminder

Reminders

Invoices Payments

Figure 6.15  An
example of the pipe
and filter architecture

184    Chapter 6  ■  Architectural design

those invoices that have been paid, a receipt is issued. For those invoices that have
not been paid within the allowed payment time, a reminder is issued.

Pipe and filter systems are best suited to batch processing systems and embedded
systems where there is limited user interaction. Interactive systems are difficult to
write using the pipe and filter model because of the need for a stream of data to be
processed. While simple textual input and output can be modeled in this way, graph-
ical user interfaces have more complex I/O formats and a control strategy that is
based on events such as mouse clicks or menu selections. It is difficult to implement
this as a sequential stream that conforms to the pipe and filter model.

	 6.4 	 Application architectures

Application systems are intended to meet a business or an organizational need. All
businesses have much in common—they need to hire people, issue invoices, keep
accounts, and so on. Businesses operating in the same sector use common sector-
specific applications. Therefore, as well as general business functions, all phone
companies need systems to connect and meter calls, manage their network and issue
bills to customers. Consequently, the application systems used by these businesses
also have much in common.

These commonalities have led to the development of software architectures that
describe the structure and organization of particular types of software systems.
Application architectures encapsulate the principal characteristics of a class of sys-
tems. For example, in real-time systems, there might be generic architectural models
of different system types, such as data collection systems or monitoring systems.
Although instances of these systems differ in detail, the common architectural struc-
ture can be reused when developing new systems of the same type.

The application architecture may be reimplemented when developing new sys-
tems. However, for many business systems, application architecture reuse is implicit
when generic application systems are configured to create a new application. We
see this in the widespread use of Enterprise Resource Planning (ERP) systems and
off-the-shelf configurable application systems, such as systems for accounting and
stock control. These systems have a standard architecture and components. The
components are configured and adapted to create a specific business application.

Architectural patterns for control

There are specific Architectural patterns that reflect commonly used ways of organizing control in a system.
These include centralized control, based on one component calling other components, and event-based control,
where the system reacts to external events.

http://software-engineering-book.com/web/archpatterns/

http://software-engineering-book.com/web/archpatterns

	 6.4  ■  Application architectures    185

For example, a system for supply chain management can be adapted for different
types of suppliers, goods, and contractual arrangements.

As a software designer, you can use models of application architectures in a num-
ber of ways:

1.	 As a starting point for the architectural design process If you are unfamiliar
with the type of application that you are developing, you can base your initial
design on a generic application architecture. You then specialize this for the
specific system that is being developed.

2.	 As a design checklist If you have developed an architectural design for an appli-
cation system, you can compare this with the generic application architecture.
You can check that your design is consistent with the generic architecture.

3.	 As a way of organizing the work of the development team The application archi-
tectures identify stable structural features of the system architectures, and in
many cases, it is possible to develop these in parallel. You can assign work to
group members to implement different components within the architecture.

4.	 As a means of assessing components for reuse If you have components you
might be able to reuse, you can compare these with the generic structures to see
whether there are comparable components in the application architecture.

5.	 As a vocabulary for talking about applications If you are discussing a specific
application or trying to compare applications, then you can use the concepts
identified in the generic architecture to talk about these applications.

There are many types of application system, and, in some cases, they may seem to
be very different. However, superficially dissimilar applications may have much in
common and thus share an abstract application architecture. I illustrate this by
describing the architectures of two types of application:

1.	 Transaction processing applications Transaction processing applications are
database-centered applications that process user requests for information and
update the information in a database. These are the most common types of inter-
active business systems. They are organized in such a way that user actions
can’t interfere with each other and the integrity of the database is maintained.
This class of system includes interactive banking systems, e-commerce systems,
information systems, and booking systems.

Application architectures

There are several examples of application architectures on the book’s website. These include descriptions of
batch data-processing systems, resource allocation systems, and event-based editing systems.

http://software-engineering-book.com/web/apparch/

http://software-engineering-book.com/web/apparch

186    Chapter 6  ■  Architectural design

2.	 Language processing systems Language processing systems are systems in
which the user’s intentions are expressed in a formal language, such as a pro-
gramming language. The language processing system processes this language
into an internal format and then interprets this internal representation. The best-
known language processing systems are compilers, which translate high-level
language programs into machine code. However, language processing systems
are also used to interpret command languages for databases and information
systems, and markup languages such as XML.

I have chosen these particular types of system because a large number of web-
based business systems are transaction processing systems, and all software devel-
opment relies on language processing systems.

	 6.4.1 	 Transaction processing systems

Transaction processing systems are designed to process user requests for information
from a database, or requests to update a database (Lewis, Bernstein, and Kifer 2003).
Technically, a database transaction is part of a sequence of operations and is treated
as a single unit (an atomic unit). All of the operations in a transaction have to be
completed before the database changes are made permanent. This ensures that failure
of operations within a transaction does not lead to inconsistencies in the database.

From a user perspective, a transaction is any coherent sequence of operations that
satisfies a goal, such as “find the times of flights from London to Paris.” If the user
transaction does not require the database to be changed, then it may not be necessary
to package this as a technical database transaction.

An example of a database transaction is a customer request to withdraw money from a
bank account using an ATM. This involves checking the customer account balance to see
if sufficient funds are available, modifying the balance by the amount withdrawn and
sending commands to the ATM to deliver the cash. Until all of these steps have been com-
pleted, the transaction is incomplete and the customer accounts database is not changed.

Transaction processing systems are usually interactive systems in which users
make asynchronous requests for service. Figure 6.16 illustrates the conceptual archi-
tectural structure of transaction processing applications. First, a user makes a request
to the system through an I/O processing component. The request is processed by
some application-specific logic. A transaction is created and passed to a transaction
manager, which is usually embedded in the database management system. After the
transaction manager has ensured that the transaction is properly completed, it signals
to the application that processing has finished.

Transaction processing systems may be organized as a “pipe and filter” architec-
ture, with system components responsible for input, processing, and output. For

I/O
processing

Application
logic

Transaction
manager Database

Figure 6.16  The
structure of transaction
processing applications

	 6.4  ■  Application architectures    187

example, consider a banking system that allows customers to query their accounts
and withdraw cash from an ATM. The system is composed of two cooperating soft-
ware components—the ATM software and the account processing software in the
bank’s database server. The input and output components are implemented as soft-
ware in the ATM, and the processing component is part of the bank’s database
server. Figure 6.17 shows the architecture of this system, illustrating the functions of
the input, process, and output components.

	 6.4.2 	 Information systems

All systems that involve interaction with a shared database can be considered to be
transaction-based information systems. An information system allows controlled
access to a large base of information, such as a library catalog, a flight timetable, or
the records of patients in a hospital. Information systems are almost always web-
based systems, where the user interface is implemented in a web browser.

Figure 6.18 presents a very general model of an information system. The system
is modeled using a layered approach (discussed in Section 6.3) where the top layer

Input Process Output

ATM Database ATM

Get customer
account id

Query account

Print details

Return card

Dispense cash

Update account

Validate card

Select service

Figure 6.17  The
software architecture
of an ATM system

User interface

User communications

Information retrieval and modification

Transaction management

Database

Authentication and
authorization

Figure 6.18  Layered
information system
architecture

188    Chapter 6  ■  Architectural design

supports the user interface and the bottom layer is the system database. The user
communications layer handles all input and output from the user interface, and the
information retrieval layer includes application-specific logic for accessing and
updating the database. The layers in this model can map directly onto servers in a
distributed Internet-based system.

As an example of an instantiation of this layered model, Figure 6.19 shows the
architecture of the Mentcare system. Recall that this system maintains and manages
details of patients who are consulting specialist doctors about mental health prob-
lems. I have added detail to each layer in the model by identifying the components
that support user communications and information retrieval and access:

1.	 The top layer is a browser-based user interface.

2.	 The second layer provides the user interface functionality that is delivered
through the web browser. It includes components to allow users to log in to the
system and checking components that ensure that the operations they use are
allowed by their role. This layer includes form and menu management compo-
nents that present information to users, and data validation components that
check information consistency.

3.	 The third layer implements the functionality of the system and provides
components that implement system security, patient information creation and
updating, import and export of patient data from other databases, and report
generators that create management reports.

4.	 Finally, the lowest layer, which is built using a commercial database manage-
ment system, provides transaction management and persistent data storage.

Information and resource management systems are sometimes also transaction pro-
cessing systems. For example, e-commerce systems are Internet-based resource
management systems that accept electronic orders for goods or services and then
arrange delivery of these goods or services to the customer. In an e-commerce

Web browser

Report
generation

Transaction management

Patient database

Login Form and menu
manager

Data
validationRole checking

Security
management

Patient info.
manager

Data import
and export

Figure 6.19  The
architecture of the
Mentcare system

	 6.4  ■  Application architectures    189

system, the application-specific layer includes additional functionality supporting a
“shopping cart” in which users can place a number of items in separate transactions,
then pay for them all together in a single transaction.

The organization of servers in these systems usually reflects the four-layer generic
model presented in Figure 6.18. These systems are often implemented as distributed
systems with a multitier client server/architecture

1.	 The web server is responsible for all user communications, with the user inter-
face implemented using a web browser;

2.	 The application server is responsible for implementing application-specific
logic as well as information storage and retrieval requests;

3.	 The database server moves information to and from the database and handles
transaction management.

Using multiple servers allows high throughput and makes it possible to handle thou-
sands of transactions per minute. As demand increases, servers can be added at each
level to cope with the extra processing involved.

	 6.4.3 	 Language processing systems

Language processing systems translate one language into an alternative representation
of that language and, for programming languages, may also execute the resulting code.
Compilers translate a programming language into machine code. Other language pro-
cessing systems may translate an XML data description into commands to query a
database or to an alternative XML representation. Natural language processing sys-
tems may translate one natural language to another, for example, French to Norwegian.

A possible architecture for a language processing system for a programming
language is illustrated in Figure 6.20. The source language instructions define the

Source
language

instructions

Data Results

Translator

Interpreter

Abstract m/c
instructions

Check syntax
Check semantics
Generate

Fetch
Execute

Figure 6.20  The
architecture
of a language
processing system

190    Chapter 6  ■  Architectural design

Syntax
analyzer

Lexical
analyzer

Semantic
analyzer

Abstract
syntax tree

Grammar
definition

Symbol
table

Output
definition

Formatter

Editor

Optimizer

Code
generator

Repository

Figure 6.21  A
repository architecture
for a language
processing system

program to be executed, and a translator converts these into instructions for an abstract
machine. These instructions are then interpreted by another component that fetches
the instructions for execution and executes them using (if necessary) data from the
environment. The output of the process is the result of interpreting the instructions on
the input data.

For many compilers, the interpreter is the system hardware that processes machine
instructions, and the abstract machine is a real processor. However, for dynamically
typed languages, such as Ruby or Python, the interpreter is a software component.

Programming language compilers that are part of a more general program-
ming environment have a generic architecture (Figure 6.21) that includes the fol-
lowing components:

1.	 A lexical analyzer, which takes input language tokens and converts them into an
internal form.

2.	 A symbol table, which holds information about the names of entities (variables,
class names, object names, etc.) used in the text that is being translated.

3.	 A syntax analyzer, which checks the syntax of the language being translated. It
uses a defined grammar of the language and builds a syntax tree.

4.	 A syntax tree, which is an internal structure representing the program being
compiled.

5.	 A semantic analyzer, which uses information from the syntax tree and the sym-
bol table to check the semantic correctness of the input language text.

6.	 A code generator, which “walks” the syntax tree and generates abstract
machine code.

Other components might also be included that analyze and transform the syntax
tree to improve efficiency and remove redundancy from the generated machine code.

	 6.4  ■  Application architectures    191

In other types of language processing system, such as a natural language translator,
there will be additional components such as a dictionary. The output of the system is
translation of the input text.

Figure 6.21 illustrates how a language processing system can be part of an inte-
grated set of programming support tools. In this example, the symbol table and syn-
tax tree act as a central information repository. Tools or tool fragments communicate
through it. Other information that is sometimes embedded in tools, such as the gram-
mar definition and the definition of the output format for the program, have been
taken out of the tools and put into the repository. Therefore, a syntax-directed editor
can check that the syntax of a program is correct as it is being typed. A program
formatter can create listings of the program that highlight different syntactic ele-
ments and are therefore easier to read and understand.

Alternative Architectural patterns may be used in a language processing system
(Garlan and Shaw 1993). Compilers can be implemented using a composite of a
repository and a pipe and filter model. In a compiler architecture, the symbol table is
a repository for shared data. The phases of lexical, syntactic, and semantic analysis
are organized sequentially, as shown in Figure 6.22, and communicate through the
shared symbol table.

This pipe and filter model of language compilation is effective in batch environ-
ments where programs are compiled and executed without user interaction; for
example, in the translation of one XML document to another. It is less effective when
a compiler is integrated with other language processing tools such as a structured
editing system, an interactive debugger, or a program formatter. In this situation,
changes from one component need to be reflected immediately in other components.
It is better to organize the system around a repository, as shown in Figure 6.21 if you
are implementing a general, language-oriented programming environment.

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

Symbol table

Syntax tree

Figure 6.22  A pipe
and filter compiler
architecture

Reference architectures

Reference architectures capture important features of system architectures in a domain. Essentially, they include
everything that might be in an application architecture, although, in reality, it is very unlikely that any individual
application would include all the features shown in a reference architecture. The main purpose of reference
architectures is to evaluate and compare design proposals, and to educate people about architectural character-
istics in that domain.

http://software-engineering-book.com/web/refarch/

http://software-engineering-book.com/web/refarch

K e y P o i n t s

■	 A software architecture is a description of how a software system is organized. Properties of a
system such as performance, security, and availability are influenced by the architecture used.

■	 Architectural design decisions include decisions on the type of application, the distribution of
the system, the architectural styles to be used, and the ways in which the architecture should
be documented and evaluated.

■	 Architectures may be documented from several different perspectives or views. Possible
views include a conceptual view, a logical view, a process view, a development view, and a
physical view.

■	 Architectural patterns are a means of reusing knowledge about generic system architectures.
They describe the architecture, explain when it may be used, and point out its advantages and
disadvantages.

■	 Commonly used Architectural patterns include model-view-controller, layered architecture,
repository, client–server, and pipe and filter.

■	 Generic models of application systems architectures help us understand the operation of appli-
cations, compare applications of the same type, validate application system designs, and assess
large-scale components for reuse.

■	 Transaction processing systems are interactive systems that allow information in a database to
be remotely accessed and modified by a number of users. Information systems and resource
management systems are examples of transaction processing systems.

■	 Language processing systems are used to translate texts from one language into another and to
carry out the instructions specified in the input language. They include a translator and an
abstract machine that executes the generated language.

F u r t h e r R e a d i n g

Software Architecture: Perspectives on an Emerging Discipline. This was the first book on soft-
ware architecture and has a good discussion on different architectural styles that is still relevant.
(M. Shaw and D. Garlan, 1996, Prentice-Hall).

“The Golden Age of Software Architecture.” This paper surveys the development of software archi-
tecture from its beginnings in the 1980s through to its usage in the 21st century. There is not a lot
of technical content, but it is an interesting historical overview. (M. Shaw and P. Clements, IEEE
Software, 21 (2), March–April 2006) http://doi.dx.org/10.1109/MS.2006.58.

Software Architecture in Practice (3rd ed.). This is a practical discussion of software architec-
tures that does not oversell the benefits of architectural design. It provides a clear business
rationale, explaining why architectures are important. (L. Bass, P. Clements, and R. Kazman,
2012, Addison-Wesley).

192    Chapter 6  ■  Architectural design

http://doi.dx.org/10.1109/MS.2006.58

	 Chapter 6  ■  Exercises   193

Handbook of Software Architecture. This is a work in progress by Grady Booch, one of the early evan-
gelists for software architecture. He has been documenting the architectures of a range of software
systems so that you can see reality rather than academic abstraction. Available on the web and
intended to appear as a book. (G. Booch, 2014) http://www.handbookofsoftwarearchitecture.com/

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/requirements-and-design/

E x e r c i s e s

  6.1.	 When describing a system, explain why you may have to start the design of the system archi-
tecture before the requirements specification is complete.

  6.2.	 You have been asked to prepare and deliver a presentation to a nontechnical manager to
justify the hiring of a system architect for a new project. Write a list of bullet points setting
out the key points in your presentation in which you explain the importance of software
architecture.

  6.3.	 Performance and security may pose to be conflicting non-functional requirements when
architecting software systems. Make an argument in support of this statement.

  6.4.	 Draw diagrams showing a conceptual view and a process view of the architectures of the fol-
lowing systems:

A ticket machine used by passengers at a railway station.

A computer-controlled video conferencing system that allows video, audio, and computer data
to be visible to several participants at the same time.

A robot floor-cleaner that is intended to clean relatively clear spaces such as corridors. The
cleaner must be able to sense walls and other obstructions.

  6.5.	 A software system will be built to allow drones to autonomously herd cattle in farms. These
drones can be remotely controlled by human operators. Explain how multiple architectural
patterns can fit together to help build this kind of system.

  6.6.	 Suggest an architecture for a system (such as iTunes) that is used to sell and distribute music
on the Internet. What Architectural patterns are the basis for your proposed architecture?

  6.7.	 An information system is to be developed to maintain information about assets owned by a
utility company such as buildings, vehicles, and equipment. It is intended that this will be

http://www.handbookofsoftwarearchitecture.com
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/requirements-and-design

updatable by staff working in the field using mobile devices as new asset information
becomes available. The company has several existing asset databases that should be inte-
grated through this system. Design a layered architecture for this asset management system
based on the generic information system architecture shown in Figure 6.18.

  6.8.	 Using the generic model of a language processing system presented here, design the archi-
tecture of a system that accepts natural language commands and translates these into
database queries in a language such as SQL.

  6.9.	 Using the basic model of an information system, as presented in Figure 6.18, suggest the
components that might be part of an information system that allows users to view box office
events, available tickets and prices, and to eventually buy tickets.

6.10.	 Should there be a separate profession of ’software architect’ whose role is to work indepen-
dently with a customer to design the software system architecture? A separate software
company would then implement the system. What might be the difficulties of establishing
such a profession?

R e f e r e n c e s

Bass, L., P. Clements, and R. Kazman. 2012. Software Architecture in Practice (3rd ed.). Boston:
Addison-Wesley.

Berczuk, S. P., and B. Appleton. 2002. Software Configuration Management Patterns: Effective
Teamwork, Practical Integration. Boston: Addison-Wesley.

Booch, G. 2014. “Handbook of Software Architecture.” http://handbookofsoftwarearchitecture.
com/

Bosch, J. 2000. Design and Use of Software Architectures. Harlow, UK: Addison-Wesley.

Buschmann, F., K. Henney, and D. C. Schmidt. 2007a. Pattern-Oriented Software Architecture Vol-
ume 4: A Pattern Language for Distributed Computing. New York: John Wiley & Sons.

––––––. 2007b. Pattern-Oriented Software Architecture Volume 5: On Patterns and Pattern Lan-
guages. New York: John Wiley & Sons.

Buschmann, F., R. Meunier, H. Rohnert, and P. Sommerlad. 1996. Pattern-Oriented Software Archi-
tecture Volume 1: A System of Patterns. New York: John Wiley & Sons.

Chen, L., M. Ali Babar, and B. Nuseibeh. 2013. “Characterizing Architecturally Significant Require-
ments.” IEEE Software 30 (2): 38–45. doi:10.1109/MS.2012.174.

Coplien, J. O., and N. B. Harrison. 2004. Organizational Patterns of Agile Software Development.
Englewood Cliffs, NJ: Prentice-Hall.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley.

194    Chapter 6  ■  Architectural design

http://handbookofsoftwarearchitecture.com
http://handbookofsoftwarearchitecture.com

	 Chapter 6  ■  References    195

Garlan, D., and M. Shaw. 1993. “An Introduction to Software Architecture.” In Advances in Software
Engineering and Knowledge Engineering, edited by V. Ambriola and G. Tortora, 2:1–39. London:
World Scientific Publishing Co.

Hofmeister, C., R. Nord, and D. Soni. 2000. Applied Software Architecture. Boston: Addison-Wesley.

Kircher, M., and P. Jain. 2004. Pattern-Oriented Software Architecture Volume 3: Patterns for
Resource Management. New York: John Wiley & Sons.

Krutchen, P. 1995. “The 4+1 View Model of Software Architecture.” IEEE Software 12 (6): 42–50.
doi:10.1109/52.469759.

Lange, C. F. J., M. R. V. Chaudron, and J. Muskens. 2006. “UML Software Architecture and Design
Description.” IEEE Software 23 (2): 40–46. doi:10.1109/MS.2006.50.

Lewis, P. M., A. J. Bernstein, and M. Kifer. 2003. Databases and Transaction Processing: An
Application-Oriented Approach. Boston: Addison-Wesley.

Martin, D., and I. Sommerville. 2004. “Patterns of Cooperative Interaction: Linking Ethnomethodol-
ogy and Design.” ACM Transactions on Computer-Human Interaction 11 (1) (March 1): 59–89.
doi:10.1145/972648.972651.

Nii, H. P. 1986. “Blackboard Systems, Parts 1 and 2.” AI Magazine 7 (2 and 3): 38–53 and 62–69.
http://www.aaai.org/ojs/index.php/aimagazine/article/view/537/473

Schmidt, D., M. Stal, H. Rohnert, and F. Buschmann. 2000. Pattern-Oriented Software Architecture
Volume 2: Patterns for Concurrent and Networked Objects. New York: John Wiley & Sons.

Shaw, M., and D. Garlan. 1996. Software Architecture: Perspectives on an Emerging Discipline.
Englewood Cliffs, NJ: Prentice-Hall.

Usability Group. 1998. “Usability Patterns”. University of Brighton. http://www.it.bton.ac.uk/
Research/patterns/home.html

http://www.aaai.org/ojs/index.php/aimagazine/article/view/537/473
http://www.it.bton.ac.uk/Research/patterns/home.html
http://www.it.bton.ac.uk/Research/patterns/home.html

Design and
implementation

7

Objectives
The objectives of this chapter are to introduce object-oriented software
design using the UML and highlight important implementation concerns.
When you have read this chapter, you will:

■	 understand the most important activities in a general, object-oriented
design process;

■	 understand some of the different models that may be used to
document an object-oriented design;

■	 know about the idea of design patterns and how these are a way of
reusing design knowledge and experience;

■	 have been introduced to key issues that have to be considered when
implementing software, including software reuse and open-source
development.

Contents
7.1 	Object-oriented design using the UML

7.2 	Design patterns

7.3 	Implementation issues

7.4 	Open-source development

	 Chapter 7  ■  Design and implementation   197

Software design and implementation is the stage in the software engineering process
at which an executable software system is developed. For some simple systems,
software engineering means software design and implementation and all other soft-
ware engineering activities are merged with this process. However, for large sys-
tems, software design and implementation is only one of a number of software
engineering processes (requirements engineering, verification and validation, etc.).

Software design and implementation activities are invariably interleaved. Software
design is a creative activity in which you identify software components and their
relationships, based on a customer’s requirements. Implementation is the process of
realizing the design as a program. Sometimes there is a separate design stage, and this
design is modeled and documented. At other times, a design is in the programmer’s
head or roughly sketched on a whiteboard or sheets of paper. Design is about how
to solve a problem, so there is always a design process. However, it isn’t always neces-
sary or appropriate to describe the design in detail using the UML or other design
description language.

Design and implementation are closely linked, and you should normally take
implementation issues into account when developing a design. For example, using
the UML to document a design may be the right thing to do if you are programming
in an object-oriented language such as Java or C#. It is less useful, I think, if you are
developing using a dynamically typed language like Python. There is no point in
using the UML if you are implementing your system by configuring an off-the-shelf
package. As I discussed in Chapter 3, agile methods usually work from informal
sketches of the design and leave design decisions to programmers.

One of the most important implementation decisions that has to be made at an
early stage of a software project is whether to build or to buy the application soft-
ware. For many types of application, it is now possible to buy off-the-shelf applica-
tion systems that can be adapted and tailored to the users’ requirements. For example,
if you want to implement a medical records system, you can buy a package that is
already used in hospitals. It is usually cheaper and faster to use this approach rather
than developing a new system in a conventional programming language.

When you develop an application system by reusing an off-the-shelf product, the
design process focuses on how to configure the system product to meet the applica-
tion requirements. You don’t develop design models of the system, such as models
of the system objects and their interactions. I discuss this reuse-based approach to
development in Chapter 15.

I assume that most readers of this book have had experience of program design
and implementation. This is something that you acquire as you learn to program
and master the elements of a programming language like Java or Python. You will
have probably learned about good programming practice in the programming lan-
guages that you have studied, as well as how to debug programs that you have
developed. Therefore, I don’t cover programming topics here. Instead, this chapter
has two aims:

1.	 To show how system modeling and architectural design (covered in Chapters 5
and 6) are put into practice in developing an object-oriented software design.

198   Chapter 7  ■  Design and implementation

2.	 To introduce important implementation issues that are not usually covered in
programming books. These include software reuse, configuration management
and open-source development.

As there are a vast number of different development platforms, the chapter is not
biased toward any particular programming language or implementation technology.
Therefore, I have presented all examples using the UML rather than a programming
language such as Java or Python.

	 7.1 	 Object-oriented design using the UML

An object-oriented system is made up of interacting objects that maintain their own local
state and provide operations on that state. The representation of the state is private and
cannot be accessed directly from outside the object. Object-oriented design processes
involve designing object classes and the relationships between these classes. These
classes define the objects in the system and their interactions. When the design is realized
as an executing program, the objects are created dynamically from these class definitions.

Objects include both data and operations to manipulate that data. They may there-
fore be understood and modified as stand-alone entities. Changing the implementa-
tion of an object or adding services should not affect other system objects. Because
objects are associated with things, there is often a clear mapping between real-world
entities (such as hardware components) and their controlling objects in the system.
This improves the understandability, and hence the maintainability, of the design.

To develop a system design from concept to detailed, object-oriented design, you
need to:

1.	 Understand and define the context and the external interactions with the system.

2.	 Design the system architecture.

3.	 Identify the principal objects in the system.

4.	 Develop design models.

5.	 Specify interfaces.

Like all creative activities, design is not a clear-cut, sequential process. You
develop a design by getting ideas, proposing solutions, and refining these solutions
as information becomes available. You inevitably have to backtrack and retry when
problems arise. Sometimes you explore options in detail to see if they work; at other
times you ignore details until late in the process. Sometimes you use notations, such
as the UML, precisely to clarify aspects of the design; at other times, notations are
used informally to stimulate discussions.

I explain object-oriented software design by developing a design for part of the
embedded software for the wilderness weather station that I introduced in Chapter 1.
Wilderness weather stations are deployed in remote areas. Each weather station

	 7.1  ■  Object-oriented design using the UML   199

records local weather information and periodically transfers this to a weather infor-
mation system, using a satellite link.

	 7.1.1 	 System context and interactions

The first stage in any software design process is to develop an understanding of the
relationships between the software that is being designed and its external environment.
This is essential for deciding how to provide the required system functionality and how
to structure the system to communicate with its environment. As I discussed in Chapter 5,
understanding the context also lets you establish the boundaries of the system.

Setting the system boundaries helps you decide what features are implemented in
the system being designed and what features are in other associated systems. In this
case, you need to decide how functionality is distributed between the control system
for all of the weather stations and the embedded software in the weather station itself.

System context models and interaction models present complementary views of
the relationships between a system and its environment:

1.	 A system context model is a structural model that demonstrates the other sys-
tems in the environment of the system being developed.

2.	 An interaction model is a dynamic model that shows how the system interacts
with its environment as it is used.

The context model of a system may be represented using associations.
Associations simply show that there are some relationships between the entities
involved in the association. You can document the environment of the system using
a simple block diagram, showing the entities in the system and their associations.
Figure 7.1 shows that the systems in the environment of each weather station are a
weather information system, an onboard satellite system, and a control system. The
cardinality information on the link shows that there is a single control system but
several weather stations, one satellite, and one general weather information system.

When you model the interactions of a system with its environment, you should
use an abstract approach that does not include too much detail. One way to do this is
to use a use case model. As I discussed in Chapters 4 and 5, each use case represents

Weather
information

system

1..n1 Weather
station

Satellite

1

1

1..n

1

Control
system 11

1 1..n

Figure 7.1  System
context for the
weather station

200   Chapter 7  ■  Design and implementation

an interaction with the system. Each possible interaction is named in an ellipse, and
the external entity involved in the interaction is represented by a stick figure.

The use case model for the weather station is shown in Figure 7.2. This shows
that the weather station interacts with the weather information system to report
weather data and the status of the weather station hardware. Other interactions are
with a control system that can issue specific weather station control commands. The
stick figure is used in the UML to represent other systems as well as human users.

Each of these use cases should be described in structured natural language. This
helps designers identify objects in the system and gives them an understanding of
what the system is intended to do. I use a standard format for this description that
clearly identifies what information is exchanged, how the interaction is initiated, and
so on. As I explain in Chapter 21, embedded systems are often modeled by describing

Shutdown

Report
weather

Restart

Report status

Reconfigure

Weather
information

system

Control
system Powersave

Remote
controlFigure 7.2  Weather

station use cases

Weather station use cases

Report weather–send weather data to the weather information system

Report status–send status information to the weather information system

Restart–if the weather station is shut down, restart the system

Shutdown–shut down the weather station

Reconfigure–reconfigure the weather station software

Powersave–put the weather station into power-saving mode

Remote control–send control commands to any weather station subsystem

http://software-engineering-book.com/web/ws-use-cases/

http://software-engineering-book.com/web/ws-use-cases

	 7.1  ■  Object-oriented design using the UML   201

Figure 7.3  Use case
description—Report
weather how they respond to internal or external stimuli. Therefore, the stimuli and associ-

ated responses should be listed in the description. Figure 7.3 shows the description of
the Report weather use case from Figure 7.2 that is based on this approach.

	 7.1.2 	 Architectural design

Once the interactions between the software system and the system’s environment
have been defined, you use this information as a basis for designing the system archi-
tecture. Of course, you need to combine this knowledge with your general knowl-
edge of the principles of architectural design and with more detailed domain
knowledge. You identify the major components that make up the system and their
interactions. You may then design the system organization using an architectural
pattern such as a layered or client–server model.

The high-level architectural design for the weather station software is shown in
Figure 7.4. The weather station is composed of independent subsystems that communicate

«subsystem»
Data collection

«subsystem»
Communications

«subsystem»
Configuration manager

«subsystem»
Fault manager

«subsystem»
Power manager

«subsystem»
Instruments

Communication link

Figure 7.4  High-level
architecture of
weather station

System Weather station

Use case Report weather

Actors Weather information system, Weather station

Data The weather station sends a summary of the weather data that has been collected from the
instruments in the collection period to the weather information system. The data sent are the
maximum, minimum, and average ground and air temperatures; the maximum, minimum,
and average air pressures; the maximum, minimum and average wind speeds; the total
rainfall; and the wind direction as sampled at 5-minute intervals.

Stimulus The weather information system establishes a satellite communication link with the weather
station and requests transmission of the data.

Response The summarized data is sent to the weather information system.

Comments Weather stations are usually asked to report once per hour, but this frequency may differ
from one station to another and may be modified in future.

202   Chapter 7  ■  Design and implementation

by broadcasting messages on a common infrastructure, shown as Communication link in
Figure 7.4. Each subsystem listens for messages on that infrastructure and picks up the
messages that are intended for them. This “listener model” is a commonly used architec-
tural style for distributed systems.

When the communications subsystem receives a control command, such as shut-
down, the command is picked up by each of the other subsystems, which then shut
themselves down in the correct way. The key benefit of this architecture is that it is
easy to support different configurations of subsystems because the sender of a mes-
sage does not need to address the message to a particular subsystem.

Figure 7.5 shows the architecture of the data collection subsystem, which is included
in Figure 7.4. The Transmitter and Receiver objects are concerned with managing
communications, and the WeatherData object encapsulates the information that is col-
lected from the instruments and transmitted to the weather information system. This
arrangement follows the producer–consumer pattern, discussed in Chapter 21.

	 7.1.3 	 Object class identification

By this stage in the design process, you should have some ideas about the essential
objects in the system that you are designing. As your understanding of the design
develops, you refine these ideas about the system objects. The use case description
helps to identify objects and operations in the system. From the description of the
Report weather use case, it is obvious that you will need to implement objects repre-
senting the instruments that collect weather data and an object representing the
summary of the weather data. You also usually need a high-level system object or
objects that encapsulate the system interactions defined in the use cases. With these
objects in mind, you can start to identify the general object classes in the system.

As object-oriented design evolved in the 1980s, various ways of identifying
object classes in object-oriented systems were suggested:

1.	 Use a grammatical analysis of a natural language description of the system to be
constructed. Objects and attributes are nouns; operations or services are verbs
(Abbott 1983).

2.	 Use tangible entities (things) in the application domain such as aircraft, roles
such as manager, events such as request, interactions such as meetings, locations

Data collection

Transmitter Receiver

WeatherData
Figure 7.5  Architecture
of data collection
system

	 7.1  ■  Object-oriented design using the UML   203

such as offices, organizational units such as companies, and so on (Wirfs-Brock,
Wilkerson, and Weiner 1990).

3.	 Use a scenario-based analysis where various scenarios of system use are identi-
fied and analyzed in turn. As each scenario is analyzed, the team responsible for
the analysis must identify the required objects, attributes, and operations (Beck
and Cunningham 1989).

In practice, you have to use several knowledge sources to discover object classes.
Object classes, attributes, and operations that are initially identified from the informal
system description can be a starting point for the design. Information from application
domain knowledge or scenario analysis may then be used to refine and extend the ini-
tial objects. This information can be collected from requirements documents, discus-
sions with users, or analyses of existing systems. As well as the objects representing
entities external to the system, you may also have to design “implementation objects”
that are used to provide general services such as searching and validity checking.

In the wilderness weather station, object identification is based on the tangible
hardware in the system. I don’t have space to include all the system objects here, but
I have shown five object classes in Figure 7.6. The Ground thermometer,
Anemometer, and Barometer objects are application domain objects, and the
WeatherStation and WeatherData objects have been identified from the system
description and the scenario (use case) description:

1.	 The WeatherStation object class provides the basic interface of the weather sta-
tion with its environment. Its operations are based on the interactions shown in
Figure 7.3. I use a single object class, and it includes all of these interactions.
Alternatively, you could design the system interface as several different classes,
with one class per interaction.

identifier

reportWeather ()
reportStatus ()
powerSave (instruments)
remoteControl (commands)
reconfigure (commands)
restart (instruments)
shutdown (instruments)

WeatherStation

get ()
test ()

Ground
thermometer

temperature

Anemometer

windSpeed
windDirection

get ()
test ()

Barometer

pressure
height

get ()
test ()

WeatherData

airTemperatures
groundTemperatures
windSpeeds
windDirections
pressures
rainfall

collect ()
summarize ()

gt_Ident
an_Ident bar_Ident

Figure 7.6  Weather
station objects

204   Chapter 7  ■  Design and implementation

2.	 The WeatherData object class is responsible for processing the report weather
command. It sends the summarized data from the weather station instruments to
the weather information system.

3.	 The Ground thermometer, Anemometer, and Barometer object classes are directly
related to instruments in the system. They reflect tangible hardware entities in the
system and the operations are concerned with controlling that hardware. These
objects operate autonomously to collect data at the specified frequency and store the
collected data locally. This data is delivered to the WeatherData object on request.

You use knowledge of the application domain to identify other objects, attributes.
and services:

1.	 Weather stations are often located in remote places and include various instru-
ments that sometimes go wrong. Instrument failures should be reported auto-
matically. This implies that you need attributes and operations to check the
correct functioning of the instruments.

2.	 There are many remote weather stations, so each weather station should have its
own identifier so that it can be uniquely identified in communications.

3.	 As weather stations are installed at different times, the types of instrument may
be different. Therefore, each instrument should also be uniquely identified, and
a database of instrument information should be maintained.

At this stage in the design process, you should focus on the objects themselves, with-
out thinking about how these objects might be implemented. Once you have identified
the objects, you then refine the object design. You look for common features and then
design the inheritance hierarchy for the system. For example, you may identify an
Instrument superclass, which defines the common features of all instruments, such as an
identifier, and get and test operations. You may also add new attributes and operations
to the superclass, such as an attribute that records how often data should be collected.

	 7.1.4 	 Design models

Design or system models, as I discussed in Chapter 5, show the objects or object classes
in a system. They also show the associations and relationships between these entities.
These models are the bridge between the system requirements and the implementation
of a system. They have to be abstract so that unnecessary detail doesn’t hide the rela-
tionships between them and the system requirements. However, they also have to
include enough detail for programmers to make implementation decisions.

The level of detail that you need in a design model depends on the design process
used. Where there are close links between requirements engineers, designers and
programmers, then abstract models may be all that are required. Specific design
decisions may be made as the system is implemented, with problems resolved
through informal discussions. Similarly, if agile development is used, outline design
models on a whiteboard may be all that is required.

	 7.1  ■  Object-oriented design using the UML   205

However, if a plan-based development process is used, you may need more
detailed models. When the links between requirements engineers, designers, and pro-
grammers are indirect (e.g., where a system is being designed in one part of an organ-
ization but implemented elsewhere), then precise design descriptions are needed for
communication. Detailed models, derived from the high-level abstract models, are
used so that all team members have a common understanding of the design.

An important step in the design process, therefore, is to decide on the design models
that you need and the level of detail required in these models. This depends on the type
of system that is being developed. A sequential data-processing system is quite different
from an embedded real-time system, so you need to use different types of design models.
The UML supports 13 different types of models, but, as I discussed in Chapter 5, many
of these models are not widely used. Minimizing the number of models that are produced
reduces the costs of the design and the time required to complete the design process.

When you use the UML to develop a design, you should develop two kinds of
design model:

1.	 Structural models, which describe the static structure of the system using object
classes and their relationships. Important relationships that may be documented
at this stage are generalization (inheritance) relationships, uses/used-by
relationships, and composition relationships.

2.	 Dynamic models, which describe the dynamic structure of the system and show
the expected runtime interactions between the system objects. Interactions that
may be documented include the sequence of service requests made by objects
and the state changes triggered by these object interactions.

I think three UML model types are particularly useful for adding detail to use
case and architectural models:

1.	 Subsystem models, which show logical groupings of objects into coherent subsys-
tems. These are represented using a form of class diagram with each subsystem
shown as a package with enclosed objects. Subsystem models are structural models.

2.	 Sequence models, which show the sequence of object interactions. These are
represented using a UML sequence or a collaboration diagram. Sequence models
are dynamic models.

3.	 State machine models, which show how objects change their state in response to
events. These are represented in the UML using state diagrams. State machine
models are dynamic models.

A subsystem model is a useful static model that shows how a design is organized into
logically related groups of objects. I have already shown this type of model in Figure 7.4
to present the subsystems in the weather mapping system. As well as subsystem models,
you may also design detailed object models, showing the objects in the systems and their
associations (inheritance, generalization, aggregation, etc.). However, there is a danger

206   Chapter 7  ■  Design and implementation

in doing too much modeling. You should not make detailed decisions about the imple-
mentation that are really best left until the system is implemented.

Sequence models are dynamic models that describe, for each mode of interaction,
the sequence of object interactions that take place. When documenting a design, you
should produce a sequence model for each significant interaction. If you have devel-
oped a use case model, then there should be a sequence model for each use case that
you have identified.

Figure 7.7 is an example of a sequence model, shown as a UML sequence
diagram. This diagram shows the sequence of interactions that take place when an
external system requests the summarized data from the weather station. You read
sequence diagrams from top to bottom:

1.	 The SatComms object receives a request from the weather information system to
collect a weather report from a weather station. It acknowledges receipt of this
request. The stick arrowhead on the sent message indicates that the external system
does not wait for a reply but can carry on with other processing.

2.	 SatComms sends a message to WeatherStation, via a satellite link, to create a
summary of the collected weather data. Again, the stick arrowhead indicates
that SatComms does not suspend itself waiting for a reply.

3.	 WeatherStation sends a message to a Commslink object to summarize the
weather data. In this case, the squared-off style of arrowhead indicates that the
instance of the WeatherStation object class waits for a reply.

4.	 Commslink calls the summarize method in the object WeatherData and waits
for a reply.

:SatComms

request (report)

acknowledge
reportWeather ()

get (summary)

reply (report)

acknowledge

:WeatherStation :Commslink

summarize ()

:WeatherData

acknowledge

send (report)

acknowledge

Weather
information system

Figure 7.7  Sequence
diagram describing
data collection

	 7.1  ■  Object-oriented design using the UML   207

5.	 The weather data summary is computed and returned to WeatherStation via the
Commslink object.

6.	 WeatherStation then calls the SatComms object to transmit the summarized data
to the weather information system, through the satellite communications system.

The SatComms and WeatherStation objects may be implemented as concurrent
processes, whose execution can be suspended and resumed. The SatComms object
instance listens for messages from the external system, decodes these messages, and
initiates weather station operations.

Sequence diagrams are used to model the combined behavior of a group of objects,
but you may also want to summarize the behavior of an object or a subsystem in response
to messages and events. To do this, you can use a state machine model that shows how
the object instance changes state depending on the messages that it receives. As I discuss
in Chapter 5, the UML includes state diagrams to describe state machine models.

Figure 7.8 is a state diagram for the weather station system that shows how it
responds to requests for various services.

You can read this diagram as follows:

1.	 If the system state is Shutdown, then it can respond to a restart(), a reconfigure()
or a powerSave() message. The unlabeled arrow with the black blob indicates
that the Shutdown state is the initial state. A restart() message causes a transition
to normal operation. Both the powerSave() and reconfigure() messages cause a
transition to a state in which the system reconfigures itself. The state diagram
shows that reconfiguration is allowed only if the system has been shut down.

transmission done

remoteControl()

reportStatus()
restart()

shutdown()

test complete

weather summary
complete

clock collection
done

Operation

reportWeather()

Shutdown Running Testing

Transmitting

Collecting

Summarizing

Controlled

Configuring

reconfigure()

configuration done

powerSave()

Figure 7.8  Weather
station state diagram

208   Chapter 7  ■  Design and implementation

2.	 In the Running state, the system expects further messages. If a shutdown() mes-
sage is received, the object returns to the shutdown state.

3.	 If a reportWeather() message is received, the system moves to the Summarizing
state. When the summary is complete, the system moves to a Transmitting state where
the information is transmitted to the remote system. It then returns to the Running state.

4.	 If a signal from the clock is received, the system moves to the Collecting state,
where it collects data from the instruments. Each instrument is instructed in turn
to collect its data from the associated sensors.

5.	 If a remoteControl() message is received, the system moves to a controlled state
in which it responds to a different set of messages from the remote control room.
These are not shown on this diagram.

State diagrams are useful high-level models of a system or an object’s operation.
However, you don’t need a state diagram for all of the objects in the system. Many
system objects in a system are simple, and their operation can be easily described
without a state model.

	 7.1.5 	 Interface specification

An important part of any design process is the specification of the interfaces between
the components in the design. You need to specify interfaces so that objects and
subsystems can be designed in parallel. Once an interface has been specified, the
developers of other objects may assume that interface will be implemented.

Interface design is concerned with specifying the detail of the interface to an
object or to a group of objects. This means defining the signatures and semantics of
the services that are provided by the object or by a group of objects. Interfaces can be
specified in the UML using the same notation as a class diagram. However, there is
no attribute section, and the UML stereotype «interface» should be included in the
name part. The semantics of the interface may be defined using the object constraint
language (OCL). I discuss the use of the OCL in Chapter 16, where I explain how it
can be used to describe the semantics of components.

You should not include details of the data representation in an interface design, as
attributes are not defined in an interface specification. However, you should include
operations to access and update data. As the data representation is hidden, it can be
easily changed without affecting the objects that use that data. This leads to a design
that is inherently more maintainable. For example, an array representation of a stack
may be changed to a list representation without affecting other objects that use the
stack. By contrast, you should normally expose the attributes in an object model, as
this is the clearest way of describing the essential characteristics of the objects.

There is not a simple 1:1 relationship between objects and interfaces. The same
object may have several interfaces, each of which is a viewpoint on the methods that
it provides. This is supported directly in Java, where interfaces are declared separately
from objects and objects “implement” interfaces. Equally, a group of objects may all
be accessed through a single interface.

	 7.2  ■  Design patterns    209

Figure 7.9 shows two interfaces that may be defined for the weather station. The left-
hand interface is a reporting interface that defines the operation names that are used to
generate weather and status reports. These map directly to operations in the WeatherStation
object. The remote control interface provides four operations, which map onto a single
method in the WeatherStation object. In this case, the individual operations are encoded
in the command string associated with the remoteControl method, shown in Figure 7.6.

	 7.2 	 Design patterns

Design patterns were derived from ideas put forward by Christopher Alexander
(Alexander 1979), who suggested that there were certain common patterns of building
design that were inherently pleasing and effective. The pattern is a description of the
problem and the essence of its solution, so that the solution may be reused in different
settings. The pattern is not a detailed specification. Rather, you can think of it as a descrip-
tion of accumulated wisdom and experience, a well-tried solution to a common problem.

A quote from the Hillside Group website (hillside.net/patterns/), which is dedi-
cated to maintaining information about patterns, encapsulates their role in reuse:

Patterns and Pattern Languages are ways to describe best practices, good
designs, and capture experience in a way that it is possible for others to reuse
this experience†.

Patterns have made a huge impact on object-oriented software design. As well as
being tested solutions to common problems, they have become a vocabulary for talk-
ing about a design. You can therefore explain your design by describing the patterns
that you have used. This is particularly true for the best known design patterns that
were originally described by the “Gang of Four” in their patterns book, published in
1995 (Gamma et al. 1995). Other important pattern descriptions are those published
in a series of books by authors from Siemens, a large European technology company
(Buschmann et al. 1996; Schmidt et al. 2000; Kircher and Jain 2004; Buschmann,
Henney, and Schmidt 2007a, 2007b).

Patterns are a way of reusing the knowledge and experience of other designers.
Design patterns are usually associated with object-oriented design. Published patterns
often rely on object characteristics such as inheritance and polymorphism to provide
generality. However, the general principle of encapsulating experience in a pattern is

«interface»
Reporting

weatherReport (WS-Ident): Wreport
statusReport (WS-Ident): Sreport

«interface»
Remote Control

startInstrument(instrument): iStatus
stopInstrument (instrument): iStatus
collectData (instrument): iStatus
provideData (instrument): stringFigure 7.9  Weather

station interfaces

†The HIllside Group: hillside.net/patterns

210   Chapter 7  ■  Design and implementation

Pattern name: Observer

Description: Separates the display of the state of an object from the object itself and allows alternative displays
to be provided. When the object state changes, all displays are automatically notified and updated to reflect
the change.

Problem description: In many situations, you have to provide multiple displays of state information, such as a
graphical display and a tabular display. Not all of these may be known when the information is specified. All alter-
native presentations should support interaction and, when the state is changed, all displays must be updated.

This pattern may be used in situations where more than one display format for state information is required
and where it is not necessary for the object that maintains the state information to know about the specific
display formats used.

Solution description: This involves two abstract objects, Subject and Observer, and two concrete objects,
ConcreteSubject and ConcreteObject, which inherit the attributes of the related abstract objects. The abstract
objects include general operations that are applicable in all situations. The state to be displayed is main-
tained in ConcreteSubject, which inherits operations from Subject allowing it to add and remove Observers
(each observer corresponds to a display) and to issue a notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and implements the Update()
interface of Observer that allows these copies to be kept in step. The ConcreteObserver automatically
displays the state and reflects changes whenever the state is updated.

The UML model of the pattern is shown in Figure 7.12.

Consequences: The subject only knows the abstract Observer and does not know details of the concrete class.
Therefore there is minimal coupling between these objects. Because of this lack of knowledge, optimizations
that enhance display performance are impractical. Changes to the subject may cause a set of linked updates
to observers to be generated, some of which may not be necessary.

Figure 7.10  The
Observer pattern

one that is equally applicable to any kind of software design. For instance, you could
have configuration patterns for instantiating reusable application systems.

The Gang of Four defined the four essential elements of design patterns in their
book on patterns:

1.	 A name that is a meaningful reference to the pattern.

2.	 A description of the problem area that explains when the pattern may be applied.

3.	 A solution description of the parts of the design solution, their relationships and their
responsibilities. This is not a concrete design description. It is a template for a design
solution that can be instantiated in different ways. This is often expressed graphically
and shows the relationships between the objects and object classes in the solution.

4.	 A statement of the consequences—the results and trade-offs—of applying the
pattern. This can help designers understand whether or not a pattern can be used
in a particular situation.

Gamma and his co-authors break down the problem description into motivation
(a description of why the pattern is useful) and applicability (a description of situa-
tions in which the pattern may be used). Under the description of the solution, they
describe the pattern structure, participants, collaborations, and implementation.

To illustrate pattern description, I use the Observer pattern, taken from the Gang
of Four’s patterns book. This is shown in Figure 7.10. In my description, I use the

	 7.2  ■  Design patterns   211

A: 40
B: 25
C: 15
D: 20

Observer 1

A

B

C

D

Observer 2

Subject

0

50

25

A B C D

Figure 7.11  Multiple
displays

four essential description elements and also include a brief statement of what the
pattern can do. This pattern can be used in situations where different presentations of
an object’s state are required. It separates the object that must be displayed from the
different forms of presentation. This is illustrated in Figure 7.11, which shows two
different graphical presentations of the same dataset.

Graphical representations are normally used to illustrate the object classes in
patterns and their relationships. These supplement the pattern description and add
detail to the solution description. Figure 7.12 is the representation in UML of the
Observer pattern.

To use patterns in your design, you need to recognize that any design problem
you are facing may have an associated pattern that can be applied. Examples of such
problems, documented in the Gang of Four’s original patterns book, include:

1.	 Tell several objects that the state of some other object has changed (Observer pattern).

2.	 Tidy up the interfaces to a number of related objects that have often been devel-
oped incrementally (Façade pattern).

Subject Observer

Attach (Observer)
Detach (Observer)
Notify ()

Update ()

ConcreteSubject

GetState ()

subjectState

ConcreteObserver

Update ()

observerState

observerState =
 subject -> GetState ()return subjectState

for all o in observers
 o -> Update ()

Figure 7.12  A UML
model of the
Observer pattern

212   Chapter 7  ■  Design and implementation

3.	 Provide a standard way of accessing the elements in a collection, irrespective of
how that collection is implemented (Iterator pattern).

4.	 Allow for the possibility of extending the functionality of an existing class at
runtime (Decorator pattern).

Patterns support high-level, concept reuse. When you try to reuse executable
components you are inevitably constrained by detailed design decisions that have
been made by the implementers of these components. These range from the particu-
lar algorithms that have been used to implement the components to the objects and
types in the component interfaces. When these design decisions conflict with your
requirements, reusing the component is either impossible or introduces inefficien-
cies into your system. Using patterns means that you reuse the ideas but can adapt
the implementation to suit the system you are developing.

When you start designing a system, it can be difficult to know, in advance, if you
will need a particular pattern. Therefore, using patterns in a design process often
involves developing a design, experiencing a problem, and then recognizing that a
pattern can be used. This is certainly possible if you focus on the 23 general-purpose
patterns documented in the original patterns book. However, if your problem is a
different one, you may find it difficult to find an appropriate pattern among the hun-
dreds of different patterns that have been proposed.

Patterns are a great idea, but you need experience of software design to use them
effectively. You have to recognize situations where a pattern can be applied. Inexperienced
programmers, even if they have read the pattern books, will always find it hard to decide
whether they can reuse a pattern or need to develop a special-purpose solution.

	 7.3 	 Implementation issues

Software engineering includes all of the activities involved in software development
from the initial requirements of the system through to maintenance and management
of the deployed system. A critical stage of this process is, of course, system imple-
mentation, where you create an executable version of the software. Implementation
may involve developing programs in high- or low-level programming languages or
tailoring and adapting generic, off-the-shelf systems to meet the specific requirements
of an organization.

I assume that most readers of this book will understand programming principles
and will have some programming experience. As this chapter is intended to offer a
language-independent approach, I haven’t focused on issues of good programming
practice as language-specific examples need to be used. Instead, I introduce some
aspects of implementation that are particularly important to software engineering
and that are often not covered in programming texts. These are:

1.	 Reuse Most modern software is constructed by reusing existing components or
systems. When you are developing software, you should make as much use as
possible of existing code.

	 7.3  ■  Implementation issues   213

2.	 Configuration management During the development process, many different
versions of each software component are created. If you don’t keep track of
these versions in a configuration management system, you are liable to include
the wrong versions of these components in your system.

3.	 Host-target development Production software does not usually execute on the
same computer as the software development environment. Rather, you develop
it on one computer (the host system) and execute it on a separate computer (the
target system). The host and target systems are sometimes of the same type, but
often they are completely different.

	 7.3.1 	 Reuse

From the 1960s to the 1990s, most new software was developed from scratch, by
writing all code in a high-level programming language. The only significant reuse or
software was the reuse of functions and objects in programming language libraries.
However, costs and schedule pressure meant that this approach became increasingly
unviable, especially for commercial and Internet-based systems. Consequently, an
approach to development based on the reuse of existing software is now the norm for
many types of system development. A reuse-based approach is now widely used for
web-based systems of all kinds, scientific software, and, increasingly, in embedded
systems engineering.

Software reuse is possible at a number of different levels, as shown in Figure 7.13:

1.	 The abstraction level At this level, you don’t reuse software directly but rather
use knowledge of successful abstractions in the design of your software. Design
patterns and architectural patterns (covered in Chapter 6) are ways of representing
abstract knowledge for reuse.

Software reuse

Abstraction

Architectural and
design patterns

System

Application systems
(COTS)

Component

Component
frameworks

Object

Programming
language libraries

Figure 7.13  Software
reuse

214   Chapter 7  ■  Design and implementation

2.	 The object level At this level, you directly reuse objects from a library rather
than writing the code yourself. To implement this type of reuse, you have to find
appropriate libraries and discover if the objects and methods offer the function-
ality that you need. For example, if you need to process email messages in a
Java program, you may use objects and methods from a JavaMail library.

3.	 The component level Components are collections of objects and object classes
that operate together to provide related functions and services. You often have
to adapt and extend the component by adding some code of your own. An
example of component-level reuse is where you build your user interface using
a framework. This is a set of general object classes that implement event han-
dling, display management, etc. You add connections to the data to be dis-
played and write code to define specific display details such as screen layout
and colors.

4.	 The system level At this level, you reuse entire application systems. This function
usually involves some kind of configuration of these systems. This may be done
by adding and modifying code (if you are reusing a software product line) or by
using the system’s own configuration interface. Most commercial systems are
now built in this way where generic application systems systems are adapted and
reused. Sometimes this approach may involve integrating several application
systems to create a new system.

By reusing existing software, you can develop new systems more quickly, with
fewer development risks and at lower cost. As the reused software has been tested in
other applications, it should be more reliable than new software. However, there are
costs associated with reuse:

1.	 The costs of the time spent in looking for software to reuse and assessing
whether or not it meets your needs. You may have to test the software to make
sure that it will work in your environment, especially if this is different from its
development environment.

2.	 Where applicable, the costs of buying the reusable software. For large off-the-
shelf systems, these costs can be very high.

3.	 The costs of adapting and configuring the reusable software components or
systems to reflect the requirements of the system that you are developing.

4.	 The costs of integrating reusable software elements with each other (if you are
using software from different sources) and with the new code that you have
developed. Integrating reusable software from different providers can be diffi-
cult and expensive because the providers may make conflicting assumptions
about how their respective software will be reused.

How to reuse existing knowledge and software should be the first thing you should
think about when starting a software development project. You should consider the

possibilities of reuse before designing the software in detail, as you may wish to adapt
your design to reuse existing software assets. As I discussed in Chapter 2, in a
reuse-oriented development process, you search for reusable elements, then modify
your requirements and design to make the best use of these.

Because of the importance of reuse in modern software engineering, I devote
several chapters in Part 3 of this book to this topic (Chapters 15, 16, and 18).

	 7.3.2 	 Configuration management

In software development, change happens all the time, so change management is
absolutely essential. When several people are involved in developing a software sys-
tem, you have to make sure that team members don’t interfere with each other’s
work. That is, if two people are working on a component, their changes have to be
coordinated. Otherwise, one programmer may make changes and overwrite the oth-
er’s work. You also have to ensure that everyone can access the most up-to-date ver-
sions of software components; otherwise developers may redo work that has already
been done. When something goes wrong with a new version of a system, you have to
be able to go back to a working version of the system or component.

Configuration management is the name given to the general process of managing
a changing software system. The aim of configuration management is to support the
system integration process so that all developers can access the project code and
documents in a controlled way, find out what changes have been made, and compile
and link components to create a system. As shown in Figure 7.14, there are four
fundamental configuration management activities:

1.	 Version management, where support is provided to keep track of the different
versions of software components. Version management systems include facilities
to coordinate development by several programmers. They stop one developer
from overwriting code that has been submitted to the system by someone else.

2.	 System integration, where support is provided to help developers define what
versions of components are used to create each version of a system. This

Component
versions

Release
management

Change
proposals

System
releases

Change
management

System
versions

Version
management

System
building

Figure 7.14  Configuration
management

	 7.3  ■  Implementation issues   215

description is then used to build a system automatically by compiling and link-
ing the required components.

3.	 Problem tracking, where support is provided to allow users to report bugs and
other problems, and to allow all developers to see who is working on these prob-
lems and when they are fixed.

4.	 Release management, where new versions of a software system are released to
customers. Release management is concerned with planning the functionality of
new releases and organizing the software for distribution.

Software configuration management tools support each of the above activities.
These tools are usually installed in an integrated development environment, such as
Eclipse. Version management may be supported using a version management system
such as Subversion (Pilato, Collins-Sussman, and Fitzpatrick 2008) or Git (Loeliger
and McCullough 2012), which can support multi-site, multi-team development.
System integration support may be built into the language or rely on a separate tool-
set such as the GNU build system. Bug tracking or issue tracking systems, such as
Bugzilla, are used to report bugs and other issues and to keep track of whether or not
these have been fixed. A comprehensive set of tools built around the Git system is
available at Github (http://github.com).

Because of its importance in professional software engineering, I discuss change
and configuration management in more detail in Chapter 25.

	 7.3.3 	 Host-target development

Most professional software development is based on a host-target model (Figure 7.15).
Software is developed on one computer (the host) but runs on a separate machine (the
target). More generally, we can talk about a development platform (host) and an
execution platform (target). A platform is more than just hardware. It includes the
installed operating system plus other supporting software such as a database manage-
ment system or, for development platforms, an interactive development environment.

Development
platform

IDE

Compilers

Testing tools

Execution
platform

Libraries

Related systems

Databases

Development
platform

IDE

Compilers

Testing tools

TargetHost

Download
software

Figure 7.15  Host-target
development

216   Chapter 7  ■  Design and implementation

http://github.com

Sometimes, the development platform and execution platform are the same, mak-
ing it possible to develop the software and test it on the same machine. Therefore, if
you develop in Java, the target environment is the Java Virtual Machine. In princi-
ple, this is the same on every computer, so programs should be portable from one
machine to another. However, particularly for embedded systems and mobile
systems, the development and the execution platforms are different. You need to
either move your developed software to the execution platform for testing or run a
simulator on your development machine.

Simulators are often used when developing embedded systems. You simulate
hardware devices, such as sensors, and the events in the environment in which the
system will be deployed. Simulators speed up the development process for embed-
ded systems as each developer can have his or her own execution platform with no
need to download the software to the target hardware. However, simulators are
expensive to develop and so are usually available only for the most popular
hardware architectures.

If the target system has installed middleware or other software that you need
to use, then you need to be able to test the system using that software. It may be
impractical to install that software on your development machine, even if it is
the same as the target platform, because of license restrictions. If this is the
case, you need to transfer your developed code to the execution platform to test
the system.

A software development platform should provide a range of tools to support soft-
ware engineering processes. These may include:

1.	 An integrated compiler and syntax-directed editing system that allows you to
create, edit, and compile code.

2.	 A language debugging system.

3.	 Graphical editing tools, such as tools to edit UML models.

4.	 Testing tools, such as JUnit, that can automatically run a set of tests on a new
version of a program.

5.	 Tools to support refactoring and program visualization.

6.	 Configuration management tools to manage source code versions and to integrate
and build systems.

In addition to these standard tools, your development system may include more
specialized tools such as static analyzers (discussed in Chapter 12). Normally, devel-
opment environments for teams also include a shared server that runs a change and
configuration management system and, perhaps, a system to support requirements
management.

Software development tools are now usually installed within an integrated devel-
opment environment (IDE). An IDE is a set of software tools that supports different
aspects of software development within some common framework and user inter-
face. Generally, IDEs are created to support development in a specific programming

	 7.3  ■  Implementation issues   217

language such as Java. The language IDE may be developed specially or may be an
instantiation of a general-purpose IDE, with specific language-support tools.

A general-purpose IDE is a framework for hosting software tools that provides data
management facilities for the software being developed and integration mechanisms
that allow tools to work together. The best-known general-purpose IDE is the Eclipse
environment (http://www.eclipse.org). This environment is based on a plug-in architec-
ture so that it can be specialized for different languages, such as Java, and application
domains. Therefore, you can install Eclipse and tailor it for your specific needs by add-
ing plug-ins. For example, you may add a set of plug-ins to support networked systems
development in Java (Vogel 2013) or embedded systems engineering using C.

As part of the development process, you need to make decisions about how the
developed software will be deployed on the target platform. This is straightforward
for embedded systems, where the target is usually a single computer. However, for
distributed systems, you need to decide on the specific platforms where the compo-
nents will be deployed. Issues that you have to consider in making this decision are:

1.	 The hardware and software requirements of a component If a component is
designed for a specific hardware architecture, or relies on some other software
system, it must obviously be deployed on a platform that provides the required
hardware and software support.

2.	 The availability requirements of the system High-availability systems may require
components to be deployed on more than one platform. This means that, in the event
of platform failure, an alternative implementation of the component is available.

3.	 Component communications If there is a lot of intercomponent communication, it is
usually best to deploy them on the same platform or on platforms that are physically
close to one another. This reduces communications latency—the delay between the
time that a message is sent by one component and received by another.

You can document your decisions on hardware and software deployment using
UML deployment diagrams, which show how software components are distributed
across hardware platforms.

If you are developing an embedded system, you may have to take into account
target characteristics, such as its physical size, power capabilities, the need for
real-time responses to sensor events, the physical characteristics of actuators and its
real-time operating system. I discuss embedded systems engineering in Chapter 21.

218   Chapter 7  ■  Design and implementation

UML deployment diagrams

UML deployment diagrams show how software components are physically deployed on processors. That is, the
deployment diagram shows the hardware and software in the system and the middleware used to connect the
different components in the system. Essentially, you can think of deployment diagrams as a way of defining and
documenting the target environment.

http://software-engineering-book.com/web/deployment/

http://software-engineering-book.com/web/deployment
http://www.eclipse.org

	 7.4  ■  Open-source development   219

	 7.4 	 Open-source development

Open-source development is an approach to software development in which the
source code of a software system is published and volunteers are invited to partici-
pate in the development process (Raymond 2001). Its roots are in the Free Software
Foundation (www.fsf.org), which advocates that source code should not be proprie-
tary but rather should always be available for users to examine and modify as they
wish. There was an assumption that the code would be controlled and developed by
a small core group, rather than users of the code.

Open-source software extended this idea by using the Internet to recruit a much larger
population of volunteer developers. Many of them are also users of the code. In principle
at least, any contributor to an open-source project may report and fix bugs and propose
new features and functionality. However, in practice, successful open-source systems still
rely on a core group of developers who control changes to the software.

Open-source software is the backbone of the Internet and software engineering. The
Linux operating system is the most widely used server system, as is the open-source
Apache web server. Other important and universally used open-source products are
Java, the Eclipse IDE, and the mySQL database management system. The Android
operating system is installed on millions of mobile devices. Major players in the com-
puter industry such as IBM and Oracle, support the open-source movement and base
their software on open-source products. Thousands of other, lesser-known open-source
systems and components may also be used.

It is usually cheap or even free to acquire open-source software. You can normally
download open-source software without charge. However, if you want documenta-
tion and support, then you may have to pay for this, but costs are usually fairly low.
The other key benefit of using open-source products is that widely used open-source
systems are very reliable. They have a large population of users who are willing to
fix problems themselves rather than report these problems to the developer and wait
for a new release of the system. Bugs are discovered and repaired more quickly than
is usually possible with proprietary software.

For a company involved in software development, there are two open-source
issues that have to be considered:

1.	 Should the product that is being developed make use of open-source components?

2.	 Should an open-source approach be used for its own software development?

The answers to these questions depend on the type of software that is being devel-
oped and the background and experience of the development team.

If you are developing a software product for sale, then time to market and reduced
costs are critical. If you are developing software in a domain in which there are high-quality
open-source systems available, you can save time and money by using these systems.
However, if you are developing software to a specific set of organizational require-
ments, then using open-source components may not be an option. You may have to
integrate your software with existing systems that are incompatible with available

http://www.fsf.org

open-source systems. Even then, however, it could be quicker and cheaper to modify
the open-source system rather than redevelop the functionality that you need.

Many software product companies are now using an open-source approach to devel-
opment, especially for specialized systems. Their business model is not reliant on selling
a software product but rather on selling support for that product. They believe that
involving the open-source community will allow software to be developed more cheaply
and more quickly and will create a community of users for the software.

Some companies believe that adopting an open-source approach will reveal con-
fidential business knowledge to their competitors and so are reluctant to adopt this
development model. However, if you are working in a small company and you open
source your software, this may reassure customers that they will be able to support
the software if your company goes out of business.

Publishing the source code of a system does not mean that people from the wider
community will necessarily help with its development. Most successful open-source
products have been platform products rather than application systems. There are a
limited number of developers who might be interested in specialized application sys-
tems. Making a software system open source does not guarantee community involve-
ment. There are thousands of open-source projects on Sourceforge and GitHub that
have only a handful of downloads. However, if users of your software have concerns
about its availability in future, making the software open source means that they can
take their own copy and so be reassured that they will not lose access to it.

	 7.4.1 	 Open-source licensing

Although a fundamental principle of open-source development is that source code should
be freely available, this does not mean that anyone can do as they wish with that code.
Legally, the developer of the code (either a company or an individual) owns the code.
They can place restrictions on how it is used by including legally binding conditions in an
open-source software license (St. Laurent 2004). Some open-source developers believe
that if an open-source component is used to develop a new system, then that system
should also be open source. Others are willing to allow their code to be used without this
restriction. The developed systems may be proprietary and sold as closed-source systems.

Most open-source licenses (Chapman 2010) are variants of one of three
general models:

1.	 The GNU General Public License (GPL). This is a so-called reciprocal license
that simplistically means that if you use open-source software that is licensed
under the GPL license, then you must make that software open source.

2.	 The GNU Lesser General Public License (LGPL). This is a variant of the GPL
license where you can write components that link to open-source code without
having to publish the source of these components. However, if you change the
licensed component, then you must publish this as open source.

3.	 The Berkley Standard Distribution (BSD) License. This is a nonreciprocal license,
which means you are not obliged to re-publish any changes or modifications made to

220   Chapter 7  ■  Design and implementation

open-source code. You can include the code in proprietary systems that are sold. If
you use open-source components, you must acknowledge the original creator of
the code. The MIT license is a variant of the BSD license with similar conditions.

Licensing issues are important because if you use open-source software as part of
a software product, then you may be obliged by the terms of the license to make your
own product open source. If you are trying to sell your software, you may wish to
keep it secret. This means that you may wish to avoid using GPL-licensed open-
source software in its development.

If you are building software that runs on an open-source platform but that does
not reuse open-source components, then licenses are not a problem. However, if
you embed open-source software in your software, you need processes and data-
bases to keep track of what’s been used and their license conditions. Bayersdorfer
(Bayersdorfer 2007) suggests that companies managing projects that use open
source should:

1.	 Establish a system for maintaining information about open-source components
that are downloaded and used. You have to keep a copy of the license for each
component that was valid at the time the component was used. Licenses may
change, so you need to know the conditions that you have agreed to.

2.	 Be aware of the different types of licenses and understand how a component is
licensed before it is used. You may decide to use a component in one system but
not in another because you plan to use these systems in different ways.

3.	 Be aware of evolution pathways for components. You need to know a bit about
the open-source project where components are developed to understand how
they might change in future.

4.	 Educate people about open source. It’s not enough to have procedures in place
to ensure compliance with license conditions. You also need to educate devel-
opers about open source and open-source licensing.

5.	 Have auditing systems in place. Developers, under tight deadlines, might be
tempted to break the terms of a license. If possible, you should have software in
place to detect and stop this.

6.	 Participate in the open-source community. If you rely on open-source products,
you should participate in the community and help support their development.

The open-source approach is one of several business models for software. In this
model, companies release the source of their software and sell add-on services and
advice in association with this. They may also sell cloud-based software services—
an attractive option for users who do not have the expertise to manage their own
open-source system and also specialized versions of their system for particular cli-
ents. Open-source is therefore likely to increase in importance as a way of develop-
ing and distributing software.

	 7.4  ■  Open-source development   221

K e y P o i n t s

■	 Software design and implementation are interleaved activities. The level of detail in the design
depends on the type of system being developed and whether you are using a plan-driven or
agile approach.

■	 The process of object-oriented design includes activities to design the system architecture,
identify objects in the system, describe the design using different object models, and document
the component interfaces.

■	 A range of different models may be produced during an object-oriented design process. These
include static models (class models, generalization models, association models) and dynamic
models (sequence models, state machine models).

■	 Component interfaces must be defined precisely so that other objects can use them. A UML
interface stereotype may be used to define interfaces.

■	 When developing software, you should always consider the possibility of reusing existing soft-
ware, either as components, services, or complete systems.

■	 Configuration management is the process of managing changes to an evolving software system.
It is essential when a team of people is cooperating to develop software.

■	 Most software development is host-target development. You use an IDE on a host machine to
develop the software, which is transferred to a target machine for execution.

■	 Open-source development involves making the source code of a system publicly available. This
means that many people can propose changes and improvements to the software.

F u r t h e r R e a di n g

Design Patterns: Elements of Reusable Object-oriented Software. This is the original software pat-
terns handbook that introduced software patterns to a wide community. (E. Gamma, R. Helm, R.
Johnson and J. Vlissides, Addison-Wesley, 1995).

Applying UML and Patterns: An Introduction to Object-oriented Analysis and Design and Iterative
Development, 3rd ed. Larman writes clearly on object-oriented design and also discusses use of the
UML; this is a good introduction to using patterns in the design process. Although it is more than 10
years old, it remains the best book on this topic that is available. (C. Larman, Prentice-Hall, 2004).

Producing Open Source Software: How to Run a Successful Free Software Project. This book is a
comprehensive guide to the background to open-source software, licensing issues, and the practi-
calities of running an open-source development project. (K. Fogel, O’Reilly Media Inc., 2008).

Further reading on software reuse is suggested in Chapter 15 and on configuration management in
Chapter 25.

222   Chapter 7  ■  Design and implementation

	 Chapter 7  ■  Design and Implementation   223

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/implementation-and-evolution/

More information on the weather information system:

http://software-engineering-book.com/case-studies/wilderness-weather-station/

E x e r c i s e s

7.1. 	Using the tabular notation shown in Figure 7.3, specify the weather station use cases for Report
status and Reconfigure. You should make reasonable assumptions about the functionality that
is required here.

7.2. 	Assume that the Mentcare system is being developed using an object-oriented approach. Draw
a use case diagram showing at least six possible use cases for this system.

7.3. 	Using the UML graphical notation for object classes, design the following object classes, identi-
fying attributes and operations. Use your own experience to decide on the attributes and oper-
ations that should be associated with these objects.

■	  a messaging system on a mobile (cell) phone or tablet

■	  a printer for a personal computer

■	  a personal music system

■	  a bank account

■	  a library catalogue

7.4. 	A shape can be classified into 2-D and 3-D. Design an inheritance hierarchy that will include
different kinds of 2-D and 3-D shapes. Make sure you identify at least five other classes
of shapes.

7.5. 	Develop the design of the weather station to show the interaction between the data collection
subsystem and the instruments that collect weather data. Use sequence diagrams to show this
interaction.

7.6. 	 Identify possible objects in the following systems and develop an object-oriented design for
them. You may make any reasonable assumptions about the systems when deriving the design.

■	   A group diary and time management system is intended to support the timetabling of meet-
ings and appointments across a group of co-workers. When an appointment is to be made

	 Chapter 7  ■  Exercises   223

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/implementation-and-evolution
http://software-engineering-book.com/case-studies/wilderness-weather-station

224   Chapter 1  ■  Design and Implementation

R e f e r e n c e s

Abbott, R. 1983. “Program Design by Informal English Descriptions.” Comm. ACM 26 (11): 882–894.
doi:10.1145/182.358441.

Alexander, C. 1979. A Timeless Way of Building. Oxford, UK: Oxford University Press.

Bayersdorfer, M. 2007. “Managing a Project with Open Source Components.” ACM Interactions 14
(6): 33–34. doi:10.1145/1300655.1300677.

Beck, K., and W. Cunningham. 1989. “A Laboratory for Teaching Object-Oriented Thinking.” In Proc.
OOPSLA’89 (Conference on Object-Oriented Programming, Systems, Languages and Applications),
1–6. ACM Press. doi:10.1145/74878.74879.

Buschmann, F., K. Henney, and D. C. Schmidt. 2007a. Pattern-Oriented Software Architecture
Volume 4: A Pattern Language for Distributed Computing. New York: John Wiley & Sons.

	   . 2007b. Pattern-Oriented Software Architecture Volume 5: On Patterns and Pattern
Languages. New York: John Wiley & Sons.

that involves a number of people, the system finds a common slot in each of their diaries
and arranges the appointment for that time. If no common slots are available, it interacts
with the user to rearrange his or her personal diary to make room for the appointment.

■	 A filling station (gas station) is to be set up for fully automated operation. Drivers swipe their
credit card through a reader connected to the pump; the card is verified by communication
with a credit company computer, and a fuel limit is established. The driver may then take the
fuel required. When fuel delivery is complete and the pump hose is returned to its holster,
the driver’s credit card account is debited with the cost of the fuel taken. The credit card is
returned after debiting. If the card is invalid, the pump returns it before fuel is dispensed.

7.7. 	   �Draw a sequence diagram showing the interactions of objects in a group diary system when a
group of people are arranging a meeting.

7.8. 	 �Draw a UML state diagram showing the possible state changes in either the group diary or the
filling station system.

7.9. 	 When code is integrated into a larger system, problems may surface. Explain how configura-
tion management can be useful when handling such problems.

7.10. 	  �A small company has developed a specialized software product that it configures specially
for each customer. New customers usually have specific requirements to be incorporated
into their system, and they pay for these to be developed and integrated with the product.
The software company has an opportunity to bid for a new contract, which would more than
double its customer base. The new customer wishes to have some involvement in the con-
figuration of the system. Explain why, in these circumstances, it might be a good idea for the
company owning the software to make it open source.

224   Chapter 7  ■  Design and implementation

	 Chapter 7  ■  Design and Implementation   225

Buschmann, F., R. Meunier, H. Rohnert, and P. Sommerlad. 1996. Pattern-Oriented Software Architecture
Volume 1: A System of Patterns. New York: John Wiley & Sons.

Chapman, C. 2010. “A Short Guide to Open-Source and Similar Licences.” Smashing Magazine.
http://www.smashingmagazine.com/2010/03/24/a-short-guide-to-open-source-and-similar-licenses./

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA.: Addison-Wesley.

Kircher, M., and P. Jain. 2004. Pattern-Oriented Software Architecture Volume 3: Patterns for
Resource Management. New York: John Wiley & Sons.

Loeliger, J., and M. McCullough. 2012. Version Control with Git: Powerful Tools and Techniques for
Collaborative Software Development. Sebastopol, CA: O’Reilly & Associates.

Pilato, C., B. Collins-Sussman, and B. Fitzpatrick. 2008. Version Control with Subversion. Sebastopol,
CA: O’Reilly & Associates.

Raymond, E. S. 2001. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary. Sebastopol. CA: O’Reilly & Associates.

Schmidt, D., M. Stal, H. Rohnert, and F. Buschmann. 2000. Pattern-Oriented Software Architecture
Volume 2: Patterns for Concurrent and Networked Objects. New York: John Wiley & Sons.

St. Laurent, A. 2004. Understanding Open Source and Free Software Licensing. Sebastopol, CA:
O’Reilly & Associates.

Vogel, L. 2013. Eclipse IDE: A Tutorial. Hamburg, Germany: Vogella Gmbh.

Wirfs-Brock, R., B. Wilkerson, and L. Weiner. 1990. Designing Object-Oriented Software. Englewood
Cliffs, NJ: Prentice-Hall.

	 Chapter 7  ■  References   225

http://www.smashingmagazine.com/2010/03/24/a-short-guide-to-open-source-and-similar-licenses

Software testing
8

Objectives
The objective of this chapter is to introduce software testing and
software testing processes. When you have read the chapter, you will:

■	 understand the stages of testing from testing during development
to acceptance testing by system customers;

■	 have been introduced to techniques that help you choose test
cases that are geared to discovering program defects;

■	 understand test-first development, where you design tests before
writing code and run these tests automatically;

■	 know about three distinct types of testing—component testing,
system testing, and release testing;

■	 understand the distinctions between development testing and user
testing.

Contents
8.1 	Development testing

8.2 	Test-driven development

8.3 	Release testing

8.4 	User testing

	 Chapter 8  ■  Software testing   227

Testing is intended to show that a program does what it is intended to do and to
discover program defects before it is put into use. When you test software, you exe-
cute a program using artificial data. You check the results of the test run for errors,
anomalies, or information about the program’s non-functional attributes.

When you test software, you are trying to do two things:

1.	 Demonstrate to the developer and the customer that the software meets its
requirements. For custom software, this means that there should be at least one
test for every requirement in the requirements document. For generic software
products, it means that there should be tests for all of the system features that
will be included in the product release. You may also test combinations of fea-
tures to check for unwanted interactions between them.

2.	 Find inputs or input sequences where the behavior of the software is incorrect,
undesirable, or does not conform to its specification. These are caused by defects
(bugs) in the software. When you test software to find defects, you are trying to
root out undesirable system behavior such as system crashes, unwanted interac-
tions with other systems, incorrect computations, and data corruption.

The first of these is validation testing, where you expect the system to perform
correctly using a set of test cases that reflect the system’s expected use. The second
is defect testing, where the test cases are designed to expose defects. The test cases in
defect testing can be deliberately obscure and need not reflect how the system is
normally used. Of course, there is no definite boundary between these two approaches
to testing. During validation testing, you will find defects in the system; during
defect testing, some of the tests will show that the program meets its requirements.

Figure 8.1 shows the differences between validation testing and defect testing. Think
of the system being tested as a black box. The system accepts inputs from some input
set I and generates outputs in an output set O. Some of the outputs will be erroneous.
These are the outputs in set Oe that are generated by the system in response to inputs in
the set Ie. The priority in defect testing is to find those inputs in the set Ie because these
reveal problems with the system. Validation testing involves testing with correct inputs
that are outside Ie. These stimulate the system to generate the expected correct outputs.

Testing cannot demonstrate that the software is free of defects or that it will behave
as specified in every circumstance. It is always possible that a test you have overlooked
could discover further problems with the system. As Edsger Dijkstra, an early con-
tributor to the development of software engineering, eloquently stated (Dijkstra 1972):

“Testing can only show the presence of errors, not their absence †”

Testing is part of a broader process of software verification and validation (V & V).
Verification and validation are not the same thing, although they are often confused.
Barry Boehm, a pioneer of software engineering, succinctly expressed the difference
between them (Boehm 1979):

†Dijkstra, E. W. 1972. “The Humble Programmer.” Comm. ACM 15 (10): 859–66. doi:10.1145/
355604.361591

228   Chapter 8  ■  Software testing

■	 Validation: Are we building the right product?

■	 Verification: Are we building the product right?

Verification and validation processes are concerned with checking that software
being developed meets its specification and delivers the functionality expected by
the people paying for the software. These checking processes start as soon as require-
ments become available and continue through all stages of the development process.

Software verification is the process of checking that the software meets its stated
functional and non-functional requirements. Validation is a more general process.
The aim of software validation is to ensure that the software meets the customer’s
expectations. It goes beyond checking conformance with the specification to demon-
strating that the software does what the customer expects it to do. Validation is
essential because, as I discussed in Chapter 4, statements of requirements do not
always reflect the real wishes or needs of system customers and users.

The goal of verification and validation processes is to establish confidence that
the software system is “fit for purpose.” This means that the system must be good
enough for its intended use. The level of required confidence depends on the sys-
tem’s purpose, the expectations of the system users, and the current marketing
environment for the system:

1.	 Software purpose The more critical the software, the more important it is that it
is reliable. For example, the level of confidence required for software used to
control a safety-critical system is much higher than that required for a demon-
strator system that prototypes new product ideas.

2.	 User expectations Because of their previous experiences with buggy, unreliable
software, users sometimes have low expectations of software quality. They are
not surprised when their software fails. When a new system is installed, users

Ie
Input test data

Oe
Output test results

System

Inputs causing
anomalous
behavior

Outputs which reveal
the presence of
defects

Figure 8.1  An input–
output model of
program testing

	 Chapter 8  ■  Software testing   229

may tolerate failures because the benefits of use outweigh the costs of failure
recovery. However, as a software product becomes more established, users
expect it to become more reliable. Consequently, more thorough testing of later
versions of the system may be required.

3.	 Marketing environment When a software company brings a system to market, it
must take into account competing products, the price that customers are willing
to pay for a system, and the required schedule for delivering that system. In a
competitive environment, the company may decide to release a program before
it has been fully tested and debugged because it wants to be the first into the
market. If a software product or app is very cheap, users may be willing to toler-
ate a lower level of reliability.

As well as software testing, the verification and validation process may involve
software inspections and reviews. Inspections and reviews analyze and check the
system requirements, design models, the program source code, and even proposed
system tests. These are “static” V & V techniques in which you don’t need to execute
the software to verify it. Figure 8.2 shows that software inspections and testing sup-
port V & V at different stages in the software process. The arrows indicate the stages
in the process where the techniques may be used.

Inspections mostly focus on the source code of a system, but any readable repre-
sentation of the software, such as its requirements or a design model, can be
inspected. When you inspect a system, you use knowledge of the system, its application
domain, and the programming or modeling language to discover errors.

Software inspection has three advantages over testing:

1.	 During testing, errors can mask (hide) other errors. When an error leads to
unexpected outputs, you can never be sure if later output anomalies are due to
a new error or are side effects of the original error. Because inspection doesn’t
involve executing the system, you don’t have to worry about interactions
between errors. Consequently, a single inspection session can discover many
errors in a system.

UML design
models

Software
architecture

Requirements
specification

Database
schemas

Program

System
prototype Testing

Inspections

Figure 8.2  Inspections
and testing

230   Chapter 8  ■  Software testing

2.	 Incomplete versions of a system can be inspected without additional costs. If
a program is incomplete, then you need to develop specialized test harnesses
to test the parts that are available. This obviously adds to the system develop-
ment costs.

3.	 As well as searching for program defects, an inspection can also consider
broader quality attributes of a program, such as compliance with standards,
portability, and maintainability. You can look for inefficiencies, inappropriate
algorithms, and poor programming style that could make the system difficult to
maintain and update.

Program inspections are an old idea, and several studies and experiments have
shown that inspections are more effective for defect discovery than program testing.
Fagan (Fagan 1976) reported that more than 60% of the errors in a program can be
detected using informal program inspections. In the Cleanroom process (Prowell et
al. 1999), it is claimed that more than 90% of defects can be discovered in program
inspections.

However, inspections cannot replace software testing. Inspections are not good
for discovering defects that arise because of unexpected interactions between differ-
ent parts of a program, timing problems, or problems with system performance. In
small companies or development groups, it can be difficult and expensive to put
together a separate inspection team as all potential team members may also be
developers of the software.

I discuss reviews and inspections in more detail in Chapter 24 (Quality
Management). Static analysis, where the source text of a program is automatically
analyzed to discover anomalies, is explained in Chapter 12. In this chapter, I focus
on testing and testing processes.

Figure 8.3 is an abstract model of the traditional testing process, as used in plan-
driven development. Test cases are specifications of the inputs to the test and the
expected output from the system (the test results), plus a statement of what is being
tested. Test data are the inputs that have been devised to test a system. Test data can
sometimes be generated automatically, but automatic test case generation is impos-
sible. People who understand what the system is supposed to do must be involved to
specify the expected test results. However, test execution can be automated. The test
results are automatically compared with the predicted results, so there is no need for
a person to look for errors and anomalies in the test run.

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

Figure 8.3  A model
of the software
testing process

	 8.1  ■  Development testing   231

Typically, a commercial software system has to go through three stages of testing:

1.	 Development testing, where the system is tested during development to discover
bugs and defects. System designers and programmers are likely to be involved
in the testing process.

2.	 Release testing, where a separate testing team tests a complete version of the
system before it is released to users. The aim of release testing is to check that
the system meets the requirements of the system stakeholders.

3.	 User testing, where users or potential users of a system test the system in their
own environment. For software products, the “user” may be an internal market-
ing group that decides if the software can be marketed, released and sold.
Acceptance testing is one type of user testing where the customer formally tests
a system to decide if it should be accepted from the system supplier or if further
development is required.

In practice, the testing process usually involves a mixture of manual and auto-
mated testing. In manual testing, a tester runs the program with some test data and
compares the results to their expectations. They note and report discrepancies to the
program developers. In automated testing, the tests are encoded in a program that is
run each time the system under development is to be tested. This is faster than man-
ual testing, especially when it involves regression testing—re-running previous tests
to check that changes to the program have not introduced new bugs.

Unfortunately, testing can never be completely automated as automated tests can
only check that a program does what it is supposed to do. It is practically impossible
to use automated testing to test systems that depend on how things look (e.g., a graph-
ical user interface), or to test that a program does not have unanticipated side effects.

	 8.1 	 Development testing

Development testing includes all testing activities that are carried out by the team
developing the system. The tester of the software is usually the programmer who
developed that software. Some development processes use programmer/tester pairs
(Cusamano and Selby 1998) where each programmer has an associated tester who

Test planning

Test planning is concerned with scheduling and resourcing all of the activities in the testing process. It involves
defining the testing process, taking into account the people and the time available. Usually, a test plan will be
created that defines what is to be tested, the predicted testing schedule, and how tests will be recorded. For
critical systems, the test plan may also include details of the tests to be run on the software.

http://software-engineering-book.com/web/test-planning/

http://software-engineering-book.com/web/test-planning

232   Chapter 8  ■  Software testing

develops tests and assists with the testing process. For critical systems, a more for-
mal process may be used, with a separate testing group within the development team.
This group is responsible for developing tests and maintaining detailed records of
test results.

There are three stages of development testing:

1.	 Unit testing, where individual program units or object classes are tested. Unit
testing should focus on testing the functionality of objects or methods.

2.	 Component testing, where several individual units are integrated to create com-
posite components. Component testing should focus on testing the component
interfaces that provide access to the component functions.

3.	 System testing, where some or all of the components in a system are integrated
and the system is tested as a whole. System testing should focus on testing com-
ponent interactions.

Development testing is primarily a defect testing process, where the aim of test-
ing is to discover bugs in the software. It is therefore usually interleaved with
debugging—the process of locating problems with the code and changing the pro-
gram to fix these problems.

	 8.1.1 	 Unit testing

Unit testing is the process of testing program components, such as methods or object
classes. Individual functions or methods are the simplest type of component. Your
tests should be calls to these routines with different input parameters. You can use
the approaches to test-case design discussed in Section 8.1.2 to design the function
or method tests.

When you are testing object classes, you should design your tests to provide cov-
erage of all of the features of the object. This means that you should test all opera-
tions associated with the object; set and check the value of all attributes associated
with the object; and put the object into all possible states. This means that you should
simulate all events that cause a state change.

Consider, for example, the weather station object from the example that I discussed
in Chapter 7. The attributes and operations of this object are shown in Figure 8.4.

Debugging

Debugging is the process of fixing errors and problems that have been discovered by testing. Using information
from the program tests, debuggers use their knowledge of the programming language and the intended out-
come of the test to locate and repair the program error. When you are debugging a program, you usually use
interactive tools that provide extra information about program execution.

http://software-engineering-book.com/web/debugging/

http://software-engineering-book.com/web/debugging

	 8.1  ■  Development testing   233

It has a single attribute, which is its identifier. This is a constant that is set when the
weather station is installed. You therefore only need a test that checks if it has been
properly set up. You need to define test cases for all of the methods associated with the
object such as reportWeather and reportStatus. Ideally, you should test methods in
isolation, but, in some cases, test sequences are necessary. For example, to test the
method that shuts down the weather station instruments (shutdown), you need to have
executed the restart method.

Generalization or inheritance makes object class testing more complicated. You
can’t simply test an operation in the class where it is defined and assume that it will
work as expected in all of the subclasses that inherit the operation. The operation that
is inherited may make assumptions about other operations and attributes. These
assumptions may not be valid in some subclasses that inherit the operation. You
therefore have to test the inherited operation everywhere that it is used.

To test the states of the weather station, you can use a state model as discussed in
Chapter 7 (Figure 7.8). Using this model, you identify sequences of state transitions
that have to be tested and define event sequences to force these transitions. In princi-
ple, you should test every possible state transition sequence, although in practice this
may be too expensive. Examples of state sequences that should be tested in the
weather station include:

Shutdown → Running → Shutdown
Configuring → Running → Testing → Transmitting → Running
Running → Collecting → Running → Summarizing → Transmitting → Running

Whenever possible, you should automate unit testing. In automated unit testing, you
make use of a test automation framework, such as JUnit (Tahchiev et al. 2010) to write
and run your program tests. Unit testing frameworks provide generic test classes that
you extend to create specific test cases. They can then run all of the tests that you have
implemented and report, often through some graphical unit interface (GUI), on the suc-
cess or otherwise of the tests. An entire test suite can often be run in a few seconds, so it
is possible to execute all tests every time you make a change to the program.

An automated test has three parts:

1.	 A setup part, where you initialize the system with the test case, namely, the
inputs and expected outputs.

identifier

reportWeather ()
reportStatus ()
powerSave (instruments)
remoteControl (commands)
reconfigure (commands)
restart (instruments)
shutdown (instruments)

WeatherStation

Figure 8.4  The weather
station object interface

234   Chapter 8  ■  Software testing

2.	 A call part, where you call the object or method to be tested.

3.	 An assertion part, where you compare the result of the call with the expected
result. If the assertion evaluates to true, the test has been successful; if false,
then it has failed.

Sometimes, the object that you are testing has dependencies on other objects that
may not have been implemented or whose use slows down the testing process. For
example, if an object calls a database, this may involve a slow setup process before
it can be used. In such cases, you may decide to use mock objects.

Mock objects are objects with the same interface as the external objects being
used that simulate its functionality. For example, a mock object simulating a data-
base may have only a few data items that are organized in an array. They can be
accessed quickly, without the overheads of calling a database and accessing disks.
Similarly, mock objects can be used to simulate abnormal operations or rare
events. For example, if your system is intended to take action at certain times of
day, your mock object can simply return those times, irrespective of the actual
clock time.

	 8.1.2 	 Choosing unit test cases

Testing is expensive and time consuming, so it is important that you choose effective
unit test cases. Effectiveness, in this case, means two things:

1.	 The test cases should show that, when used as expected, the component that you
are testing does what it is supposed to do.

2.	 If there are defects in the component, these should be revealed by test cases.

You should therefore design two kinds of test case. The first of these should
reflect normal operation of a program and should show that the component works.
For example, if you are testing a component that creates and initializes a new patient
record, then your test case should show that the record exists in a database and that
its fields have been set as specified. The other kind of test case should be based on
testing experience of where common problems arise. It should use abnormal inputs
to check that these are properly processed and do not crash the component.

Two strategies that can be effective in helping you choose test cases are:

1.	 Partition testing, where you identify groups of inputs that have common charac-
teristics and should be processed in the same way. You should choose tests from
within each of these groups.

2.	 Guideline-based testing, where you use testing guidelines to choose test cases.
These guidelines reflect previous experience of the kinds of errors that program-
mers often make when developing components.

	 8.1  ■  Development testing   235

The input data and output results of a program can be thought of as members of
sets with common characteristics. Examples of these sets are positive numbers, negative
numbers, and menu selections. Programs normally behave in a comparable way for
all members of a set. That is, if you test a program that does a computation and
requires two positive numbers, then you would expect the program to behave in the
same way for all positive numbers.

Because of this equivalent behavior, these classes are sometimes called equiva-
lence partitions or domains (Bezier 1990). One systematic approach to test-case
design is based on identifying all input and output partitions for a system or compo-
nent. Test cases are designed so that the inputs or outputs lie within these partitions.
Partition testing can be used to design test cases for both systems and components.

In Figure 8.5, the large shaded ellipse on the left represents the set of all possible
inputs to the program that is being tested. The smaller unshaded ellipses represent
equivalence partitions. A program being tested should process all of the members of
an input equivalence partition in the same way.

Output equivalence partitions are partitions within which all of the outputs have
something in common. Sometimes there is a 1:1 mapping between input and output
equivalence partitions. However, this is not always the case; you may need to define
a separate input equivalence partition, where the only common characteristic of the
inputs is that they generate outputs within the same output partition. The shaded area
in the left ellipse represents inputs that are invalid. The shaded area in the right
ellipse represents exceptions that may occur, that is, responses to invalid inputs.

Once you have identified a set of partitions, you choose test cases from each of
these partitions. A good rule of thumb for test-case selection is to choose test cases
on the boundaries of the partitions, plus cases close to the midpoint of the partition.
The reason for this is that designers and programmers tend to consider typical values
of inputs when developing a system. You test these by choosing the midpoint of the
partition. Boundary values are often atypical (e.g., zero may behave differently from
other non-negative numbers) and so are sometimes overlooked by developers.
Program failures often occur when processing these atypical values.

System

Possible inputs

Input equivalence partitions

Possible outputsCorrect outputs

Output partitions

Figure 8.5  Equivalence
partitioning

236   Chapter 8  ■  Software testing

You identify partitions by using the program specification or user documentation and
from experience where you predict the classes of input value that are likely to detect
errors. For example, say a program specification states that the program accepts four to
eight inputs which are five-digit integers greater than 10,000. You use this information to
identify the input partitions and possible test input values. These are shown in Figure 8.6.

When you use the specification of a system to identify equivalence partitions, this
is called black-box testing. You don’t need any knowledge of how the system works.
It is sometimes useful to supplement the black-box tests with “white-box testing,”
where you look at the code of the program to find other possible tests. For example,
your code may include exceptions to handle incorrect inputs. You can use this
knowledge to identify “exception partitions”—different ranges where the same
exception handling should be applied.

Equivalence partitioning is an effective approach to testing because it helps
account for errors that programmers often make when processing inputs at the edges
of partitions. You can also use testing guidelines to help choose test cases. Guidelines
encapsulate knowledge of what kinds of test cases are effective for discovering
errors. For example, when you are testing programs with sequences, arrays, or lists,
guidelines that could help reveal defects include:

1.	 Test software with sequences that have only a single value. Programmers natu-
rally think of sequences as made up of several values, and sometimes they
embed this assumption in their programs. Consequently, if presented with a
single-value sequence, a program may not work properly.

2.	 Use different sequences of different sizes in different tests. This decreases the
chances that a program with defects will accidentally produce a correct output
because of some accidental characteristics of the input.

3.	 Derive tests so that the first, middle, and last elements of the sequence are
accessed. This approach reveals problems at partition boundaries.

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

Figure 8.6  Equivalence
partitions

	 8.1  ■  Development testing   237

Whittaker’s book (Whittaker 2009) includes many examples of guidelines that
can be used in test-case design. Some of the most general guidelines that he suggests are:

■	 Choose inputs that force the system to generate all error messages:

■	 Design inputs that cause input buffers to overflow.

■	 Repeat the same input or series of inputs numerous times.

■	 Force invalid outputs to be generated.

■	 Force computation results to be too large or too small.

As you gain experience with testing, you can develop your own guidelines about
how to choose effective test cases. I give more examples of testing guidelines in the
next section.

	 8.1.3 	 Component testing

Software components are often made up of several interacting objects. For example,
in the weather station system, the reconfiguration component includes objects that
deal with each aspect of the reconfiguration. You access the functionality of these
objects through component interfaces (see Chapter 7). Testing composite components
should therefore focus on showing that the component interface or interfaces behave
according to its specification. You can assume that unit tests on the individual objects
within the component have been completed.

Figure 8.7 illustrates the idea of component interface testing. Assume that compo-
nents A, B, and C have been integrated to create a larger component or subsystem.
The test cases are not applied to the individual components but rather to the interface
of the composite component created by combining these components. Interface errors
in the composite component may not be detectable by testing the individual objects
because these errors result from interactions between the objects in the component.

There are different types of interface between program components and, conse-
quently, different types of interface error that can occur:

1.	 Parameter interfaces These are interfaces in which data or sometimes function
references are passed from one component to another. Methods in an object
have a parameter interface.

Path testing

Path testing is a testing strategy that aims to exercise every independent execution path through a component
or program. If every independent path is executed, then all statements in the component must have been exe-
cuted at least once. All conditional statements are tested for both true and false cases. In an object-oriented
development process, path testing may be used to test the methods associated with objects.

http://software-engineering-book.com/web/path-testing/

http://software-engineering-book.com/web/path-testing

238   Chapter 8  ■  Software testing

2.	 Shared memory interfaces These are interfaces in which a block of memory is
shared between components. Data is placed in the memory by one subsystem
and retrieved from there by other subsystems. This type of interface is used in
embedded systems, where sensors create data that is retrieved and processed by
other system components.

3.	 Procedural interfaces These are interfaces in which one component encapsu-
lates a set of procedures that can be called by other components. Objects and
reusable components have this form of interface.

4.	 Message passing interfaces These are interfaces in which one component
requests a service from another component by passing a message to it. A return
message includes the results of executing the service. Some object-oriented sys-
tems have this form of interface, as do client–server systems.

Interface errors are one of the most common forms of error in complex systems
(Lutz 1993). These errors fall into three classes:

■	 Interface misuse A calling component calls some other component and makes an
error in the use of its interface. This type of error is common in parameter inter-
faces, where parameters may be of the wrong type or be passed in the wrong
order, or the wrong number of parameters may be passed.

■	 Interface misunderstanding A calling component misunderstands the specification
of the interface of the called component and makes assumptions about its behavior.
The called component does not behave as expected, which then causes unexpected
behavior in the calling component. For example, a binary search method may be
called with a parameter that is an unordered array. The search would then fail.

■	 Timing errors These occur in real-time systems that use a shared memory or a
message-passing interface. The producer of data and the consumer of data may

B

C

Test
cases

A

Figure 8.7  Interface
testing

	 8.1  ■  Development testing   239

operate at different speeds. Unless particular care is taken in the interface design,
the consumer can access out-of-date information because the producer of the
information has not updated the shared interface information.

Testing for interface defects is difficult because some interface faults may only
manifest themselves under unusual conditions. For example, say an object imple-
ments a queue as a fixed-length data structure. A calling object may assume that the
queue is implemented as an infinite data structure, and so it does not check for queue
overflow when an item is entered.

This condition can only be detected during testing by designing a sequence of test
cases that force the queue to overflow. The tests should check how calling objects
handle that overflow. However, as this is a rare condition, testers may think that this
isn’t worth checking when writing the test set for the queue object.

A further problem may arise because of interactions between faults in different
modules or objects. Faults in one object may only be detected when some other
object behaves in an unexpected way. Say an object calls another object to receive
some service and the calling object assumes that the response is correct. If the called
service is faulty in some way, the returned value may be valid but incorrect. The
problem is therefore not immediately detectable but only becomes obvious when
some later computation, using the returned value, goes wrong.

Some general guidelines for interface testing are:

1.	 Examine the code to be tested and identify each call to an external component.
Design a set of tests in which the values of the parameters to the external com-
ponents are at the extreme ends of their ranges. These extreme values are most
likely to reveal interface inconsistencies.

2.	 Where pointers are passed across an interface, always test the interface with null
pointer parameters.

3.	 Where a component is called through a procedural interface, design tests that
deliberately cause the component to fail. Differing failure assumptions are one
of the most common specification misunderstandings.

4.	 Use stress testing in message passing systems. This means that you should
design tests that generate many more messages than are likely to occur in prac-
tice. This is an effective way of revealing timing problems.

5.	 Where several components interact through shared memory, design tests that
vary the order in which these components are activated. These tests may reveal
implicit assumptions made by the programmer about the order in which the
shared data is produced and consumed.

Sometimes it is better to use inspections and reviews rather than testing to look
for interface errors. Inspections can concentrate on component interfaces and ques-
tions about the assumed interface behavior asked during the inspection process.

240   Chapter 8  ■  Software testing

	 8.1.4 	 System testing

System testing during development involves integrating components to create a ver-
sion of the system and then testing the integrated system. System testing checks that
components are compatible, interact correctly, and transfer the right data at the right
time across their interfaces. It obviously overlaps with component testing, but there
are two important differences:

1.	 During system testing, reusable components that have been separately developed
and off-the-shelf systems may be integrated with newly developed components.
The complete system is then tested.

2.	 Components developed by different team members or subteams may be integrated
at this stage. System testing is a collective rather than an individual process. In
some companies, system testing may involve a separate testing team with no
involvement from designers and programmers.

All systems have emergent behavior. This means that some system functionality
and characteristics only become obvious when you put the components together.
This may be planned emergent behavior, which has to be tested. For example, you
may integrate an authentication component with a component that updates the sys-
tem database. You then have a system feature that restricts information updating to
authorized users. Sometimes, however, the emergent behavior is unplanned and
unwanted. You have to develop tests that check that the system is only doing what it
is supposed to do.

System testing should focus on testing the interactions between the components
and objects that make up a system. You may also test reusable components or sys-
tems to check that they work as expected when they are integrated with new compo-
nents. This interaction testing should discover those component bugs that are only
revealed when a component is used by other components in the system. Interaction
testing also helps find misunderstandings, made by component developers, about
other components in the system.

Because of its focus on interactions, use case-based testing is an effective
approach to system testing. Several components or objects normally implement each
use case in the system. Testing the use case forces these interactions to occur. If you
have developed a sequence diagram to model the use case implementation, you can
see the objects or components that are involved in the interaction.

In the wilderness weather station example, the system software reports summa-
rized weather data to a remote computeras described in Figure 7.3. Figure 8.8 shows
the sequence of operations in the weather station when it responds to a request to col-
lect data for the mapping system. You can use this diagram to identify operations that
will be tested and to help design the test cases to execute the tests. Therefore issuing
a request for a report will result in the execution of the following thread of methods:

SatComms:request → WeatherStation:reportWeather → Commslink:Get(summary)
→ WeatherData:summarize

	 8.1  ■  Development testing   241

The sequence diagram helps you design the specific test cases that you need, as it
shows what inputs are required and what outputs are created:

1.	 An input of a request for a report should have an associated acknowledgment.
A report should ultimately be returned from the request. During testing, you
should create summarized data that can be used to check that the report is cor-
rectly organized.

2.	 An input request for a report to WeatherStation results in a summarized report
being generated. You can test this in isolation by creating raw data correspond-
ing to the summary that you have prepared for the test of SatComms and check-
ing that the WeatherStation object correctly produces this summary. This raw
data is also used to test the WeatherData object.

Of course, I have simplified the sequence diagram in Figure 8.8 so that it does not
show exceptions. A complete use case/scenario test must take these exceptions into
account and ensure that they are correctly handled.

For most systems, it is difficult to know how much system testing is essential and
when you should stop testing. Exhaustive testing, where every possible program
execution sequence is tested, is impossible. Testing, therefore, has to be based on a
subset of possible test cases. Ideally, software companies should have policies for
choosing this subset. These policies might be based on general testing policies, such
as a policy that all program statements should be executed at least once. Alternatively,
they may be based on experience of system usage and focus on testing the features of
the operational system. For example:

SatComms

request (report)

acknowledge
reportWeather ()

get (summary)

reply (report)

acknowledge

WeatherStation Commslink

summarise ()

WeatherData

acknowledge

send (report)

acknowledge

Weather
information system

Figure 8.8  Collect
weather data
sequence chart

242   Chapter 8  ■  Software testing

1.	 All system functions that are accessed through menus should be tested.

2.	 Combinations of functions (e.g., text formatting) that are accessed through the
same menu must be tested.

3.	 Where user input is provided, all functions must be tested with both correct and
incorrect input.

It is clear from experience with major software products such as word processors
or spreadsheets that similar guidelines are normally used during product testing.
When features of the software are used in isolation, they normally work. Problems
arise, as Whittaker explains (Whittaker 2009), when combinations of less com-
monly used features have not been tested together. He gives the example of how, in
a commonly used word processor, using footnotes with multicolumn layout causes
incorrect layout of the text.

Automated system testing is usually more difficult than automated unit or compo-
nent testing. Automated unit testing relies on predicting the outputs and then encoding
these predictions in a program. The prediction is then compared with the result.
However, the point of implementing a system may be to generate outputs that are
large or cannot be easily predicted. You may be able to examine an output and check
its credibility without necessarily being able to create it in advance.

	 8.2 	 Test-driven development

Test-driven development (TDD) is an approach to program development in which
you interleave testing and code development (Beck 2002; Jeffries and Melnik 2007).
You develop the code incrementally, along with a set of tests for that increment. You
don’t start working on the next increment until the code that you have developed
passes all of its tests. Test-driven development was introduced as part of the XP agile
development method. However, it has now gained mainstream acceptance and may
be used in both agile and plan-based processes.

Incremental integration and testing

System testing involves integrating different components, then testing the integrated system that you have
created. You should always use an incremental approach to integration and testing where you integrate a
component, test the system, integrate another component, test again, and so on. If problems occur, they are
probably due to interactions with the most recently integrated component.

Incremental integration and testing is fundamental to agile methods, where regression tests are run every time
a new increment is integrated.

http://software-engineering-book.com/web/integration/

http://software-engineering-book.com/web/integration

	 8.2  ■  Test-driven development   243

The fundamental TDD process is shown in Figure 8.9. The steps in the process
are as follows:

1.	 You start by identifying the increment of functionality that is required. This
should normally be small and implementable in a few lines of code.

2.	 You write a test for this functionality and implement it as an automated test.
This means that the test can be executed and will report whether or not it has
passed or failed.

3.	 You then run the test, along with all other tests that have been implemented.
Initially, you have not implemented the functionality so the new test will fail.
This is deliberate as it shows that the test adds something to the test set.

4.	 You then implement the functionality and re-run the test. This may involve
refactoring existing code to improve it and add new code to what’s already there.

5.	 Once all tests run successfully, you move on to implementing the next chunk of
functionality.

An automated testing environment, such as the JUnit environment that supports
Java program testing (Tahchiev et al. 2010) is essential for TDD. As the code is
developed in very small increments, you have to be able to run every test each time
that you add functionality or refactor the program. Therefore, the tests are embedded
in a separate program that runs the tests and invokes the system that is being tested.
Using this approach, you can run hundreds of separate tests in a few seconds.

Test-driven development helps programmers clarify their ideas of what a code
segment is actually supposed to do. To write a test, you need to understand what is
intended, as this understanding makes it easier to write the required code. Of course,
if you have incomplete knowledge or understanding, then TDD won’t help.

If you don’t know enough to write the tests, you won’t develop the required code.
For example, if your computation involves division, you should check that you are
not dividing the numbers by zero. If you forget to write a test for this, then the check-
ing code will never be included in the program.

As well as better problem understanding, other benefits of test-driven development are:

1.	 Code coverage In principle, every code segment that you write should have at
least one associated test. Therefore, you can be confident that all of the code in

Identify new
functionality

Write test Run test
Implement

functionality and
refactor

fail

pass

Figure 8.9  Test-driven
development

244   Chapter 8  ■  Software testing

the system has actually been executed. Code is tested as it is written, so defects
are discovered early in the development process.

2.	 Regression testing A test suite is developed incrementally as a program is devel-
oped. You can always run regression tests to check that changes to the program
have not introduced new bugs.

3.	 Simplified debugging When a test fails, it should be obvious where the prob-
lem lies. The newly written code needs to be checked and modified. You do
not need to use debugging tools to locate the problem. Reports of the use of
TDD suggest that it is hardly ever necessary to use an automated debugger in
test-driven development (Martin 2007).

4.	 System documentation The tests themselves act as a form of documentation that
describe what the code should be doing. Reading the tests can make it easier to
understand the code.

One of the most important benefits of TDD is that it reduces the costs of regres-
sion testing. Regression testing involves running test sets that have successfully
executed after changes have been made to a system. The regression test checks that
these changes have not introduced new bugs into the system and that the new code
interacts as expected with the existing code. Regression testing is expensive and
sometimes impractical when a system is manually tested, as the costs in time and
effort are very high. You have to try to choose the most relevant tests to re-run and it
is easy to miss important tests.

Automated testing dramatically reduces the costs of regression testing. Existing
tests may be re-run quickly and cheaply. After making a change to a system in test-
first development, all existing tests must run successfully before any further func-
tionality is added. As a programmer, you can be confident that the new functionality
that you have added has not caused or revealed problems with existing code.

Test-driven development is of most value in new software development where
the functionality is either implemented in new code or by using components from
standard libraries. If you are reusing large code components or legacy systems, then
you need to write tests for these systems as a whole. You cannot easily decompose
them into separate testable elements. Incremental test-driven development is imprac-
tical. Test-driven development may also be ineffective with multithreaded systems.
The different threads may be interleaved at different times in different test runs, and
so may produce different results.

If you use TDD, you still need a system testing process to validate the system,
that is, to check that it meets the requirements of all of the system stakeholders.
System testing also tests performance, reliability, and checks that the system does
not do things that it shouldn’t do, such as produce unwanted outputs. Andrea (Andrea
2007) suggests how testing tools can be extended to integrate some aspects of sys-
tem testing with TDD.

Test-driven development is now a widely used and mainstream approach to soft-
ware testing. Most programmers who have adopted this approach are happy with it

and find it a more productive way to develop software. It is also claimed that use of
TDD encourages better structuring of a program and improved code quality.
However, experiments to verify this claim have been inconclusive.

	 8.3 	 Release testing

Release testing is the process of testing a particular release of a system that is intended
for use outside of the development team. Normally, the system release is for customers
and users. In a complex project, however, the release could be for other teams that are
developing related systems. For software products, the release could be for product
management who then prepare it for sale.

There are two important distinctions between release testing and system testing
during the development process:

1.	 The system development, team should not be responsible for release testing.

2.	 Release testing is a process of validation checking to ensure that a system meets
its requirements and is good enough for use by system customers. System test-
ing by the development team should focus on discovering bugs in the system
(defect testing).

The primary goal of the release testing process is to convince the supplier of the
system that it is good enough for use. If so, it can be released as a product or deliv-
ered to the customer. Release testing, therefore, has to show that the system delivers
its specified functionality, performance, and dependability, and that it does not fail
during normal use.

Release testing is usually a black-box testing process whereby tests are derived
from the system specification. The system is treated as a black box whose behavior
can only be determined by studying its inputs and the related outputs. Another name
for this is functional testing, so-called because the tester is only concerned with
functionality and not the implementation of the software.

	 8.3.1 	 Requirements-based testing

A general principle of good requirements engineering practice is that require-
ments should be testable. That is, the requirement should be written so that a test
can be designed for that requirement. A tester can then check that the require-
ment has been satisfied. Requirements-based testing, therefore, is a systematic
approach to test-case design where you consider each requirement and derive a
set of tests for it. Requirements-based testing is validation rather than defect
testing—you are trying to demonstrate that the system has properly implemented
its requirements.

	 8.3  ■  Release testing   245

246   Chapter 8  ■  Software testing

For example, consider the following Mentcare system requirements that are con-
cerned with checking for drug allergies:

If a patient is known to be allergic to any particular medication, then prescrip-
tion of that medication shall result in a warning message being issued to the
system user.

If a prescriber chooses to ignore an allergy warning, he or she shall provide
a reason why this has been ignored.

To check if these requirements have been satisfied, you may need to develop sev-
eral related tests:

1.	 Set up a patient record with no known allergies. Prescribe medication for aller-
gies that are known to exist. Check that a warning message is not issued by the
system.

2.	 Set up a patient record with a known allergy. Prescribe the medication that the
patient is allergic to and check that the warning is issued by the system.

3.	 Set up a patient record in which allergies to two or more drugs are recorded.
Prescribe both of these drugs separately and check that the correct warning for
each drug is issued.

4.	 Prescribe two drugs that the patient is allergic to. Check that two warnings are
correctly issued.

5.	 Prescribe a drug that issues a warning and overrule that warning. Check that the
system requires the user to provide information explaining why the warning was
overruled.

You can see from this list that testing a requirement does not mean just writing a
single test. You normally have to write several tests to ensure that you have coverage
of the requirement. You should also keep traceability records of your requirements-
based testing, which link the tests to the specific requirements that you have tested.

	 8.3.2 	 Scenario testing

Scenario testing is an approach to release testing whereby you devise typical sce-
narios of use and use these scenarios to develop test cases for the system. A scenario
is a story that describes one way in which the system might be used. Scenarios
should be realistic, and real system users should be able to relate to them. If you have
used scenarios or user stories as part of the requirements engineering process
(described in Chapter 4), then you may be able to reuse them as testing scenarios.

In a short paper on scenario testing, Kaner (Kaner 2003) suggests that a scenario
test should be a narrative story that is credible and fairly complex. It should moti-
vate stakeholders; that is, they should relate to the scenario and believe that it is

	 8.3  ■  Release testing   247

important that the system passes the test. He also suggests that it should be easy to
evaluate. If there are problems with the system, then the release testing team should
recognize them.

As an example of a possible scenario from the Mentcare system, Figure 8.10
describes one way that the system may be used on a home visit. This scenario tests a
number of features of the Mentcare system:

1.	 Authentication by logging on to the system.

2.	 Downloading and uploading of specified patient records to a laptop.

3.	 Home visit scheduling.

4.	 Encryption and decryption of patient records on a mobile device.

5.	 Record retrieval and modification.

6.	 Links with the drugs database that maintains side-effect information.

7.	 The system for call prompting.

If you are a release tester, you run through this scenario, playing the role of
George and observing how the system behaves in response to different inputs. As
George, you may make deliberate mistakes, such as inputting the wrong key phrase
to decode records. This checks the response of the system to errors. You should care-
fully note any problems that arise, including performance problems. If a system is
too slow, this will change the way that it is used. For example, if it takes too long to
encrypt a record, then users who are short of time may skip this stage. If they then
lose their laptop, an unauthorized person could then view the patient records.

When you use a scenario-based approach, you are normally testing several require-
ments within the same scenario. Therefore, as well as checking individual requirements,
you are also checking that combinations of requirements do not cause problems.

George is a nurse who specializes in mental health care. One of his responsibilities is to visit patients at home
to check that their treatment is effective and that they are not suffering from medication side effects.

On a day for home visits, George logs into the Mentcare system and uses it to print his schedule of home
visits for that day, along with summary information about the patients to be visited. He requests that the records
for these patients be downloaded to his laptop. He is prompted for his key phrase to encrypt the records on the
laptop.

One of the patients whom he visits is Jim, who is being treated with medication for depression. Jim feels
that the medication is helping him but believes that it has the side effect of keeping him awake at night. George
looks up Jim’s record and is prompted for his key phrase to decrypt the record. He checks the drug prescribed
and queries its side effects. Sleeplessness is a known side effect, so he notes the problem in Jim’s record and
suggests that he visit the clinic to have his medication changed. Jim agrees, so George enters a prompt to call
him when he gets back to the clinic to make an appointment with a physician. George ends the consultation,
and the system re-encrypts Jim’s record.

After finishing his consultations, George returns to the clinic and uploads the records of patients visited to
the database. The system generates a call list for George of those patients whom he has to contact for follow-up
information and make clinic appointments.

Figure 8.10  A user
story for the
Mentcare system

248   Chapter 8  ■  Software testing

	 8.3.3 	 Performance testing

Once a system has been completely integrated, it is possible to test for emergent
properties, such as performance and reliability. Performance tests have to be
designed to ensure that the system can process its intended load. This usually
involves running a series of tests where you increase the load until the system perfor-
mance becomes unacceptable.

As with other types of testing, performance testing is concerned both with dem-
onstrating that the system meets its requirements and discovering problems and
defects in the system. To test whether performance requirements are being achieved,
you may have to construct an operational profile. An operational profile (see Chapter 11)
is a set of tests that reflect the actual mix of work that will be handled by the system.
Therefore, if 90% of the transactions in a system are of type A, 5% of type B, and the
remainder of types C, D, and E, then you have to design the operational profile so
that the vast majority of tests are of type A. Otherwise, you will not get an accurate
test of the operational performance of the system.

This approach, of course, is not necessarily the best approach for defect testing.
Experience has shown that an effective way to discover defects is to design tests
around the limits of the system. In performance testing, this means stressing the sys-
tem by making demands that are outside the design limits of the software. This is
known as stress testing.

Say you are testing a transaction processing system that is designed to process up
to 300 transactions per second. You start by testing this system with fewer than
300 transactions per second. You then gradually increase the load on the system
beyond 300 transactions per second until it is well beyond the maximum design load
of the system and the system fails.

Stress testing helps you do two things:

1.	 Test the failure behavior of the system. Circumstances may arise through an
unexpected combination of events where the load placed on the system exceeds
the maximum anticipated load. In these circumstances, system failure should
not cause data corruption or unexpected loss of user services. Stress testing
checks that overloading the system causes it to “fail-soft” rather than collapse
under its load.

2.	 Reveal defects that only show up when the system is fully loaded. Although it can
be argued that these defects are unlikely to cause system failures in normal use, there
may be unusual combinations of circumstances that the stress testing replicates.

Stress testing is particularly relevant to distributed systems based on a network of
processors. These systems often exhibit severe degradation when they are heavily
loaded. The network becomes swamped with coordination data that the different
processes must exchange. The processes become slower and slower as they wait for
the required data from other processes. Stress testing helps you discover when the
degradation begins so that you can add checks to the system to reject transactions
beyond this point.

	 8.4  ■  User testing   249

	 8.4 	 User testing

User or customer testing is a stage in the testing process in which users or customers
provide input and advice on system testing. This may involve formally testing a sys-
tem that has been commissioned from an external supplier. Alternatively, it may be
an informal process where users experiment with a new software product to see if
they like it and to check that it does what they need. User testing is essential, even
when comprehensive system and release testing have been carried out. Influences
from the user’s working environment can have a major effect on the reliability, per-
formance, usability, and robustness of a system.

It is practically impossible for a system developer to replicate the system’s work-
ing environment, as tests in the developer’s environment are inevitably artificial. For
example, a system that is intended for use in a hospital is used in a clinical environ-
ment where other things are going on, such as patient emergencies and conversations
with relatives. These all affect the use of a system, but developers cannot include
them in their testing environment.

There are three different types of user testing:

1.	 Alpha testing, where a selected group of software users work closely with the
development team to test early releases of the software.

2.	 Beta testing, where a release of the software is made available to a larger group
of users to allow them to experiment and to raise problems that they discover
with the system developers.

3.	 Acceptance testing, where customers test a system to decide whether or not it is ready
to be accepted from the system developers and deployed in the customer environment.

In alpha testing, users and developers work together to test a system as it is being
developed. This means that the users can identify problems and issues that are not
readily apparent to the development testing team. Developers can only really work
from the requirements, but these often do not reflect other factors that affect the
practical use of the software. Users can therefore provide information about practice
that helps with the design of more realistic tests.

Alpha testing is often used when developing software products or apps. Experienced
users of these products may be willing to get involved in the alpha testing process
because this gives them early information about new system features that they can
exploit. It also reduces the risk that unanticipated changes to the software will have
disruptive effects on their business. However, alpha testing may also be used when
custom software is being developed. Agile development methods advocate user
involvement in the development process, and that users should play a key role in
designing tests for the system.

Beta testing takes place when an early, sometimes unfinished, release of a software
system is made available to a larger group of customers and users for evaluation.
Beta testers may be a selected group of customers who are early adopters of the system.

250   Chapter 8  ■  Software testing

Alternatively, the software may be made publicly available for use by anyone who is
interested in experimenting with it.

Beta testing is mostly used for software products that are used in many different
settings. This is important as, unlike custom product developers, there is no way for
the product developer to limit the software’s operating environment. It is impossible
for product developers to know and replicate all the settings in which the software
product will be used. Beta testing is therefore used to discover interaction problems
between the software and features of its operational environment. Beta testing is also
a form of marketing. Customers learn about their system and what it can do for them.

Acceptance testing is an inherent part of custom systems development. Customers
test a system, using their own data, and decide if it should be accepted from the system
developer. Acceptance implies that final payment should be made for the software.

Figure 8.11 shows that here are six stages in the acceptance testing process:

1.	 Define acceptance criteria This stage should ideally take place early in the pro-
cess before the contract for the system is signed. The acceptance criteria should
be part of the system contract and be approved by the customer and the devel-
oper. In practice, however, it can be difficult to define criteria so early in the
process. Detailed requirements may not be available, and the requirements will
almost certainly change during the development process.

2.	 Plan acceptance testing This stage involves deciding on the resources, time, and
budget for acceptance testing and establishing a testing schedule. The accept-
ance test plan should also discuss the required coverage of the requirements and
the order in which system features are tested. It should define risks to the testing
process such as system crashes and inadequate performance, and discuss how
these risks can be mitigated.

3.	 Derive acceptance tests Once acceptance criteria have been established, tests
have to be designed to check whether or not a system is acceptable. Acceptance
tests should aim to test both the functional and non-functional characteristics
(e.g., performance) of the system. They should ideally provide complete cover-
age of the system requirements. In practice, it is difficult to establish completely
objective acceptance criteria. There is often scope for argument about whether
or not a test shows that a criterion has definitely been met.

4.	 Run acceptance tests The agreed acceptance tests are executed on the system.
Ideally, this step should take place in the actual environment where the system
will be used, but this may be disruptive and impractical. Therefore, a user testing

Define
acceptance

criteria

Test
criteria

Plan
acceptance

testing

Derive
acceptance

tests

Run
acceptance

tests

Negotiate
test results

Accept or
reject

system

Test
plan

Tests Test
results

Testing
report

Figure 8.11  The
acceptance testing
process

	 8.4  ■  User testing   251

environment may have to be set up to run these tests. It is difficult to automate
this process as part of the acceptance tests may involve testing the interactions
between end-users and the system. Some training of end-users may be required.

5.	 Negotiate test results It is very unlikely that all of the defined acceptance tests
will pass and that there will be no problems with the system. If this is the case,
then acceptance testing is complete and the system can be handed over. More
commonly, some problems will be discovered. In such cases, the developer and
the customer have to negotiate to decide if the system is good enough to be used.
They must also agree on how the developer will fix the identified problems.

6.	 Reject/accept system This stage involves a meeting between the developers and
the customer to decide on whether or not the system should be accepted. If the
system is not good enough for use, then further development is required to fix
the identified problems. Once complete, the acceptance testing phase is repeated.

You might think that acceptance testing is a clear-cut contractual issue. If a system
does not pass its acceptance tests, then it should not be accepted and payment should
not be made. However, the reality is more complex. Customers want to use the soft-
ware as soon as they can because of the benefits of its immediate deployment. They
may have bought new hardware, trained staff, and changed their processes. They may
be willing to accept the software, irrespective of problems, because the costs of not
using the software are greater than the costs of working around the problems.

Therefore, the outcome of negotiations may be conditional acceptance of the sys-
tem. The customer may accept the system so that deployment can begin. The system
provider agrees to repair urgent problems and deliver a new version to the customer
as quickly as possible.

In agile methods such as Extreme Programming, there may be no separate accept-
ance testing activity. The end-user is part of the development team (i.e., he or she is
an alpha tester) and provides the system requirements in terms of user stories. He or
she is also responsible for defining the tests, which decide whether or not the devel-
oped software supports the user stories. These tests are therefore equivalent to
acceptance tests. The tests are automated, and development does not proceed until
the story acceptance tests have successfully been executed.

When users are embedded in a software development team, they should ideally be
“typical” users with general knowledge of how the system will be used. However, it
can be difficult to find such users, and so the acceptance tests may actually not be a
true reflection of how a system is used in practice. Furthermore, the requirement for
automated testing limits the flexibility of testing interactive systems. For such sys-
tems, acceptance testing may require groups of end-users to use the system as if it
was part of their everyday work. Therefore, while an “embedded user” is an attrac-
tive notion in principle, it does not necessarily lead to high-quality tests of the system.

The problem of user involvement in agile teams is one reason why many compa-
nies use a mix of agile and more traditional testing. The system may be developed
using agile techniques, but, after completion of a major release, separate acceptance
testing is used to decide if the system should be accepted.

252   Chapter 8  ■  Software testing

K e y P o i n t s

■	 Testing can only show the presence of errors in a program. It cannot show that there are no
remaining faults.

■	 Development testing is the responsibility of the software development team. A separate team
should be responsible for testing a system before it is released to customers. In the user testing
process, customers or system users provide test data and check that tests are successful.

■	 Development testing includes unit testing in which you test individual objects and methods;
component testing in which you test related groups of objects; and system testing in which you
test partial or complete systems.

■	 When testing software, you should try to “break” the software by using experience and
guidelines to choose types of test cases that have been effective in discovering defects in
other systems.

■	 Wherever possible, you should write automated tests. The tests are embedded in a program
that can be run every time a change is made to a system.

■	 Test-first development is an approach to development whereby tests are written before the code
to be tested. Small code changes are made, and the code is refactored until all tests execute
successfully.

■	 Scenario testing is useful because it replicates the practical use of the system. It involves
inventing a typical usage scenario and using this to derive test cases.

■	 Acceptance testing is a user testing process in which the aim is to decide if the software is good
enough to be deployed and used in its planned operational environment.

F urt h e r R e a d i n g

“How to design practical test cases.” A how-to article on test-case design by an author from a
Japanese company that has a good reputation for delivering software with very few faults.
(T. Yamaura, IEEE Software, 15(6), November 1998) http://dx.doi.org/10.1109/52.730835.

“Test-driven development.” This special issue on test-driven development includes a good general
overview of TDD as well as experience papers on how TDD has been used for different types of
software. (IEEE Software, 24 (3) May/June 2007).

Exploratory Software Testing. This is a practical, rather than theoretical, book on software testing
which develops the ideas in Whittaker’s earlier book, How to Break Software. The author presents a
set of experience-based guidelines on software testing. (J. A. Whittaker, 2009, Addison-Wesley).

How Google Tests Software. This is a book about testing large-scale cloud-based systems and
poses a whole set of new challenges compared to custom software applications. While I don’t think
that the Google approach can be used directly, there are interesting lessons in this book for large-
scale system testing. (J. Whittaker, J. Arbon, and J. Carollo, 2012, Addison-Wesley).

252   Chapter 8  ■  Software testing

http://dx.doi.org/10.1109/52.730835

	 Chapter 8  ■  Software testing   253

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/implementation-and-evolution/

E x e rc i s e s

  8.1. 	Explain how the number of known defects remaining in a program at the time of delivery
affects product support.

  8.2. 	Testing is meant to show that a program does what it is intended to do. Why may testers not
always know what a program is intended for?

  8.3. 	Some people argue that developers should not be involved in testing their own code but that
all testing should be the responsibility of a separate team. Give arguments for and against
testing by the developers themselves.

    8.4. 	You have been asked to test a method called catWhiteSpace in a “Paragraph” object that, within
the paragraph, replaces sequences of blank characters with a single blank character. Identify
testing partitions for this example and derive a set of tests for the catWhiteSpace method.

  8.5. 	What is regression testing? Explain how the use of automated tests and a testing framework
such as JUnit simplifies regression testing.

  8.6. 	The Mentcare system is constructed by adapting an off-the-shelf information system. What do
you think are the differences between testing such a system and testing software that is
developed using an object-oriented language such as Java?

     8.7. 	Write a scenario that could be used to help design tests for the wilderness weather station system.

  8.8. 	What do you understand by the term stress testing? Suggest how you might stress-test the
Mentcare system.

  8.9. 	What are the benefits of involving users in release testing at an early stage in the testing pro-
cess? Are there disadvantages in user involvement?

8.10. 	A common approach to system testing is to test the more important functionalities of a system
first, followed by the less important functionalities until the testing budget is exhausted. Dis-
cuss the ethics involved in identifying what “more important” means.

	 Chapter 8  ■  Exercises   253

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/implementation-and-evolution

254   Chapter 8  ■  Software testing

R e f e r e n c e s

Andrea, J. 2007. “Envisioning the Next Generation of Functional Testing Tools.” IEEE Software 24 (3):
58–65. doi:10.1109/MS.2007.73.

Beck, K. 2002. Test Driven Development: By Example. Boston: Addison-Wesley.

Bezier, B. 1990. Software Testing Techniques, 2nd ed. New York: Van Nostrand Reinhold.

Boehm, B. W. 1979. “Software Engineering; R & D Trends and Defense Needs.” In Research Directions
in Software Technology, edited by P. Wegner, 1–9. Cambridge, MA: MIT Press.

Cusamano, M., and R. W. Selby. 1998. Microsoft Secrets. New York: Simon & Schuster.

Dijkstra, E. W. 1972. “The Humble Programmer.” Comm. ACM 15 (10): 859–866.
doi:10.1145/355604.361591.

Fagan, M. E. 1976. “Design and Code Inspections to Reduce Errors in Program Development.” IBM
Systems J. 15 (3): 182–211.

Jeffries, R., and G. Melnik. 2007. “TDD: The Art of Fearless Programming.” IEEE Software 24: 24–30.
doi:10.1109/MS.2007.75.

Kaner, C. 2003. “An Introduction to Scenario Testing.” Software Testing and Quality Engineering
(October 2003).

Lutz, R. R. 1993. “Analysing Software Requirements Errors in Safety-Critical Embedded Systems.” In
RE’93, 126–133. San Diego CA: IEEE. doi:0.1109/ISRE.1993.324825.

Martin, R. C. 2007. “Professionalism and Test-Driven Development.” IEEE Software 24 (3): 32–36.
doi:10.1109/MS.2007.85.

Prowell, S. J., C. J. Trammell, R. C. Linger, and J. H. Poore. 1999. Cleanroom Software Engineering:
Technology and Process. Reading, MA: Addison-Wesley.

Tahchiev, P., F. Leme, V. Massol, and G. Gregory. 2010. JUnit in Action, 2nd ed. Greenwich,
CT: Manning Publications.

Whittaker, J. A. 2009. Exploratory Software Testing. Boston: Addison-Wesley.

254   Chapter 8  ■  Software testing

Software evolution
9

Objectives
The objectives of this chapter are to explain why software evolution is
such an important part of software engineering and to describe the
challenges of maintaining a large base of software systems, developed
over many years. When you have read this chapter, you will:

■	 understand that software systems have to adapt and evolve if they are
to remain useful and that software change and evolution should be
considered as an integral part of software engineering;

■	 understand what is meant by legacy systems and why these systems
are important to businesses;

■	 understand how legacy systems can be assessed to decide whether
they should be scrapped, maintained, reengineered, or replaced;

■	 have learned about different types of software maintenance and the
factors that affect the costs of making changes to legacy software
systems.

Contents
9.1 	Evolution processes

9.2 	Legacy systems

9.3 	Software maintenance

256    Chapter 9  ■  Software evolution

Large software systems usually have a long lifetime. For example, military or infra-
structure systems, such as air traffic control systems, may have a lifetime of 30 years or
more. Business systems are often more than 10 years old. Enterprise software costs a lot
of money, so a company has to use a software system for many years to get a return on
its investment. Successful software products and apps may have been introduced many
years ago with new versions released every few years. For example, the first version of
Microsoft Word was introduced in 1983, so it has been around for more than 30 years.

During their lifetime, operational software systems have to change if they are
to emain useful. Business changes and changes to user expectations generate new
requirements for the software. Parts of the software may have to be modified to cor-
rect errors that are found in operation, to adapt it for changes to its hardware and
software platform, and to improve its performance or other non-functional character-
istics. Software products and apps have to evolve to cope with platform changes and
new features introduced by their competitors. Software systems, therefore, adapt and
evolve during their lifetime from initial deployment to final retirement.

Businesses have to change their software to ensure that they continue to get value
from it. Their systems are critical business assets, and they have to invest in change to
maintain the value of these assets. Consequently, most large companies spend more
on maintaining existing systems than on new systems development. Historical data
suggests that somewhere between 60% and 90% of software costs are evolution costs
(Lientz and Swanson 1980; Erlikh 2000). Jones (Jones 2006) found that about 75% of
development staff in the United States in 2006 were involved in software evolution
and suggested that this percentage was unlikely to fall in the foreseeable future.

Software evolution is particularly expensive in enterprise systems when individ-
ual software systems are part of a broader “system of systems.” In such cases, you
cannot just consider the changes to one system; you also need to examine how these
changes affect the broader system of systems. Changing one system may mean that
other systems in its environment may also have to evolve to cope with that change.

Therefore, as well as understanding and analyzing the impact of a proposed
change on the system itself, you also have to assess how this change may affect other
systems in the operational environment. Hopkins and Jenkins (Hopkins and Jenkins
2008) have coined the term brownfield software development to describe situations
in which software systems have to be developed and managed in an environment
where they are dependent on other software systems.

The requirements of installed software systems change as the business and its
environment change, so new releases of the systems that incorporate changes and
updates are usually created at regular intervals. Software engineering is therefore a
spiral process with requirements, design, implementation, and testing going on
throughout the lifetime of the system (Figure 9.1). You start by creating release 1 of
the system. Once delivered, changes are proposed, and the development of release 2
starts almost immediately. In fact, the need for evolution may become obvious even
before the system is deployed, so later releases of the software may start develop-
ment before the current version has even been released.

In the last 10 years, the time between iterations of the spiral has reduced dramati-
cally. Before the widespread use of the Internet, new versions of a software system

	 Chapter 9  ■  Software evolution    257

may only have been released every 2 or 3 years. Now, because of competitive pres-
sures and the need to respond quickly to user feedback, the gap between releases of
some apps and web-based systems may be weeks rather than years.

This model of software evolution is applicable when the same company is respon-
sible for the software throughout its lifetime. There is a seamless transition from
development to evolution, and the same software development methods and pro-
cesses are applied throughout the lifetime of the software. Software products and
apps are developed using this approach.

The evolution of custom software, however, usually follows a different model.
The system customer may pay a software company to develop the software and
then take over responsibility for support and evolution using its own staff.
Alternatively, the software customer might issue a separate contract to a different
software company for system support and evolution.

In this situation, there are likely to be discontinuities in the evolution process.
Requirements and design documents may not be passed from one company to
another. Companies may merge or reorganize, inherit software from other compa-
nies, and then find that this has to be changed. When the transition from develop-
ment to evolution is not seamless, the process of changing the software after delivery
is called software maintenance. As I discuss later in this chapter, maintenance
involves extra process activities, such as program understanding, in addition to the
normal activities of software development.

Rajlich and Bennett (Rajlich and Bennett 2000) propose an alternative view of
the software evolution life cycle for business systems. In this model, they distinguish
between evolution and servicing. Evolution is the phase in which significant changes
to the software architecture and functionality are made. During servicing, the only
changes that are made are relatively small but essential changes. These phases over-
lap with each other, as shown in Figure 9.2.

According to Rajlich and Bennett, when software is first used successfully, many
changes to the requirements by stakeholders are proposed and implemented. This is

Specification Implemention

ValidationOperation

Start

Release 1

Release 2

Release 3

etc.

Figure 9.1  A spiral
model of development
and evolution

258    Chapter 9  ■  Software evolution

the evolution phase. However, as the software is modified, its structure tends to
degrade, and system changes become more and more expensive. This often happens
after a few years of use when other environmental changes, such as hardware and
operating systems, are also required. At some stage in the life cycle, the software
reaches a transition point where significant changes and the implementation of new
requirements become less and less cost-effective. At this stage, the software moves
from evolution to servicing.

During the servicing phase, the software is still useful, but only small tactical
changes are made to it. During this stage, the company is usually considering how the
software can be replaced. In the final stage, the software may still be used, but only
essential changes are made. Users have to work around problems that they discover.
Eventually, the software is retired and taken out of use. This often incurs further costs
as data is transferred from an old system to a newer replacement system.

	 9.1 	 Evolution processes

As with all software processes, there is no such thing as a standard software change
or evolution process. The most appropriate evolution process for a software system
depends on the type of software being maintained, the software development pro-
cesses used in an organization, and the skills of the people involved. For some types
of system, such as mobile apps, evolution may be an informal process, where change
requests mostly come from conversations between system users and developers. For
other types of systems, such as embedded critical systems, software evolution may be
formalized, with structured documentation produced at each stage in the process.

Formal or informal system change proposals are the driver for system evolution in all
organizations. In a change proposal, an individual or group suggests changes and updates
to an existing software system. These proposals may be based on existing requirements
that have not been implemented in the released system, requests for new requirements,
bug reports from system stakeholders, and new ideas for software improvement from the
system development team. The processes of change identification and system evolution
are cyclical and continue throughout the lifetime of a system (Figure 9.3).

Before a change proposal is accepted, there needs to be an analysis of the
software to work out which components need to be changed. This analysis allows
the cost and the impact of the change to be assessed. This is part of the general pro-
cess of change management, which should also ensure that the correct versions of

Software
development Software

evolution Software
servicing Software

retirement

Time
Figure 9.2  Evolution
and servicing

	 9.1  ■  Evolution processes    259

components are included in each system release. I discuss change and configuration
management in Chapter 25.

Figure 9.4 shows some of the activities involved in software evolution. The pro-
cess includes the fundamental activities of change analysis, release planning, system
implementation, and releasing a system to customers. The cost and impact of these
changes are assessed to see how much of the system is affected by the change and
how much it might cost to implement the change.

If the proposed changes are accepted, a new release of the system is planned.
During release planning, all proposed changes (fault repair, adaptation, and new
functionality) are considered. A decision is then made on which changes to imple-
ment in the next version of the system. The changes are implemented and validated,
and a new version of the system is released. The process then iterates with a new set
of changes proposed for the next release.

In situations where development and evolution are integrated, change implemen-
tation is simply an iteration of the development process. Revisions to the system are
designed, implemented, and tested. The only difference between initial development
and evolution is that customer feedback after delivery has to be considered when
planning new releases of an application.

Where different teams are involved, a critical difference between development and
evolution is that the first stage of change implementation requires program understanding.

Change proposalsNew system

Change identification
process

Software evolution
process

Figure 9.3  Change
identification and
evolution processes

Release
planning

Change
implementation

System
release

Impact
analysis

Change
requests

Platform
adaptation

System
enhancement

Fault repair

Figure 9.4  A general
model of the software
evolution process

260    Chapter 9  ■  Software evolution

During the program understanding phase, new developers have to understand how the
program is structured, how it delivers functionality, and how the proposed change might
affect the program. They need this understanding to make sure that the implemented
change does not cause new problems when it is introduced into the existing system.

If requirements specification and design documents are available, these should be
updated during the evolution process to reflect the changes that are required (Figure 9.5).
New software requirements should be written, and these should be analyzed and
validated. If the design has been documented using UML models, these models
should be updated. The proposed changes may be prototyped as part of the change
analysis process, where you assess the implications and costs of making the change.

However, change requests sometimes relate to problems in operational systems
that have to be tackled urgently. These urgent changes can arise for three reasons:

1.	 If a serious system fault is detected that has to be repaired to allow normal
operation to continue or to address a serious security vulnerability.

2.	 If changes to the systems operating environment have unexpected effects that
disrupt normal operation.

3.	 If there are unanticipated changes to the business running the system, such as
the emergence of new competitors or the introduction of new legislation that
affects the system.

In these cases, the need to make the change quickly means that you may not be able
to update all of the software documentation. Rather than modify the requirements and
design, you make an emergency fix to the program to solve the immediate problem
(Figure 9.6). The danger here is that the requirements, the software design, and the
code can become inconsistent. While you may intend to document the change in the
requirements and design, additional emergency fixes to the software may then be
needed. These take priority over documentation. Eventually, the original change is
forgotten, and the system documentation and code are never realigned. This problem
of maintaining multiple representations of a system is one of the arguments for mini-
mal documentation, which is fundamental to agile development processes.

Emergency system repairs have to be completed as quickly as possible. You
choose a quick and workable solution rather than the best solution as far as system
structure is concerned. This tends to accelerate the process of software ageing so that
future changes become progressively more difficult and maintenance costs increase.
Ideally, after emergency code repairs are made, the new code should be refactored

Requirements
updating

Software
development

Requirements
analysis

Proposed
changesFigure 9.5  Change

implementation

Modify
source code

Deliver modified
system

Analyze
source code

Change
requests

Figure 9.6  The
emergency repair
process

	 9.2  ■  Legacy systems    261

and improved to avoid program degradation. Of course, the code of the repair may
be reused if possible. However, an alternative, better solution to the problem may be
discovered when more time is available for analysis.

Agile methods and processes, discussed in Chapter 3, may be used for program
evolution as well as program development. Because these methods are based on
incremental development, making the transition from agile development to postde-
livery evolution should be seamless.

However, problems may arise during the handover from a development team to a
separate team responsible for system evolution. There are two potentially problem-
atic situations:

1.	 Where the development team has used an agile approach but the evolution team
prefers a plan-based approach. The evolution team may expect detailed docu-
mentation to support evolution, and this is rarely produced in agile processes.
There may be no definitive statement of the system requirements that can be
modified as changes are made to the system.

2.	 Where a plan-based approach has been used for development but the evolution
team prefers to use agile methods. In this case, the evolution team may have to
start from scratch developing automated tests. The code in the system may not
have been refactored and simplified, as is expected in agile development. In this
case, some program reengineering may be required to improve the code before
it can be used in an agile development process.

Agile techniques such as test-driven development and automated regression test-
ing are useful when system changes are made. System changes may be expressed as
user stories, and customer involvement can help prioritize changes that are required
in an operational system. The Scrum approach of focusing on a backlog of work to
be done can help prioritize the most important system changes. In short, evolution
simply involves continuing the agile development process.

Agile methods used in development may, however, have to be modified when
they are used for program maintenance and evolution. It may be practically impossible
to involve users in the development team as change proposals come from a wide
range of stakeholders. Short development cycles may have to be interrupted to deal
with emergency repairs, and the gap between releases may have to be lengthened to
avoid disrupting operational processes.

	 9.2 	 Legacy systems

Large companies started computerizing their operations in the 1960s, so for the past 50
years or so, more and more software systems have been introduced. Many of these
systems have been replaced (sometimes several times) as the business has changed and
evolved. However, a lot of old systems are still in use and play a critical part in the run-
ning of the business. These older software systems are sometimes called legacy systems.

262    Chapter 9  ■  Software evolution

Legacy systems are older systems that rely on languages and technology that are
no longer used for new systems development. Typically, they have been maintained
over a long period, and their structure may have been degraded by the changes that
have been made. Legacy software may be dependent on older hardware, such as
mainframe computers and may have associated legacy processes and procedures. It
may be impossible to change to more effective business processes because the leg-
acy software cannot be modified to support new processes.

Legacy systems are not just software systems but are broader sociotechnical systems
that include hardware, software, libraries, and other supporting software and business
processes. Figure 9.7 shows the logical parts of a legacy system and their relationships.

1.	 System hardware Legacy systems may have been written for hardware that is no
longer available, that is expensive to maintain, and that may not be compatible
with current organizational IT purchasing policies.

2.	 Support software The legacy system may rely on a range of support software
from the operating system and utilities provided by the hardware manufacturer
through to the compilers used for system development. Again, these may be
obsolete and no longer supported by their original providers.

3.	 Application software The application system that provides the business services
is usually made up of a number of application programs that have been devel-
oped at different times. Some of these programs will also be part of other appli-
cation software systems.

4.	 Application data These data are processed by the application system. In many
legacy systems, an immense volume of data has accumulated over the lifetime
of the system. This data may be inconsistent, may be duplicated in several files,
and may be spread over a number of different databases.

5.	 Business processes These processes are used in the business to achieve some
business objective. An example of a business process in an insurance company
would be issuing an insurance policy; in a manufacturing company, a business
process would be accepting an order for products and setting up the associated
manufacturing process. Business processes may be designed around a legacy
system and constrained by the functionality that it provides.

6.	 Business policies and rules These are definitions of how the business should be
carried out and constraints on the business. Use of the legacy application system
may be embedded in these policies and rules.

An alternative way of looking at these components of a legacy system is as a
series of layers, as shown in Figure 9.8.

Each layer depends on the layer immediately below it and interfaces with that
layer. If interfaces are maintained, then you should be able to make changes within a
layer without affecting either of the adjacent layers. In practice, however, this simple
encapsulation is an oversimplification, and changes to one layer of the system may

	 9.2  ■  Legacy systems    263

require consequent changes to layers that are both above and below the changed
level. The reasons for this are as follows:

1.	 Changing one layer in the system may introduce new facilities, and higher
layers in the system may then be changed to take advantage of these facilities.
For example, a new database introduced at the support software layer may
include facilities to access the data through a web browser, and business
processes may be modified to take advantage of this facility.

2.	 Changing the software may slow the system down so that new hardware is
needed to improve the system performance. The increase in performance from
the new hardware may then mean that further software changes that were
previously impractical become possible.

3.	 It is often impossible to maintain hardware interfaces, especially if new hard-
ware is introduced. This is a particular problem in embedded systems where
there is a tight coupling between software and hardware. Major changes to the
application software may be required to make effective use of the new hardware.

It is difficult to know exactly how much legacy code is still in use, but, as an indi-
cator, industry has estimated that there are more than 200 billion lines of COBOL
code in current business systems. COBOL is a programming language designed for
writing business systems, and it was the main business development language from
the 1960s to the 1990s, particularly in the finance industry (Mitchell 2012). These
programs still work effectively and efficiently, and the companies using them see no
need to change them. A major problem that they face, however, is a shortage of
COBOL programmers as the original developers of the system retire. Universities no
longer teach COBOL, and younger software engineers are more interested in pro-
gramming in modern languages.

Skill shortages are only one of the problems of maintaining business legacy sys-
tems. Other issues include security vulnerabilities because these systems were
developed before the widespread use of the Internet and problems in interfacing
with systems written in modern programming languages. The original software tool
supplier may be out of business or may no longer maintain the support tools used to

System
hardware

Business
processes

Application
software

Business policies
and rules

Support
software

Application
 data

ConstrainsUsesUsesRuns-onRuns-on

Embeds
knowledge of

Uses

Figure 9.7  The elements
of a legacy system

264    Chapter 9  ■  Software evolution

develop the system. The system hardware may be obsolete and so increasingly
expensive to maintain.

Why then do businesses not simply replace these systems with more modern
equivalents? The simple answer to this question is that it is too expensive and too
risky to do so. If a legacy system works effectively, the costs of replacement may
exceed the savings that come from the reduced support costs of a new system.
Scrapping legacy systems and replacing them with more modern software open up
the possibility of things going wrong and the new system failing to meet the needs
of the business. Managers try to minimize those risks and therefore do not want to
face the uncertainties of new software systems.

I discovered some of the problems of legacy system replacement when I was
involved in analyzing a legacy system replacement project in a large organization.
This enterprise used more than 150 legacy systems to run its business. It decided to
replace all of these systems with a single, centrally maintained ERP system. For a
number of business and technology reasons, the new system development was a
failure, and it did not deliver the improvements promised. After spending more than
£10 million, only a part of the new system was operational, and it worked less effec-
tively than the systems it replaced. Users continued to use the older systems but
could not integrate these with the part of the new system that had been implemented,
so additional manual processing was required.

There are several reasons why it is expensive and risky to replace legacy systems
with new systems:

1.	 There is rarely a complete specification of the legacy system. The original spec-
ification may have been lost. If a specification exists, it is unlikely that it has
been updated with all of the system changes that have been made. Therefore,
there is no straightforward way of specifying a new system that is functionally
identical to the system that is in use.

2.	 Business processes and the ways in which legacy systems operate are often inex-
tricably intertwined. These processes are likely to have evolved to take advantage
of the software’s services and to work around the software’s shortcomings. If the
system is replaced, these processes have to change with potentially unpredictable
costs and consequences.

Socio-technical system

Hardware

Platform and infrastructure software

Application software

Business processes

Figure 9.8  Legacy
system layers

	 9.2  ■  Legacy systems    265

3.	 Important business rules may be embedded in the software and may not be doc-
umented elsewhere. A business rule is a constraint that applies to some business
function, and breaking that constraint can have unpredictable consequences for
the business. For example, an insurance company may have embedded its rules
for assessing the risk of a policy application in its software. If these rules are not
maintained, the company may accept high-risk policies that could result in
expensive future claims.

4.	 New software development is inherently risky, so that there may be unexpected prob-
lems with a new system. It may not be delivered on time and for the price expected.

Keeping legacy systems in use avoids the risks of replacement, but making
changes to existing software inevitably becomes more expensive as systems get
older. Legacy software systems that are more than a few years old are particularly
expensive to change:

1.	 The program style and usage conventions are inconsistent because different
people have been responsible for system changes. This problem adds to the dif-
ficulty of understanding the system code.

2.	 Part or all of the system may be implemented using obsolete programming
languages. It may be difficult to find people who have knowledge of these languages.
Expensive outsourcing of system maintenance may therefore be required.

3.	 System documentation is often inadequate and out of date. In some cases, the
only documentation is the system source code.

4.	 Many years of maintenance usually degrades the system structure, making it
increasingly difficult to understand. New programs may have been added and
interfaced with other parts of the system in an ad hoc way.

5.	 The system may have been optimized for space utilization or execution
speed so that it runs effectively on older slower hardware. This normally
involves using specific machine and language optimizations, and these usu-
ally lead to software that is hard to understand. This causes problems for
programmers who have learned modern software engineering techniques and
who don’t understand the programming tricks that have been used to opti-
mize the software.

6.	 The data processed by the system may be maintained in different files that have
incompatible structures. There may be data duplication, and the data itself may
be out of date, inaccurate, and incomplete. Several databases from different sup-
pliers may be used.

At same stage, the costs of managing and maintaining the legacy system become
so high that it has to be replaced with a new system. In the next section, I discuss a
systematic decision-making approach to making such a replacement decision.

266    Chapter 9  ■  Software evolution

	 9.2.1 	 Legacy system management

For new software systems developed using modern software engineering processes,
such as agile development and software product lines, it is possible to plan how to
integrate system development and evolution. More and more companies understand
that the system development process is a whole life-cycle process. Separating soft-
ware development and software evolution is unhelpful and leads to higher costs.
However, as I have discussed, there is still a huge number of legacy systems that are
critical business systems. These have to be extended and adapted to changing
e-business practices.

Most organizations have a limited budget for maintaining and upgrading their
portfolio of legacy systems. They have to decide how to get the best return on their
investment. This involves making a realistic assessment of their legacy systems and
then deciding on the most appropriate strategy for evolving these systems. There are
four strategic options:

1.	 Scrap the system completely This option should be chosen when the system is
not making an effective contribution to business processes. This usually occurs
when business processes have changed since the system was installed and are
no longer reliant on the legacy system.

2.	 Leave the system unchanged and continue with regular maintenance This option
should be chosen when the system is still required but is fairly stable and the
system users make relatively few change requests.

3.	 Reengineer the system to improve its maintainability This option should be chosen
when the system quality has been degraded by change and where new change to
the system is still being proposed. This process may include developing new inter-
face components so that the original system can work with other, newer systems.

4.	 Replace all or part of the system with a new system This option should be chosen
when factors, such as new hardware, mean that the old system cannot continue
in operation, or where off-the-shelf systems would allow the new system to be
developed at a reasonable cost. In many cases, an evolutionary replacement
strategy can be adopted where major system components are replaced by off-
the-shelf systems with other components reused wherever possible.

When you are assessing a legacy system, you have to look at it from both a busi-
ness perspective and a technical perspective (Warren 1998). From a business
perspective, you have to decide whether or not the business really needs the system.
From a technical perspective, you have to assess the quality of the application soft-
ware and the system’s support software and hardware. You then use a combination
of the business value and the system quality to inform your decision on what to do
with the legacy system.

For example, assume that an organization has 10 legacy systems. You should
assess the quality and the business value of each of these systems. You may then
create a chart showing relative business value and system quality. An example of

	 9.2  ■  Legacy systems    267

this is shown in Figure 9.9. From this diagram, you can see that there are four
clusters of systems:

1.	 Low quality, low business value Keeping these systems in operation will be
expensive, and the rate of the return to the business will be fairly small. These
systems should be scrapped.

2.	 Low quality, high business value These systems are making an important business
contribution, so they cannot be scrapped. However, their low quality means that
they are expensive to maintain. These systems should be reengineered to improve
their quality. They may be replaced, if suitable off-the-shelf systems are available.

3.	 High quality, low business value These systems don’t contribute much to the
business but may not be very expensive to maintain. It is not worth replacing
these systems, so normal system maintenance may be continued if expensive
changes are not required and the system hardware remains in use. If expensive
changes become necessary, the software should be scrapped.

4.	 High quality, high business value These systems have to be kept in operation.
However, their high quality means that you don’t have to invest in transforma-
tion or system replacement. Normal system maintenance should be continued.

The business value of a system is a measure of how much time and effort the
system saves compared to manual processes or the use of other systems. To assess
the business value of a system, you have to identify system stakeholders, such as the
end-users of a system and their managers, and ask a series of questions about the
system. There are four basic issues that you have to discuss:

1.	 The use of the system If a system is only used occasionally or by a small number of
people, this may mean that it has a low business value. A legacy system may have
been developed to meet a business need that has either changed or can now be met

1
2

3 4
5

6
7

8
9

10

System quality

B
us

in
es

s
va

lu
e

High business value
Low quality High business value

High quality

Low business value
Low quality

Low business value
High quality

Figure 9.9  An example
of a legacy system
assessment

268    Chapter 9  ■  Software evolution

more effectively in other ways. You have to be careful, however, about occasional
but important use of systems. For example, a university system for student regis-
tration may only be used at the beginning of each academic year. Although it is
used infrequently, it is an essential system with a high business value.

2.	 The business processes that are supported When a system is introduced, busi-
ness processes are usually introduced to exploit the system’s capabilities. If the
system is inflexible, changing these business processes may be impossible.
However, as the environment changes, the original business processes may
become obsolete. Therefore, a system may have a low business value because it
forces the use of inefficient business processes.

3.	 System dependability System dependability is not only a technical problem but
also a business problem. If a system is not dependable and the problems directly
affect business customers, or mean that people in the business are diverted from
other tasks to solve these problems, the system has a low business value.

4.	 The system outputs The key issue here is the importance of the system outputs to
the successful functioning of the business. If the business depends on these out-
puts, then the system has a high business value. Conversely, if these outputs can
be cheaply generated in some other way, or if the system produces outputs that
are rarely used, then the system has a low business value.

For example, assume that a company provides a travel ordering system that is
used by staff responsible for arranging travel. They can place orders with an approved
travel agent. Tickets are then delivered, and the company is invoiced for them.
However, a business value assessment may reveal that this system is only used for a
fairly small percentage of travel orders placed. People making travel arrangements
find it cheaper and more convenient to deal directly with travel suppliers through
their websites. This system may still be used, but there is no real point in keeping
it—the same functionality is available from external systems.

Conversely, say a company has developed a system that keeps track of all previ-
ous customer orders and automatically generates reminders for customers to reorder
goods. This results in a large number of repeat orders and keeps customers satisfied
because they feel that their supplier is aware of their needs. The outputs from such a
system are important to the business, so this system has a high business value.

To assess a software system from a technical perspective, you need to consider
both the application system itself and the environment in which the system operates.
The environment includes the hardware and all associated support software such as
compilers, debuggers and development environments that are needed to maintain the
system. The environment is important because many system changes, such as upgrades
to the hardware or operating system, result from changes to the environment.

Factors that you should consider during the environment assessment are shown in
Figure 9.10. Notice that these are not all technical characteristics of the environment.
You also have to consider the reliability of the suppliers of the hardware and support
software. If suppliers are no longer in business, their systems may not be supported,
so you may have to replace these systems.

	 9.2  ■  Legacy systems    269

In the process of environmental assessment, if possible, you should ideally collect
data about the system and system changes. Examples of data that may be useful include
the costs of maintaining the system hardware and support software, the number of
hardware faults that occur over some time period and the frequency of patches and
fixes applied to the system support software.

To assess the technical quality of an application system, you have to assess those
factors (Figure 9.11) that are primarily related to the system dependability, the dif-
ficulties of maintaining the system, and the system documentation. You may also
collect data that will help you judge the quality of the system such as:

1.	 The number of system change requests System changes usually corrupt the system
structure and make further changes more difficult. The higher this accumulated
value, the lower the quality of the system.

2.	 The number of user interfaces This is an important factor in forms-based sys-
tems where each form can be considered as a separate user interface. The more
interfaces, the more likely it is that there will be inconsistencies and redundan-
cies in these interfaces.

3.	 The volume of data used by the system As the volume of data (number of files,
size of database, etc.) processed by the system increases, so too do the inconsist-
encies and errors in that data. When data has been collected over a long period
of time, errors and inconsistencies are inevitable. Cleaning up old data is a very
expensive and time-consuming process.

Factor Questions

Supplier stability Is the supplier still in existence? Is the supplier financially stable and likely to
continue in existence? If the supplier is no longer in business, does someone else
maintain the systems?

Failure rate Does the hardware have a high rate of reported failures? Does the support software
crash and force system restarts?

Age How old is the hardware and software? The older the hardware and support
software, the more obsolete it will be. It may still function correctly, but there could
be significant economic and business benefits to moving to a more modern system.

Performance Is the performance of the system adequate? Do performance problems have a
significant effect on system users?

Support
requirements

What local support is required by the hardware and software? If high costs are
associated with this support, it may be worth considering system replacement.

Maintenance costs What are the costs of hardware maintenance and support software licences? Older
hardware may have higher maintenance costs than modern systems. Support
software may have high annual licensing costs.

Interoperability Are there problems interfacing the system to other systems? Can compilers, for
example, be used with current versions of the operating system?

Figure 9.10  Factors
used in environment
assessment

270    Chapter 9  ■  Software evolution

Ideally, objective assessment should be used to inform decisions about what to do
with a legacy system. However, in many cases, decisions are not really objective but
are based on organizational or political considerations. For example, if two businesses
merge, the most politically powerful partner will usually keep its systems and scrap
the other company’s systems. If senior management in an organization decides to
move to a new hardware platform, then this may require applications to be
replaced. If no budget is available for system transformation in a particular year,
then system maintenance may be continued, even though this will result in higher
long-term costs.

	 9.3 	 Software maintenance

Software maintenance is the general process of changing a system after it has
been delivered. The term is usually applied to custom software, where separate
development groups are involved before and after delivery. The changes made to
the software may be simple changes to correct coding errors, more extensive
changes to correct design errors, or significant enhancements to correct specifica-
tion errors or to accommodate new requirements. Changes are implemented by
modifying existing system components and, where necessary, by adding new
components to the system.

Factor Questions

Understandability How difficult is it to understand the source code of the current system? How
complex are the control structures that are used? Do variables have
meaningful names that reflect their function?

Documentation What system documentation is available? Is the documentation complete,
consistent, and current?

Data Is there an explicit data model for the system? To what extent is data duplicated
across files? Is the data used by the system up to date and consistent?

Performance Is the performance of the application adequate? Do performance problems
have a significant effect on system users?

Programming language Are modern compilers available for the programming language used to
develop the system? Is the programming language still used for new system
development?

Configuration management Are all versions of all parts of the system managed by a configuration
management system? Is there an explicit description of the versions of
components that are used in the current system?

Test data Does test data for the system exist? Is there a record of regression tests
carried out when new features have been added to the system?

Personnel skills Are there people available who have the skills to maintain the application?
Are there people available who have experience with the system?

Figure 9.11  Factors
used in application
assessment

	 9.3  ■  Software maintenance    271

There are three different types of software maintenance:

1.	 Fault repairs to fix bugs and vulnerabilities. Coding errors are usually relatively
cheap to correct; design errors are more expensive because they may involve
rewriting several program components. Requirements errors are the most expen-
sive to repair because extensive system redesign may be necessary.

2.	 Environmental adaptation to adapt the software to new platforms and environ-
ments. This type of maintenance is required when some aspect of a system’s
environment, such as the hardware, the platform operating system, or other sup-
port software, changes. Application systems may have to be modified to cope
with these environmental changes.

3.	 Functionality addition to add new features and to support new requirements.
This type of maintenance is necessary when system requirements change in
response to organizational or business change. The scale of the changes required
to the software is often much greater than for the other types of maintenance.

In practice, there is no clear-cut distinction between these types of maintenance.
When you adapt a system to a new environment, you may add functionality to take
advantage of new environmental features. Software faults are often exposed because
users use the system in unanticipated ways. Changing the system to accommodate
their way of working is the best way to fix these faults.

These types of maintenance are generally recognized, but different people some-
times give them different names. “Corrective maintenance” is universally used to
refer to maintenance for fault repair. However, “adaptive maintenance” sometimes
means adapting to a new environment and sometimes means adapting the software to
new requirements. “Perfective maintenance” sometimes means perfecting the soft-
ware by implementing new requirements; in other cases, it means maintaining the
functionality of the system but improving its structure and its performance. Because
of this naming uncertainty, I have avoided the use of these terms in this book.

Program evolution dynamics

Program evolution dynamics is the study of evolving software systems, pioneered by Manny Lehman and Les Belady
in the 1970s. This led to so-called Lehman’s Laws, which are said to apply to all large-scale software systems. The
most important of these laws are:

1.	 A program must continually change if it is to remain useful.

2.	 As an evolving program changes, its structure is degraded.

3.	 Over a program’s lifetime, the rate of change is roughly constant and independent of the resources available.

4.	 The incremental change in each release of a system is roughly constant.

5.	 New functionality must be added to systems to increase user satisfaction.

http://software-engineering-book.com/web/program-evolution-dynamics/

http://software-engineering-book.com/web/program-evolution-dynamics

272    Chapter 9  ■  Software evolution

Figure 9.12 shows an approximate distribution of maintenance costs, based on
data from the most recent survey available (Davidsen and Krogstie 2010). This study
compared maintenance cost distribution with a number of earlier studies from 1980
to 2005. The authors found that the distribution of maintenance costs had changed
very little over 30 years. Although we don’t have more recent data, this suggests that
this distribution is still largely correct. Repairing system faults is not the most expen-
sive maintenance activity. Evolving the system to cope with new environments and
new or changed requirements generally consumes most maintenance effort.

Experience has shown that it is usually more expensive to add new features to a
system during maintenance than it is to implement the same features during initial
development. The reasons for this are:

1.	 A new team has to understand the program being maintained. After a system
has been delivered, it is normal for the development team to be broken up and
for people to work on new projects. The new team or the individuals responsible
for system maintenance do not understand the system or the background to sys-
tem design decisions. They need to spend time understanding the existing sys-
tem before they can implement changes to it.

2.	 Separating maintenance and development means there is no incentive for the
development team to write maintainable software. The contract to maintain a
system is usually separate from the system development contract. A different
company, rather than the original software developer, may be responsible for
software maintenance. In those circumstances, a development team gets no ben-
efit from investing effort to make the software maintainable. If a development
team can cut corners to save effort during development it is worthwhile for them
to do so, even if this means that the software is more difficult to change in future.

3.	 Program maintenance work is unpopular. Maintenance has a poor image among
software engineers. It is seen as a less skilled process than system development

Functionality addition
or modification

(58%)

Fault repair
(24%)

Environmental
adaptation

(19%)

Figure 9.12 
Maintenance effort
distribution

	 9.3  ■  Software maintenance    273

and is often allocated to the least experienced staff. Furthermore, old systems
may be written in obsolete programming languages. The developers working on
maintenance may not have much experience of these languages and must learn
these languages to maintain the system.

4.	 As programs age, their structure degrades and they become harder to change.
As changes are made to programs, their structure tends to degrade. Consequently,
they become harder to understand and change. Some systems have been developed
without modern software engineering techniques. They may never have been
well structured and were perhaps optimized for efficiency rather than understand-
ability. System documentation may be lost or inconsistent. Old systems may not
have been subject to stringent configuration management, so developers have to
spend time finding the right versions of system components to change.

The first three of these problems stem from the fact that many organizations still
consider software development and maintenance to be separate activities.
Maintenance is seen as a second-class activity, and there is no incentive to spend
money during development to reduce the costs of system change. The only long-
term solution to this problem is to think of systems as evolving throughout their
lifetime through a continual development process. Maintenance should have as high
a status as new software development.

The fourth issue, the problem of degraded system structure, is, in some ways, the
easiest problem to address. Software reengineering techniques (described later in
this chapter) may be applied to improve the system structure and understandability.
Architectural transformations can adapt the system to new hardware. Refactoring
can improve the quality of the system code and make it easier to change.

In principle, it is almost always cost-effective to invest effort in designing and
implementing a system to reduce the costs of future changes. Adding new function-
ality after delivery is expensive because you have to spend time learning the system
and analyzing the impact of the proposed changes. Work done during development
to structure the software and to make it easier to understand and change will reduce
evolution costs. Good software engineering techniques such as precise specification,
test-first development, the use of object-oriented development, and configuration
management all help reduce maintenance cost.

These principled arguments for lifetime cost savings by investing in making
systems more maintainable are, unfortunately, impossible to substantiate with real

Documentation

System documentation can help the maintenance process by providing maintainers with information about the
structure and organization of the system and the features that it offers to system users. While proponents of agile
approaches suggest that the code should be the principal documentation, higher level design models and infor-
mation about dependencies and constraints can make it easier to understand and make changes to that code.

http://software-engineering-book.com/web/documentation/ (web chapter)

http://software-engineering-book.com/web/documentation

274    Chapter 9  ■  Software evolution

data. Collecting data is expensive, and the value of that data is difficult to judge;
therefore, the vast majority of companies do not think it is worthwhile to gather and
analyze software engineering data.

In reality, most businesses are reluctant to spend more on software develop-
ment to reduce longer-term maintenance costs. There are two main reasons for
their reluctance:

1.	 Companies set out quarterly or annual spending plans, and managers are incen-
tivized to reduce short-term costs. Investing in maintainability leads to short-
term cost increases, which are measurable. However, the long-term gains can’t
be measured at the same time, so companies are reluctant to spend money on
something with an unknown future return.

2.	 Developers are not usually responsible for maintaining the system they have
developed. Consequently, they don’t see the point of doing additional work that
might reduce maintenance costs, as they will not get any benefit from it.

The only way around this problem is to integrate development and maintenance
so that the original development team remains responsible for software throughout
its lifetime. This is possible for software products and for companies such as
Amazon, which develop and maintain their own software (O’Hanlon 2006).
However, for custom software developed by a software company for a client, this is
unlikely to happen.

	 9.3.1 	 Maintenance prediction

Maintenance prediction is concerned with trying to assess the changes that may be
required in a software system and with identifying those parts of the system that are
likely to be the most expensive to change. If you understand this, you can design the
software components that are most likely to change to make them more adaptable.
You can also invest effort in improving those components to reduce their lifetime
maintenance costs. By predicting changes, you can also assess the overall mainte-
nance costs for a system in a given time period and so set a budget for maintaining
the software. Figure 9.13 shows possible predictions and the questions that these
predictions may answer.

Predicting the number of change requests for a system requires an understanding
of the relationship between the system and its external environment. Some systems
have a very complex relationship with their external environment, and changes to
that environment inevitably result in changes to the system. To evaluate the relation-
ships between a system and its environment, you should look at:

1.	 The number and complexity of system interfaces The larger the number of inter-
faces and the more complex these interfaces, the more likely it is that interface
changes will be required as new requirements are proposed.

	 9.3  ■  Software maintenance    275

2.	 The number of inherently volatile system requirements As I discussed in Chapter 4,
requirements that reflect organizational policies and procedures are likely to be
more volatile than requirements that are based on stable domain characteristics.

3.	 The business processes in which the system is used As business processes
evolve, they generate system change requests. As a system is integrated with
more and more business processes, there are increased demands for changes.

In early work on software maintenance, researchers looked at the relationships
between program complexity and maintainability (Banker et al. 1993; Coleman et al.
1994; Kozlov et al. 2008). These studies found that the more complex a system or
component, the more expensive it is to maintain. Complexity measurements are par-
ticularly useful in identifying program components that are likely to be expensive to
maintain. Therefore, to reduce maintenance costs you should try to replace complex
system components with simpler alternatives.

After a system has been put into service, you may be able to use process data to
help predict maintainability. Examples of process metrics that can be used for assess-
ing maintainability are:

1.	 Number of requests for corrective maintenance An increase in the number of
bug and failure reports may indicate that more errors are being introduced into
the program than are being repaired during the maintenance process. This may
indicate a decline in maintainability.

2.	 Average time required for impact analysis This is related to the number of pro-
gram components that are affected by the change request. If the time required
for impact analysis increases, it implies that more and more components are
affected and maintainability is decreasing.

Predicting
maintainability

Predicting system
changes

Predicting
maintenance

costs

What will be the lifetime
maintenance costs of this

system?

What will be the costs of
maintaining this system

over the next year?

What parts of the system
will be the most expensive

to maintain?

How many change
requests can be

expected?

What parts of the system are
most likely to be affected by

change requests?

Figure 9.13 
Maintenance prediction

276    Chapter 9  ■  Software evolution

3.	 Average time taken to implement a change request This is not the same as the
time for impact analysis although it may correlate with it. This is the amount of
time that you need to modify the system and its documentation, after you have
assessed which components are affected. An increase in the time needed to
implement a change may indicate a decline in maintainability.

4.	 Number of outstanding change requests An increase in this number over time
may imply a decline in maintainability.

You use predicted information about change requests and predictions about sys-
tem maintainability to predict maintenance costs. Most managers combine this infor-
mation with intuition and experience to estimate costs. The COCOMO 2 model of
cost estimation, discussed in Chapter 23, suggests that an estimate for software
maintenance effort can be based on the effort to understand existing code and the
effort to develop the new code.

	 9.3.2 	 Software reengineering

Software maintenance involves understanding the program that has to be changed
and then implementing any required changes. However, many systems, especially
older legacy systems, are difficult to understand and change. The programs may
have been optimized for performance or space utilization at the expense of under-
standability, or, over time, the initial program structure may have been corrupted by
a series of changes.

To make legacy software systems easier to maintain, you can reengineer these
systems to improve their structure and understandability. Reengineering may
involve redocumenting the system, refactoring the system architecture, translat-
ing programs to a modern programming language, or modifying and updating the
structure and values of the system’s data. The functionality of the software is not
changed, and, normally, you should try to avoid making major changes to the
system architecture.

Reengineering has two important advantages over replacement:

1.	 Reduced risk There is a high risk in redeveloping business-critical software.
Errors may be made in the system specification or there may be development
problems. Delays in introducing the new software may mean that business is
lost and extra costs are incurred.

2.	 Reduced cost The cost of reengineering may be significantly less than the cost
of developing new software. Ulrich (Ulrich 1990) quotes an example of a
commercial system for which the reimplementation costs were estimated at
$50 million. The system was successfully reengineered for $12 million. I sus-
pect that, with modern software technology, the relative cost of reimplemen-
tation is probably less than Ulrich’s figure but will still be more than the costs
of reengineering.

	 9.3  ■  Software maintenance    277

Figure 9.14 is a general model of the reengineering process. The input to the pro-
cess is a legacy program, and the output is an improved and restructured version of
the same program. The activities in this reengineering process are:

1.	 Source code translation Using a translation tool, you can convert the program
from an old programming language to a more modern version of the same lan-
guage or to a different language.

2.	 Reverse engineering The program is analyzed and information extracted from
it. This helps to document its organization and functionality. Again, this process
is usually completely automated.

3.	 Program structure improvement The control structure of the program is ana-
lyzed and modified to make it easier to read and understand. This can be par-
tially automated, but some manual intervention is usually required.

4.	 Program modularization Related parts of the program are grouped together,
and, where appropriate, redundancy is removed. In some cases, this stage may
involve architectural refactoring (e.g., a system that uses several different data
stores may be refactored to use a single repository). This is a manual process.

5.	 Data reengineering The data processed by the program is changed to reflect
program changes. This may mean redefining database schemas and converting
existing databases to the new structure. You should usually also clean up the
data. This involves finding and correcting mistakes, removing duplicate records,
and so on. This can be a very expensive and prolonged process.

Program reengineering may not necessarily require all of the steps in Figure 9.11.
You don’t need source code translation if you still use the application’s programming
language. If you can do all reengineering automatically, then recovering documenta-
tion through reverse engineering may be unnecessary. Data reengineering is required
only if the data structures in the program change during system reengineering.

Reverse
engineering

Program
documentation

Data
reengineering

Original data

Program
structure

improvement

Program
modularization

Restructured
program

Reengineered
data

Reengineered
program

Original
program

Source code
translation

Figure 9.14  The
reengineering
process

278    Chapter 9  ■  Software evolution

To make the reengineered system interoperate with the new software, you may
have to develop adaptor services, as discussed in Chapter 18. These hide the original
interfaces of the software system and present new, better-structured interfaces that
can be used by other components. This process of legacy system wrapping is an
important technique for developing large-scale reusable services.

The costs of reengineering obviously depend on the extent of the work that is
carried out. There is a spectrum of possible approaches to reengineering, as shown
in Figure 9.15. Costs increase from left to right so that source code translation is
the cheapest option, and reengineering, as part of architectural migration, is the
most expensive.

The problem with software reengineering is that there are practical limits to how
much you can improve a system by reengineering. It isn’t possible, for example, to
convert a system written using a functional approach to an object-oriented system.
Major architectural changes or radical reorganizing of the system data management
cannot be carried out automatically, so they are very expensive. Although reengineer-
ing can improve maintainability, the reengineered system will probably not be as
maintainable as a new system developed using modern software engineering methods.

	 9.3.3 	 Refactoring

Refactoring is the process of making improvements to a program to slow down deg-
radation through change. It means modifying a program to improve its structure,
reduce its complexity, or make it easier to understand. Refactoring is sometimes
considered to be limited to object-oriented development, but the principles can in
fact be applied to any development approach. When you refactor a program, you
should not add functionality but rather should concentrate on program improvement.
You can therefore think of refactoring as “preventative maintenance” that reduces
the problems of future change.

Refactoring is an inherent part of agile methods because these methods are based
on change. Program quality is liable to degrade quickly, so agile developers frequently
refactor their programs to avoid this degradation. The emphasis on regression testing
in agile methods lowers the risk of introducing new errors through refactoring. Any
errors that are introduced should be detectable, as previously successful tests should
then fail. However, refactoring is not dependent on other “agile activities.”

Automated restructuring
with manual changes

Automated source
code conversion

Restructuring plus
architectural changes

Automated program
restructuring

Program and data
restructuring

Increased cost

Figure 9.15 
Reengineering
approaches

	 9.3  ■  Software maintenance    279

Although reengineering and refactoring are both intended to make software easier
to understand and change, they are not the same thing. Reengineering takes place after
a system has been maintained for some time, and maintenance costs are increasing.
You use automated tools to process and reengineer a legacy system to create a new
system that is more maintainable. Refactoring is a continuous process of improvement
throughout the development and evolution process. It is intended to avoid the structure
and code degradation that increases the costs and difficulties of maintaining a system.

Fowler et al. (Fowler et al. 1999) suggest that there are stereotypical situations
(Fowler calls them “bad smells”) where the code of a program can be improved.
Examples of bad smells that can be improved through refactoring include:

1.	 Duplicate code The same or very similar code may be included at different
places in a program. This can be removed and implemented as a single method
or function that is called as required.

2.	 Long methods If a method is too long, it should be redesigned as a number of
shorter methods.

3.	 Switch (case) statements These often involve duplication, where the switch
depends on the type of a value. The switch statements may be scattered around
a program. In object-oriented languages, you can often use polymorphism to
achieve the same thing.

4.	 Data clumping Data clumps occur when the same group of data items (fields in
classes, parameters in methods) reoccurs in several places in a program. These
can often be replaced with an object that encapsulates all of the data.

5.	 Speculative generality This occurs when developers include generality in a pro-
gram in case it is required in the future. This can often simply be removed.

Fowler, in both his book and website, also suggests some primitive refactoring
transformations that can be used singly or together to deal with bad smells. Examples
of these transformations include Extract method, where you remove duplication and
create a new method; Consolidate conditional expression, where you replace a
sequence of tests with a single test; and Pull up method, where you replace similar
methods in subclasses with a single method in a superclass. Interactive development
environments, such as Eclipse, usually include refactoring support in their editors.
This makes it easier to find dependent parts of a program that have to be changed to
implement the refactoring.

Refactoring, carried out during program development, is an effective way to
reduce the long-term maintenance costs of a program. However, if you take over a
program for maintenance whose structure has been significantly degraded, then it
may be practically impossible to refactor the code alone. You may also have to think
about design refactoring, which is likely to be a more expensive and difficult prob-
lem. Design refactoring involves identifying relevant design patterns (discussed in
Chapter 7) and replacing existing code with code that implements these design pat-
terns (Kerievsky 2004).

K e y P o i n t s

■	 Software development and evolution can be thought of as an integrated, iterative process that
can be represented using a spiral model.

■	 For custom systems, the costs of software maintenance usually exceed the software develop-
ment costs.

■	 The process of software evolution is driven by requests for changes and includes change impact
analysis, release planning, and change implementation.

■	 Legacy systems are older software systems, developed using obsolete software and hardware
technologies, that remain useful for a business.

■	 It is often cheaper and less risky to maintain a legacy system than to develop a replacement sys-
tem using modern technology.

■	 The business value of a legacy system and the quality of the application software and its envi-
ronment should be assessed to determine whether a system should be replaced, transformed,
or maintained.

■	 There are three types of software maintenance, namely, bug fixing, modifying software to work
in a new environment, and implementing new or changed requirements.

■	 Software reengineering is concerned with restructuring and redocumenting software to make it
easier to understand and change.

■	 Refactoring, making small program changes that preserve functionality, can be thought of as
preventative maintenance.

F u r t h e r Re a d i n g

Working Effectively with Legacy Code. Solid practical advice on the problems and difficulties of
dealing with legacy systems. (M. Feathers, 2004, John Wiley & Sons).

“The Economics of Software Maintenance in the 21st Century.” This article is a general introduction
to maintenance and a comprehensive discussion of maintenance costs. Jones discusses the factors
that affect maintenance costs and suggests that almost 75% of the software workforce are involved
in software maintenance activities. (C. Jones, 2006) http://www.compaid.com/caiinternet/ezine/
capersjones-maintenance.pdf

“You Can’t Be Agile in Maintenance?” In spite of the title, this blog post argues that agile techniques
are appropriate for maintenance and discusses which techniques as suggested in XP can be effective.
(J. Bird, 2011) http://swreflections.blogspot.co.uk/2011/10/you-cant-be-agile-in-maintenance.html

“Software Reengineering and Testing Considerations.” This is an excellent summary white
paper of maintenance issues from a major Indian software company. (Y. Kumar and Dipti, 2012)
http://www.infosys.com/engineering-services/white-papers/Documents/software-re-engineering-
processes.pdf

280    Chapter 9  ■  Software evolution

http://www.compaid.com/caiinternet/ezine/capersjones-maintenance.pdf
http://swreflections.blogspot.co.uk/2011/10/you-cant-be-agile-in-maintenance.html
http://www.infosys.com/engineering-services/white-papers/Documents/software-re-engineering-�processes.pdf
http://www.compaid.com/caiinternet/ezine/capersjones-maintenance.pdf

	   Chapter 9  ■  References    281

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/implementation-and-evolution/

E x e r c i ses

  9.1.	 Explain how advances in technology can force a software subsystem to undergo change or run
the risk of becoming useless.

  9.2.	 From Figure 9.4, you can see that impact analysis is an important subprocess in the software evolu-
tion process. Using a diagram, suggest what activities might be involved in change impact analysis.

  9.3.	 Explain why legacy systems should be thought of as sociotechnical systems rather than
simply software systems that were developed using old technology.

  9.4.	 Some software subsystems are seen as “low quality, high business value.” Discuss how those
subsystems can be re-engineered with minimal impact on the operations of the organization.

  9.5.	 What are the strategic options for legacy system evolution? When would you normally replace
all or part of a system rather than continue maintenance of the software?

  9.6.	 Explain why problems with support software might mean that an organization has to replace
its legacy systems.

  9.7.	 As a software project manager in a company that specializes in the development of software
for the offshore oil industry, you have been given the task of discovering the factors that affect
the maintainability of the systems developed by your company. Suggest how you might set up
a program to analyze the maintenance process and determine appropriate maintainability
metrics for the company.

  9.8.	 Briefly describe the three main types of software maintenance. Why is it sometimes difficult to
distinguish between them?

  9.9.	 Explain the differences between software reengineering and refactoring?

9.10.	 Do software engineers have a professional responsibility to develop code that can be easily
maintained even if their employer does not explicitly request it?

Refe r e n ces

Banker, R. D., S. M. Datar, C. F. Kemerer, and D. Zweig. 1993. “Software Complexity and Mainte-
nance Costs.” Comm. ACM 36 (11): 81–94. doi:10.1145/163359.163375.

Coleman, D., D. Ash, B. Lowther, and P. Oman. 1994. “Using Metrics to Evaluate Software System
Maintainability.” IEEE Computer 27 (8): 44–49. doi:10.1109/2.303623.

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/implementation-and-evolution

282    Chapter 9  ■  Software evolution

Davidsen, M. G., and J. Krogstie. 2010. “A Longitudinal Study of Development and Maintenance.”
Information and Software Technology 52 (7): 707–719. doi:10.1016/j.infsof.2010.03.003.

Erlikh, L. 2000. “Leveraging Legacy System Dollars for E-Business.” IT Professional 2 (3 (May/June
2000)): 17–23. doi:10.1109/6294.846201.

Fowler, M., K. Beck, J. Brant, W. Opdyke, and D. Roberts. 1999. Refactoring: Improving the Design of
Existing Code. Boston: Addison-Wesley.

Hopkins, R., and K. Jenkins. 2008. Eating the IT Elephant: Moving from Greenfield Development to
Brownfield. Boston: IBM Press.

Jones, T. C. 2006. “The Economics of Software Maintenance in the 21st Century.” www.compaid
.com/caiinternet/ezine/capersjones-maintenance.pdf.

Kerievsky, J. 2004. Refactoring to Patterns. Boston: Addison-Wesley.

Kozlov, D., J. Koskinen, M. Sakkinen, and J. Markkula. 2008. “Assessing Maintainability Change over
Multiple Software Releases.” J. of Software Maintenance and Evolution 20 (1): 31–58. doi:10.1002/
smr.361.

Lientz, B. P., and E. B. Swanson. 1980. Software Maintenance Management. Reading, MA: Addison-
Wesley.

Mitchell, R. M. 2012. “COBOL on the Mainframe: Does It Have a Future?” Computerworld US. http://
features.techworld.com/applications/3344704/cobol-on-the-mainframe-does-it-have-a-future/

O’Hanlon, C. 2006. “A Conversation with Werner Vogels.” ACM Queue 4 (4): 14–22.
doi:10.1145/1142055.1142065.

Rajlich, V. T., and K. H. Bennett. 2000. “A Staged Model for the Software Life Cycle.” IEEE Computer
33 (7): 66–71. doi:10.1109/2.869374.

Ulrich, W. M. 1990. “The Evolutionary Growth of Software Reengineering and the Decade Ahead.”
American Programmer 3 (10): 14–20.

Warren, I. (ed.). 1998. The Renaissance of Legacy Systems. London: Springer.

http://www.compaid..com/caiinternet/ezine/capersjones-maintenance.pdf
http://features.techworld.com/applications/3344704/cobol-on-the-mainframe-does-it-have-a-future
http://features.techworld.com/applications/3344704/cobol-on-the-mainframe-does-it-have-a-future
http://www.compaid..com/caiinternet/ezine/capersjones-maintenance.pdf

PART

As software systems are now part of all aspects of our lives, I believe that
the most significant challenge that we face in software engineering is
ensuring that we can trust these systems. To trust a system, we must have
confidence that it will be available when required and perform as expected.
It must be secure so that our computers or data are not threatened by it and
it has to recover quickly in the event of failure or cyberattack. This part of
the book has therefore focuses on the important topics of software system
dependability and security.

Chapter 10 introduces the basic concepts of dependability and security
namely reliability, availability, safety, security and resilience. I explain
why building secure, dependable systems is not simply a technical
problem. I introduce redundancy and diversity as the fundamental
mechanisms used to create dependable and secure systems. The indi-
vidual dependability attributes are covered in more detail in the fol-
lowing chapters.

Chapter 11 focuses on reliability and availability and I explain how these
attributes can be specified as probabilities of failure or downtime. I dis-
cuss a number of architectural patterns for fault-tolerant system architec-
tures and development techniques that can be used to reduce the number
of faults in a system. In the final section, I explain how the reliability of a
system may be tested and measured.

2 Dependability
and Security

More and more systems are safety-critical systems, where system failure
can endanger people. Chapter 12 is concerned with safety engineering
and techniques that may be used to develop these safety-critical systems.
I explain why safety is a broader notion than reliability and discuss meth-
ods for deriving system safety requirements. I also explain why defined
and documented processes for safety-critical systems engineering are
important and describe software safety cases—structured documents
that are used to justify why a system is safe.

Threats to the security of our systems are one of the major problems
faced by today’s societies and I devote two chapters to this topic.
Chapter 13 is concerned with application security engineering—methods
used to achieve security in individual software systems. I explain the
relationships between security and other dependability attributes and
cover security requirements engineering, secure systems design and
security testing.

Chapter 14 is a new chapter that addresses the broader issue of resil-
ience. A resilient system can continue to deliver its essential services
even when individual parts of the system fail or are subject to a cyberat-
tack. I explain the basics of cybersecurity and discuss how resilience is
achieved by using redundancy and diversity and by empowering people
as well as through technical mechanisms. Finally, I discuss systems and
software design issues that can contribute to improving the resilience of
a system.

Dependable systems
10

Objectives
The objective of this chapter is to introduce the topic of software
dependability and what is involved in developing dependable software
systems. When you have read this chapter, you will:

■	 understand why dependability and security are important attributes
for all software systems;

■	 understand the five important dimensions of dependability, namely,
availability, reliability, safety, security, and resilience;

■	 understand the notion of sociotechnical systems and why we have to
consider these systems as a whole rather than just software systems;

■	 know why redundancy and diversity are the fundamental concepts
used in achieving dependable systems and processes;

■	 be aware of the potential for using formal methods in dependable
systems engineering.

Contents
10.1	 Dependability properties

10.2	 Sociotechnical systems

10.3	 Redundancy and diversity

10.4	 Dependable processes

10.5	 Formal methods and dependability

286    Chapter 10  ■  Dependable systems

As computer systems have become deeply embedded in our business and personal
lives, the problems that result from system and software failure are increasing. A
failure of server software in an e-commerce company could lead to a major loss of
revenue and customers for that company. A software error in an embedded control
system in a car could lead to expensive recalls of that model for repair and, in the
worst case, could be a contributory factor in accidents. The infection of company
PCs with malware requires expensive clean-up operations to sort out the problem
and could lead to the loss of or damage to sensitive information.

Because software-intensive systems are so important to governments, companies,
and individuals, we have to be able to trust these systems. The software should be
available when it is needed, and it should operate correctly without undesirable side
effects, such as unauthorized information disclosure. In short, we should be able to
depend on our software systems.

The term dependability was proposed by Jean-Claude Laprie in 1995 to cover the
related systems attributes of availability, reliability, safety, and security. His ideas
were revised over the next few years and are discussed in a definitive paper pub-
lished in 2004 (Avizienis et al. 2004). As I discuss in Section 10.1, these properties
are inextricably linked, so having a single term to cover them all makes sense.

The dependability of systems is usually more important than their detailed func-
tionality for the following reasons:

1.	 System failures affect a large number of people Many systems include func-
tionality that is rarely used. If this functionality were left out of the system, only
a small number of users would be affected. System failures that affect the avail-
ability of a system potentially affect all users of the system. Unavailable sys-
tems may mean that normal business is impossible.

2.	 Users often reject systems that are unreliable, unsafe, or insecure If users find
that a system is unreliable or insecure, they will refuse to use it. Furthermore,
they may also refuse to buy or use other products from the company that pro-
duced the unreliable system. They do not want a repetition of their bad experi-
ence with an undependable system.

3.	 System failure costs may be enormous For some applications, such as a reactor
control system or an aircraft navigation system, the cost of system failure is
orders of magnitude greater than the cost of the control system. Failures in sys-
tems that control critical infrastructure such as the power network have wide-
spread economic consequences.

4.	 Undependable systems may cause information loss Data is very expensive to collect
and maintain; it is usually worth much more than the computer system on which it
is processed. The cost of recovering lost or corrupt data is usually very high.

However, a system can be useful without it being very dependable. I don’t think
that the word processor that I used to write this book is a very dependable system.
It sometimes freezes and has to be restarted. Nevertheless, because it is very useful,

	 Chapter 10  ■  Dependable systems    287

I am prepared to tolerate occasional failure. However, to reflect my lack of trust in
the system, I save my work frequently and keep multiple backup copies of it. I com-
pensate for the lack of system dependability by actions that limit the damage that
could result from system failure.

Building dependable software is part of the more general process of dependable
systems engineering. As I discuss in Section 10.2, software is always part of a
broader system. It executes in an operational environment that includes the hardware
on which the software executes, the human users of that software and the organiza-
tional or business processes where the software is used. When designing a dependable
system, you therefore have to consider:

1.	 Hardware failure System hardware may fail because of mistakes in its design,
because components fail as a result of manufacturing errors, because of envi-
ronmental factors such as dampness or high temperatures, or because compo-
nents have reached the end of their natural life.

2.	 Software failure System software may fail because of mistakes in its specifica-
tion, design, or implementation.

3.	 Operational failure Human users may fail to use or operate the system as
intended by its designers. As hardware and software have become more reliable,
failures in operation are now, perhaps, the largest single cause of system failures.

These failures are often interrelated. A failed hardware component may mean
system operators have to cope with an unexpected situation and additional workload.
This puts them under stress, and people under stress often make mistakes. These
mistakes can cause the software to fail, which means more work for operators, even
more stress, and so on.

As a result, it is particularly important that designers of dependable, software-
intensive systems take a holistic sociotechnical systems perspective rather than focus
on a single aspect of the system such as its software or hardware. If hardware, soft-
ware, and operational processes are designed separately, without taking into account
the potential weaknesses of other parts of the system, then it is more likely that errors
will occur at the interfaces between the different parts of the system.

Critical systems

Some classes of system are “critical systems” where system failure may result in injury to people, damage to the
environment, or extensive economic losses. Examples of critical systems include embedded systems in medical
devices, such as an insulin pump (safety-critical), spacecraft navigation systems (mission-critical), and online
money transfer systems (business critical).

Critical systems are very expensive to develop. Not only must they be developed so that failures are very rare,
but they must also include recovery mechanisms to be used if and when failures occur.

http://software-engineering-book.com/web/critical-systems/

http://software-engineering-book.com/web/critical-systems

288    Chapter 10  ■  Dependable systems

	 10.1 	 Dependability properties

All of us are familiar with the problem of computer system failure. For no obvious
reason, our computers sometimes crash or go wrong in some way. Programs running
on these computers may not operate as expected and occasionally may corrupt the
data that is managed by the system. We have learned to live with these failures, but
few of us completely trust the personal computers that we normally use.

The dependability of a computer system is a property of the system that reflects
its trustworthiness. Trustworthiness here essentially means the degree of confidence
a user has that the system will operate as they expect and that the system will not
“fail” in normal use. It is not meaningful to express dependability numerically.
Rather, relative terms such as “not dependable,” “very dependable,” and “ultra-
dependable” can reflect the degree of trust that we might have in a system.

There are five principal dimensions to dependability, as I have shown in
Figure 10.1.

1.	 Availability Informally, the availability of a system is the probability that it will
be up and running and able to deliver useful services to users at any given time.

2.	 Reliability Informally, the reliability of a system is the probability, over a given
period of time, that the system will correctly deliver services as expected by the user.

3.	 Safety Informally, the safety of a system is a judgment of how likely it is that the
system will cause damage to people or its environment.

4.	 Security Informally, the security of a system is a judgment of how likely it is
that the system can resist accidental or deliberate intrusions.

5.	 Resilience Informally, the resilience of a system is a judgment of how well that
system can maintain the continuity of its critical services in the presence of
disruptive events, such as equipment failure and cyberattacks. Resilience is a
more recent addition to the set of dependability properties that were originally
suggested by Laprie.

The dependability properties shown in Figure 10.1 are complex properties that
can be broken down into several simpler properties. For example, security includes
“integrity” (ensuring that the systems program and data are not damaged) and “con-
fidentiality” (ensuring that information can only be accessed by people who are
authorized). Reliability includes “correctness” (ensuring the system services are as
specified), “precision” (ensuring information is delivered at an appropriate level of
detail), and “timeliness” (ensuring that information is delivered when it is required).

Of course, not all dependability properties are critical for all systems. For the
insulin pump system, introduced in Chapter 1, the most important properties are reli-
ability (it must deliver the correct dose of insulin) and safety (it must never deliver a
dangerous dose of insulin). Security is not an issue as the pump does not store confi-
dential information. It is not networked and so cannot be maliciously attacked. For

	 10.1  ■  Dependability properties    289

the wilderness weather system, availability and reliability are the most important
properties because the costs of repair may be very high. For the Mentcare patient
information system, security and resilience are particularly important because of the
sensitive private data that is maintained and the need for the system to be available
for patient consultations.

Other system properties are closely related to these five dependability properties
and influence a system’s dependability:

1.	 Repairability System failures are inevitable, but the disruption caused by failure
can be minimized if the system can be repaired quickly. It must be possible to
diagnose the problem, access the component that has failed, and make changes
to fix that component. Repairability in software is enhanced when the organiza-
tion using the system has access to the source code and has the skills to make
changes to it. Open-source software makes this easier, but the reuse of compo-
nents can make it more difficult.

2.	 Maintainability As systems are used, new requirements emerge, and it is impor-
tant to maintain the value of a system by changing it to include these new
requirements. Maintainable software is software that can be adapted economi-
cally to cope with new requirements, and where there is a low probability that
making changes will introduce new errors into the system.

3.	 Error tolerance This property can be considered as part of usability and reflects
the extent to which the system has been designed, so that user input errors are
avoided and tolerated. When user errors occur, the system should, as far as pos-
sible, detect these errors and either fix them automatically or request the user to
re-input their data.

The notion of system dependability as an encompassing property was introduced
because the dependability properties of availability, security, reliability, safety, and
resilience are closely related. Safe system operation usually depends on the system
being available and operating reliably. A system may become unreliable because an
intruder has corrupted its data. Denial-of-service attacks on a system are intended to

Dependability

Availability Reliability SecuritySafety Resilience

The ability of the system
to protect itself against
deliberate or accidental

intrusion

The ability of the system
to resist and recover

from damaging events

The ability of the system
to operate without
catastrophic failure

The ability of the system
to deliver services as

specified

The ability of the system
to deliver services when

requested

Figure 10.1  Principal
dependability
properties

290    Chapter 10  ■  Dependable systems

compromise the system’s availability. If a system is infected with a virus, you cannot
then be confident in its reliability or safety because the virus may change its behavior.

To develop dependable software, you therefore need to ensure that:

1.	 You avoid the introduction of accidental errors into the system during software
specification and development.

2.	 You design verification and validation processes that are effective in discover-
ing residual errors that affect the dependability of the system.

3.	 You design the system to be fault tolerant so that it can continue working when
things go wrong.

4.	 You design protection mechanisms that guard against external attacks that can
compromise the availability or security of the system.

5.	 You configure the deployed system and its supporting software correctly for its
operating environment.

6.	 You include system capabilities to recognize external cyberattacks and to resist
these attacks.

7.	 You design systems so that they can quickly recover from system failures and
cyberattacks without the loss of critical data.

The need for fault tolerance means that dependable systems have to include
redundant code to help them monitor themselves, detect erroneous states, and
recover from faults before failures occur. This affects the performance of systems, as
additional checking is required each time the system executes. Therefore, designers
usually have to trade off performance and dependability. You may need to leave
checks out of the system because these slow the system down. However, the conse-
quential risk here is that the system fails because a fault has not been detected.

Building dependable systems is expensive. Increasing the dependability of a
system means that you incur extra costs for system design, implementation, and val-
idation. Verification and validation costs are particularly high for systems that must
be ultra-dependable such as safety-critical control systems. As well as validating that
the system meets its requirements, the validation process may have to prove to an
external regulator that the system is safe. For example, aircraft systems have to dem-
onstrate to regulators, such as the Federal Aviation Authority, that the probability of
a catastrophic system failure that affects aircraft safety is extremely low.

Figure 10.2 shows the relationship between costs and incremental improvements
in dependability. If your software is not very dependable, you can get significant
improvements fairly cheaply by using better software engineering. However, if you
are already using good practice, the costs of improvement are much greater, and the
benefits from that improvement are less.

There is also the problem of testing software to demonstrate that it is dependable.
Solving this problem relies on running many tests and looking at the number of fail-
ures that occur. As your software becomes more dependable, you see fewer and

	 10.2  ■  Sociotechnical systems    291

fewer failures. Consequently, more and more tests are needed to try and assess how
many problems remain in the software. Testing is a very expensive process, so this
can significantly increase the cost of high-dependability systems.

	 10.2 	 Sociotechnical systems

In a computer system, the software and the hardware are interdependent. Without
hardware, a software system is an abstraction, which is simply a representation of
some human knowledge and ideas. Without software, hardware is a set of inert elec-
tronic devices. However, if you put them together to form a system, you create a
machine that can carry out complex computations and deliver the results of these
computations to its environment.

This illustrates one of the fundamental characteristics of a system—it is more than
the sum of its parts. Systems have properties that become apparent only when their
components are integrated and operate together. Software systems are not isolated
systems but are part of more extensive systems that have a human, social, or organi-
zational purpose. Therefore software engineering is not an isolated activity but is an
intrinsic part of systems engineering (Chapter 19).

For example, the wilderness weather system software controls the instruments in
a weather station. It communicates with other software systems and is a part of wider
national and international weather forecasting systems. As well as hardware and
software, these systems include processes for forecasting the weather and people
who operate the system and analyze its outputs. The system also includes the organ-
izations that depend on the system to help them provide weather forecasts to indi-
viduals, government and industry.

C
os

t
Low Medium High Very

high
Ultra-
high

Dependability
Figure 10.2  Cost/
dependability curve

292    Chapter 10  ■  Dependable systems

These broader systems are called sociotechnical systems. They include nontech-
nical elements such as people, processes, and regulations, as well as technical
components such as computers, software, and other equipment. System dependability
is influenced by all of the elements in a sociotechnical system—hardware, software,
people, and organizations.

Sociotechnical systems are so complex that it is impossible to understand them as
a whole. Rather, you have to view them as layers, as shown in Figure 10.3. These
layers make up the sociotechnical systems stack:

1.	 The equipment layer is composed of hardware devices, some of which may be
computers.

2.	 The operating system layer interacts with the hardware and provides a set of
common facilities for higher software layers in the system.

3.	 The communications and data management layer extends the operating system
facilities and provides an interface that allows interaction with more extensive
functionality, such as access to remote systems and access to a system database.
This is sometimes called middleware, as it is in between the application and the
operating system.

4.	 The application layer delivers the application-specific functionality that is
required. There may be many different application programs in this layer.

5.	 The business process layer includes the organizational business processes,
which make use of the software system.

6.	 The organizational layer includes higher-level strategic processes as well as
business rules, policies, and norms that should be followed when using the
system.

7.	 The social layer refers to the laws and regulations of society that govern the
operation of the system.

Equipment

Operating system

Communications and data management

Application system

Business processes

Organization

Society

Systems
engineering

Software
engineering

Figure 10.3  The
sociotechnical
systems stack

	 10.2  ■  Sociotechnical systems    293

Notice that there is no separate “software layer.” Software of one kind or another
is an important part of all of the layers in the sociotechnical system. Equipment is
controlled by embedded software; the operating system and applications are soft-
ware. Business processes, organizations, and society rely on the Internet (software)
and other global software systems.

In principle, most interactions should be between neighboring layers in the
stack, with each layer hiding the detail of the layer below from the layer above. In
practice, however, there can be unexpected interactions between layers, which
result in problems for the system as a whole. For example, say there is a change in
the law governing access to personal information. This comes from the social layer.
It leads to new organizational procedures and changes to the business processes.
The application system itself may not be able to provide the required level of pri-
vacy, so changes may have to be implemented in the communications and data
management layer.

Thinking holistically about systems, rather than simply considering software in
isolation, is essential when considering software security and dependability.
Software itself is intangible and, even when damaged, is easily and cheaply restored.
However, when these software failures ripple through other parts of the system, they
affect the software’s physical and human environment. Here, the consequences of
failure are more significant. Important data may be lost or corrupted. People may
have to do extra work to contain or recover from the failure; for example, equipment
may be damaged, data may be lost or corrupted, or confidentiality may be breached,
with unknown consequences.

You must, therefore, take a system-level view when you are designing software
that has to be dependable and secure. You have to take into account the consequences
of software failures for other elements in the system. You also need to understand
how these other system elements may be the cause of software failure and how they
can help to protect against and recover from software failures.

It is important to ensure that, wherever possible, software failure does not lead to
overall system failure. You must therefore examine how the software interacts with
its immediate environment to ensure that:

1.	 Software failures are, as far as possible, contained within the enclosing layer of
the system stack and do not seriously affect the operation of other layers in the
system.

2.	 You understand how faults and failures in the other layers of the systems stack
may affect the software. You may also consider how checks may be built into
the software to help detect these failures, and how support can be provided for
recovering from failure.

As software is inherently flexible, unexpected system problems are often left to
software engineers to solve. Say a radar installation has been sited so that ghosting
of the radar image occurs. It is impractical to move the radar to a site with less
interference, so the systems engineers have to find another way of removing this

294    Chapter 10  ■  Dependable systems

ghosting. Their solution may be to enhance the image-processing capabilities of the
software to remove the ghost images. This may slow down the software so that its
performance becomes unacceptable. The problem may then be characterized as a
software failure, whereas, in fact, it is a failure in the design process for the system
as a whole.

This sort of situation, in which software engineers are left with the problem of
enhancing software capabilities without increasing hardware cost, is very common.
Many so-called software failures are not a consequence of inherent software prob-
lems but rather are the result of trying to change the software to accommodate mod-
ified system engineering requirements. A good example was the failure of the
Denver airport baggage system (Swartz 1996), where the controlling software was
expected to deal with limitations of the equipment used.

	 10.2.1 	 Regulation and compliance

The general model of economic organization that is now almost universal in the
world is that privately owned companies offer goods and services and make a profit
on these. We have a competitive environment so that these companies may compete
on cost, on quality, on delivery time, and so on. However, to ensure the safety of
their citizens, most governments limit the freedom of privately owned companies so
that they must follow certain standards to ensure that their products are safe and
secure. A company therefore cannot offer products for sale more cheaply because
they have reduced their costs by reducing the safety of their products.

Governments have created a set of rules and regulations in different areas that
define standards for safety and security. They have also established regulators or
regulatory bodies whose job is to ensure that companies offering products in an area
comply with these rules. Regulators have wide powers. They can fine companies and
even imprison directors if regulations are breached. They may have a licensing role
(e.g., in the aviation and nuclear industries) where they must issue a license before a
new system may be used. Therefore, aircraft manufacturers have to have a certificate
of airworthiness from the regulator in each country where the aircraft is used.

To achieve certification, companies that are developing safety-critical systems
have to produce an extensive safety case (discussed in Chapter 13) that shows that
rules and regulations have been followed. The case must convince a regulator that
the system can operate safely. Developing such a safety case is very costly. It can be
as expensive to develop the documentation for certification as it is to develop the
system itself.

Regulation and compliance (following the rules) applies to the sociotechnical
system as a whole and not simply the software element of that system. For example,
a regulator in the nuclear industry is concerned that in the event of overheating, a
nuclear reactor will not release radioactivity into the environment. Arguments to
convince the regulator that this is the case may be based on software protection sys-
tems, the operational process used to monitor the reactor core and the integrity of
structures that contain any release of radioactivity.

	 10.3  ■  Redundancy and diversity    295

Each of these elements has to have its own safety case. So, the protection system
must have a safety case that demonstrates that the software will operate correctly and
shut down the reactor as intended. The overall case must also show that if the soft-
ware protection system fails, there are alternative safety mechanisms, which do not
rely on software, that are invoked.

	 10.3 	 Redundancy and diversity

Component failures in any system are inevitable. People make mistakes, undiscov-
ered bugs in software cause undesirable behavior, and hardware burns out. We use a
range of strategies to reduce the number of human failures such as replacing hard-
ware components before the end of their predicted lifetime and checking software
using static analysis tools. However, we cannot be sure that these will eliminate
component failures. We should therefore design systems so that individual compo-
nent failures do not lead to overall system failure.

Strategies to achieve and enhance dependability rely on both redundancy and
diversity. Redundancy means that spare capacity is included in a system that can be
used if part of that system fails. Diversity means that redundant components of the
system are of different types, thus increasing the chances that they will not fail in
exactly the same way.

We use redundancy and diversity to enhance dependability in our everyday
lives. Commonly, to secure our homes we use more than one lock (redundancy),
and, usually, the locks used are of different types (diversity). This means that if
intruders find a way to defeat one of the locks, they have to find a different way of
defeating the other locks before they can gain entry. As a matter of routine, we
should all back up our computers and so maintain redundant copies of our data. To
avoid problems with disk failure, backups should be kept on a separate, diverse,
external device.

Software systems that are designed for dependability may include redundant
components that provide the same functionality as other system components. These
are switched into the system if the primary component fails. If these redundant com-
ponents are diverse, that is, not the same as other components, a common fault in
replicated components will not result in a system failure. Another form of redun-
dancy is the inclusion of checking code, which is not strictly necessary for the sys-
tem to function. This code can detect some kinds of problems, such as data corruption,
before they cause failures. It can invoke recovery mechanisms to correct problems to
ensure that the system continues to operate.

In systems for which availability is a critical requirement, redundant servers are
normally used. These automatically come into operation if a designated server fails.
Sometimes, to ensure that attacks on the system cannot exploit a common vulnera-
bility, these servers may be of different types and may run different operating sys-
tems. Using different operating systems is an example of software diversity and

296    Chapter 10  ■  Dependable systems

redundancy, where similar functionality is provided in different ways. (I discuss
software diversity in more detail in Chapter 12.)

Diversity and redundancy may also be also used in the design of dependable soft-
ware development processes. Dependable development processes avoid the intro-
duction of faults into a system. In a dependable process, activities such as software
validation do not rely on a single tool or technique. This improves software depend-
ability because it reduces the chances of process failure, where human errors made
during the software development process lead to software errors.

For example, validation activities may include program testing, manual program
inspections, and static analysis as fault-finding techniques. Any one of these techniques
might find faults that are missed by the other methods. Furthermore, different team
members may be responsible for the same process activity (e.g., a program inspection).
People tackle tasks in different ways depending on their personality, experience, and
education, so this kind of redundancy provides a diverse perspective on the system.

However, as I discuss in Chapter 11, using software redundancy and diversity
can itself introduce bugs into software. Diversity and redundancy make systems
more complex and usually harder to understand. Not only is there more code to
write and check, but additional functionality must also be added to the system to
detect component failure and to switch control to alternative components. This addi-
tional complexity means that it is more likely that programmers will make errors
and less likely that people checking the system will find these errors.

Some engineers therefore think that, as software cannot wear out, it is best to
avoid software redundancy and diversity. Their view is that the best approach is to
design the software to be as simple as possible, with extremely rigorous software
verification and validation procedures (Parnas, van Schouwen, and Shu 1990). More
can be spent on verification and validation because of the savings that result from
not having to develop redundant software components.

Both approaches are used in commercial, safety-critical software systems. For
example, the Airbus 340 flight control hardware and software is both diverse and
redundant. The flight control software on the Boeing 777 runs on redundant hard-
ware, but each computer runs the same software, which has been very extensively
validated. The Boeing 777 flight control system designers have focused on simplic-
ity rather than redundancy. Both of these aircraft are very reliable, so both the diverse
and the simple approach to dependability can clearly be successful.

The Ariane 5 explosion

In 1996, the European Space Agency’s Ariane 5 rocket exploded 37 seconds after lift-off on its maiden flight.
The fault was caused by a software systems failure. There was a backup system but it was not diverse, and
so the software in the backup computer failed in exactly the same way. The rocket and its satellite payload
were destroyed.

http://software-engineering-book.com/web/ariane/

http://software-engineering-book.com/web/ariane

	 10.4  ■  Dependable processes    297

	 10.4 	 Dependable processes

Dependable software processes are software processes that are designed to pro-
duce dependable software. The rationale for investing in dependable processes is
that a good software process is likely to lead to delivered software that contains
fewer errors and is therefore less likely to fail in execution. A company using a
dependable process can be sure that the process has been properly enacted and
documented and that appropriate development techniques have been used for crit-
ical systems development. Figure 10.4 shows some of the attributes of dependable
software processes.

The evidence that a dependable process has been used is often important in con-
vincing a regulator that the most effective software engineering practice has been
applied in developing the software. System developers will normally present a model
of the process to a regulator, along with evidence that the process has been followed.
The regulator also has to be convinced that the process is used consistently by all of
the process participants and that it can be used in different development projects.
This means that the process must be explicitly defined and repeatable:

1.	 An explicitly defined process is one that has a defined process model that is
used to drive the software production process. Data must be collected during the
process that proves that the development team has followed the process as
defined in the process model.

2.	 A repeatable process is one that does not rely on individual interpretation and
judgment. Rather, the process can be repeated across projects and with different
team members, irrespective of who is involved in the development. This is par-
ticularly important for critical systems, which often have a long development
cycle during which there are often significant changes in the development team.

Dependable processes make use of redundancy and diversity to achieve reliabil-
ity. They often include different activities that have the same aim. For example,
program inspections and testing aim to discover errors in a program. The approaches
can be used together so that they are likely to find more errors than would be found
using one technique on its own.

Dependable operational processes

This chapter discusses dependable development processes, but system operational processes are equally
important contributors for system dependability. In designing these operational processes, you have to take into
account human factors and always bear in mind that people are liable to make mistakes when using a system.
A dependable process should be designed to avoid human errors, and, when mistakes are made, the software
should detect the mistakes and allow them to be corrected.

http://software-engineering-book.com/web/human-error/

http://software-engineering-book.com/web/human-error

298    Chapter 10  ■  Dependable systems

The activities that are used in dependable processes obviously depend on the type
of software that is being developed. In general, however, these activities should be
geared toward avoiding the introduction of errors into a system, detecting and
removing errors, and maintaining information about the process itself.

Examples of activities that might be included in a dependable process include:

1.	 Requirements reviews to check that the requirements are, as far as possible,
complete and consistent.

2.	 Requirements management to ensure that changes to the requirements are con-
trolled and that the impact of proposed requirements changes is understood by
all developers affected by the change.

3.	 Formal specification, where a mathematical model of the software is created
and analyzed. (I discussed the benefits of formal specification in Section 10.5.)
Perhaps its most important benefit is that it forces a very detailed analysis of the
system requirements. This analysis itself is likely to discover requirements
problems that may have been missed in requirements reviews.

4.	 System modeling, where the software design is explicitly documented as a set of
graphical models and the links between the requirements and these models are
explicitly documented. If a model-driven engineering approach is used (see
Chapter 5), code may be generated automatically from these models.

5.	 Design and program inspections, where the different descriptions of the system
are inspected and checked by different people. A checklist of common design
and programming errors may be used to focus the inspection process.

6.	 Static analysis, where automated checks are carried out on the source code of
the program. These look for anomalies that could indicate programming errors
or omissions. (I cover static analysis in Chapter 12.)

7.	 Test planning and management, where a comprehensive set of system tests is
designed. The testing process has to be carefully managed to demonstrate that
these tests provide coverage of the system requirements and have been correctly
applied in the testing process.

Figure 10.4  Attributes
of dependable
processes

Process characteristic Description

Auditable The process should be understandable by people apart from process
participants, who can check that process standards are being followed and
make suggestions for process improvement.

Diverse The process should include redundant and diverse verification and
validation activities.

Documentable The process should have a defined process model that sets out the activities in
the process and the documentation that is to be produced during these activities.

Robust The process should be able to recover from failures of individual process
activities.

Standardized A comprehensive set of software development standards covering software
production and documentation should be available.

	 10.5  ■  Formal methods and dependability    299

As well as process activities that focus on system development and testing, there
must also be well-defined quality management and change management processes.
While the specific activities in a dependable process may vary from one company to
another, the need for effective quality and change management is universal.

Quality management processes (covered in Chapter 24) establish a set of process and
product standards. They also include activities that capture process information to dem-
onstrate that these standards have been followed. For example, there may be a standard
defined for carrying out program inspections. The inspection team leader is responsible
for documenting the process to show that the inspection standard has been followed.

Change management, discussed in Chapter 25, is concerned with managing changes
to a system, ensuring that accepted changes are actually implemented, and confirming
that planned releases of the software include the planned changes. One common problem
with software is that the wrong components are included in a system build. This can lead
to a situation where an executing system includes components that have not been checked
during the development process. Configuration management procedures must be defined
as part of the change management process to ensure that this does not happen.

As agile methods have become increasingly used, researchers and practitioners have
thought carefully about how to use agile approaches in dependable software development
(Trimble 2012). Most companies that develop critical software systems have based their
development on plan-based processes and have been reluctant to make radical changes to
their development process. However, they recognize the value of agile approaches and
are exploring how their dependable development processes can be more agile.

As dependable software often requires certification, both process and product
documentation have to be produced. Up-front requirements analysis is also essential
to discover possible requirements and requirements conflicts that may compromise
the safety and security of the system. Formal change analysis is essential to assess
the effect of changes on the safety and integrity of the system. These requirements
conflict with the general approach in agile development of co-development of the
requirements and the system and minimizing documentation.

Although most agile development uses an informal, undocumented process, this
is not a fundamental requirement of agility. An agile process may be defined that
incorporates techniques such as iterative development, test-first development and
user involvement in the development team. As long as the team follows that process
and documents their actions, agile techniques can be used. To support this notion,
various proposals of modified agile methods have been made that incorporate the
requirements of dependable systems engineering (Douglass 2013). These combine
the most appropriate techniques from agile and plan-based development.

	 10.5 	 Formal methods and dependability

For more than 30 years, researchers have advocated the use of formal methods of
software development. Formal methods are mathematical approaches to software
development where you define a formal model of the software. You may then for-
mally analyze this model to search for errors and inconsistencies, prove that a program

300    Chapter 10  ■  Dependable systems

is consistent with this model, or you may apply a series of correctness-preserving
transformations to the model to generate a program. Abrial (Abrial 2009) claims that
the use of formal methods can lead to “faultless systems,” although he is careful to
limit what he means in this claim.

In an excellent survey, Woodcock et al. (Woodcock et al. 2009) discuss industrial
applications where formal methods have been successfully applied. These include
train control systems (Badeau and Amelot 2005), cash card systems (Hall and
Chapman 2002), and flight control systems (Miller et al. 2005). Formal methods are
the basis of tools used in static verification, such as the driver verification system
used by Microsoft (Ball et al. 2006).

Using a mathematically formal approach to software development was proposed
at an early stage in the development of computer science. The idea was that a formal
specification and a program could be developed independently. A mathematical
proof could then be developed to show that the program and its specification were
consistent. Initially, proofs were developed manually but this was a long and expen-
sive process. It quickly became clear that manual proofs could only be developed for
very small systems. Program proving is now supported by large-scale automated
theorem proving software, which has meant that larger systems can be proved.
However, developing the proof obligations for theorem provers is a difficult and
specialized task, so formal verification is not widely used.

An alternative approach, which avoids a separate proof activity, is refinement-
based development. Here, a formal specification of a system is refined through
a series of correctness-preserving transformations to generate the software.
Because these are trusted transformations, you can be confident that the gener-
ated program is consistent with its formal specification. This was the approach
used in the software development for the Paris Metro system (Badeau and Amelot
2005). It used a language called B (Abrial 2010), which was designed to support
specification refinement.

Formal methods based on model-checking (Jhala and Majumdar 2009) have been
used in a number of systems (Bochot et al. 2009; Calinescu and Kwiatkowska 2009).
These systems rely on constructing or generating a formal state model of a system
and using a model-checker to check that properties of the model, such as safety
properties, always hold. The model-checking program exhaustively analyzes the
specification and either reports that the system property is satisfied by the model or
presents an example that shows it is not satisfied. If a model can be automatically or
systematically generated from a program, this means that bugs in the program can be
uncovered. (I cover model checking in safety-critical systems in Chapter 12.)

Formal methods for software engineering are effective for discovering or avoid-
ing two classes of error in software representations:

1.	 Specification and design errors and omissions. The process of developing and
analyzing a formal model of the software may reveal errors and omissions in the
software requirements. If the model is generated automatically or systematically
from source code, analysis using model checking can discover undesirable
states that may occur, such as deadlock in a concurrent system.

	 10.5  ■  Formal methods and dependability    301

2.	 Inconsistencies between a specification and a program. If a refinement method
is used, mistakes made by developers that make the software inconsistent with
the specification are avoided. Program proving discovers inconsistencies
between a program and its specification.

The starting point for all formal methods is a mathematical system model, which
acts as a system specification. To create this model, you translate the system’s user
requirements, which are expressed in natural language, diagrams, and tables, into a
mathematical language that has formally defined semantics. The formal specifica-
tion is an unambiguous description of what the system should do.

Formal specifications are the most precise way of specifying systems, and so
reduce the scope for misunderstanding. Many supporters of formal methods believe
that creating formal specification, even without refinement or program proof, is
worthwhile. Constructing a formal specification forces a detailed analysis of the
requirements and this is an effective way of discovering requirements problems. In a
natural language specification, errors can be concealed by the imprecision of the
language. This is not the case if the system is formally specified.

The advantages of developing a formal specification and using it in a formal
development process are:

1.	 As you develop a formal specification in detail, you develop a deep and detailed
understanding of the system requirements. Requirements problems that are dis-
covered early are usually much cheaper to correct than if they are found at later
stages in the development process.

2.	 As the specification is expressed in a language with formally defined semantics,
you can analyze it automatically to discover inconsistencies and incompleteness.

3.	 If you use a method such as the B method, you can transform the formal speci-
fication into a program through a sequence of correctness-preserving transfor-
mations. The resulting program is therefore guaranteed to meet its specification.

4.	 Program testing costs may be reduced because you have verified the program
against its specification. For example, in the development of the software for the
Paris Metro systems, the use of refinement meant that there was no need for
software component testing and only system testing was required.

Formal specification techniques

Formal system specifications may be expressed using two fundamental approaches, either as models of the
system interfaces (algebraic specifications) or as models of the system state. An extra web chapter on this topic
shows examples of both of these approaches. The chapter includes a formal specification of part of the insulin
pump system.

http://software-engineering-book.com/web/formal-methods/ (web chapter)

http://software-engineering-book.com/web/formal-methods

302    Chapter 10  ■  Dependable systems

Woodcock’s survey (Woodcock et al. 2009) found that users of formal methods
reported fewer errors in the delivered software. Neither the costs nor the time needed
for software development were higher than in comparable development projects.
There were significant benefits in using formal approaches in safety critical systems
that required regulator certification. The documentation produced was an important
part of the safety case (see Chapter 12) for the system.

In spite of these advantages, formal methods have had limited impact on practical
software development, even for critical systems. Woodcock reports on 62 projects
over 25 years that used formal methods. Even if we allow for projects that used these
techniques but did not report their use, this is a tiny fraction of the total number of
critical systems developed in that time. Industry has been reluctant to adopt formal
methods for a number of reasons:

1.	 Problem owners and domain experts cannot understand a formal specification,
so they cannot check that it accurately represents their requirements. Software
engineers, who understand the formal specification, may not understand the
application domain, so they too cannot be sure that the formal specification is an
accurate reflection of the system requirements.

2.	 It is fairly easy to quantify the costs of creating a formal specification, but more
difficult to estimate the possible cost savings that will result from its use. As a
result, managers are unwilling to take the risk of adopting formal methods. They
are unconvinced by reports of success as, by and large, these came from atypical
projects where the developers were keen advocates of a formal approach.

3.	 Most software engineers have not been trained to use formal specification lan-
guages. Hence, they are reluctant to propose their use in development processes.

4.	 It is difficult to scale current formal methods up to very large systems. When
formal methods are used, it is mostly for specifying critical kernel software
rather than complete systems.

5.	 Tool support for formal methods is limited, and the available tools are often
open source and difficult to use. The market is too small for commercial tool
providers.

6.	 Formal methods are not compatible with agile development where programs are
developed incrementally. This is not a major issue, however, as most critical
systems are still developed using a plan-based approach.

Parnas, an early advocate of formal development, has criticized current formal
methods and claims that these have started from a fundamentally wrong premise
(Parnas 2010). He believes that these methods will not gain acceptance until they
are radically simplified, which will require a different type of mathematics as a
basis. My own view is that even this will not mean that formal methods are rou-
tinely adopted for critical systems engineering unless it can be clearly demon-
strated that their adoption and use is cost-effective, compared to other software
engineering methods.

K e y P o i n t s

■	 System dependability is important because failure of critical computer systems can lead to large
economic losses, serious information loss, physical damage or threats to human life.

■	 The dependability of a computer system is a system property that reflects the user’s degree of
trust in the system. The most important dimensions of dependability are availability, reliability,
safety, security, and resilience.

■	 Sociotechnical systems include computer hardware, software, and people, and are situated within
an organization. They are designed to support organizational or business goals and objectives.

■	 The use of a dependable, repeatable process is essential if faults in a system are to be
minimized. The process should include verification and validation activities at all stages, from
requirements definition through to system implementation.

■	 The use of redundancy and diversity in hardware, software processes, and software systems is
essential to the development of dependable systems.

■	 Formal methods, where a formal model of a system is used as a basis for development, help reduce
the number of specification and implementation errors in a system. However, formal methods have
had a limited take-up in industry because of concerns about the cost-effectiveness of this approach.

F u r t h e r R e a d i n g

“Basic Concepts and Taxonomy of Dependable and Secure Computing.” This work presents a thorough
discussion of dependability concepts written by some of the pioneers in the field who were responsible
for developing these ideas. (A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr., IEEE Transactions on
Dependable and Secure Computing, 1 (1), 2004) http://dx.doi.org/10.1109/TDSC.2004.2

Formal Methods: Practice and Experience. An excellent survey of the use of formal methods in
industry, along with a description of some projects that have used formal methods. The authors
present a realistic summary of the barriers to the use of these methods. (J. Woodcock, P. G. Larsen,
J. Bicarregui, and J. Fitzgerald. Computing Surveys, 41 (1) January 2009) http://dx.doi.org/10.1145/
1592434.1592436

The LSCITS Socio-technical Systems Handbook. This handbook introduces sociotechnical systems
in an accessible way and provides access to more detailed papers on sociotechnical topics. (2012)
http://archive.cs.st-andrews.ac.uk/STSE-Handbook/

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/critical-systems/

	 Chapter 10  ■  Website    303

http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1145/1592434.1592436
http://archive.cs.st-andrews.ac.uk/STSE-Handbook
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/critical-systems
http://dx.doi.org/10.1145/1592434.1592436

E x e rc i s e s

  10.1.	 �Suggest six reasons why software dependability is important in most sociotechnical systems.

  10.2.	� Explain with an example why resilience to cyber attacks is a very important characteristic of
system dependability.

  10.3.	 �Using an example, explain why it is important when developing dependable systems to consider
these as sociotechnical systems and not simply as technical software and hardware systems.

  10.4.	 �Give two examples of government functions that are supported by complex sociotechnical
systems and explain why, in the foreseeable future, these functions cannot be completely
automated.

  10.5.	 Explain the difference between redundancy and diversity.

  10.6.	 �Explain why it is reasonable to assume that the use of dependable processes will lead to the
creation of dependable software.

  10.7.	 �Give two examples of diverse, redundant activities that might be incorporated into depend-
able processes.

  10.8.	 �Give two reasons why different versions of a system based on software diversity may fail in
a similar way.

  10.9.	 �You are an engineer in charge of the development of a small, safety-critical train control
system, which must be demonstrably safe and secure. You suggest that formal methods
should be used in the development of this system, but your manager is skeptical of this
approach. Write a report highlighting the benefits of formal methods and presenting a
case for their use in this project.

10.10.	 �It has been suggested that the need for regulation inhibits innovation and that regulators
force the use of older methods of systems development that have been used on other
systems. Discuss whether or not you think this is true and the desirability of regulators
imposing their views on what methods should be used.

R e f e r e n c e s

Abrial, J. R. 2009. “Faultless Systems: Yes We Can.” IEEE Computer 42 (9): 30–36. doi:10.1109/
MC.2009.283.

	   . 2010. Modeling in Event-B: System and Software Engineering. Cambridge, UK: Cambridge
University Press.

Avizienis, A., J. C. Laprie, B. Randell, and C. Landwehr. 2004. “Basic Concepts and Taxonomy of
Dependable and Secure Computing.” IEEE Trans. on Dependable and Secure Computing 1 (1): 11–33.
doi:10.1109/TDSC.2004.2.

Badeau, F., and A. Amelot. 2005. “Using B as a High Level Programming Language in an Industrial
Project: Roissy VAL.” In Proc. ZB 2005: Formal Specification and Development in Z and B. Guildford,
UK: Springer. doi:10.1007/11415787_20.

304    Chapter 10  ■  Dependable systems

	 Chapter 10  ■  References    305

Ball, T., E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K. Rajamani,
and A. Ustuner. 2006. “Thorough Static Analysis of Device Drivers.” In Proc. EuroSys 2006. Leuven,
Belgium. doi:10.1145/1218063.1217943.

Bochot, T., P. Virelizier, H. Waeselynck, and V. Wiels. 2009. “Model Checking Flight Control Sys-
tems: The Airbus Experience.” In Proc. 31st International Conf. on Software Engineering, Companion
Volume, 18–27. Leipzig: IEEE Computer Society Press. doi:10.1109/ICSE-COMPANION.2009.5070960.

Calinescu, R. C., and M. Z. Kwiatkowska. 2009. “Using Quantitative Analysis to Implement Auto-
nomic IT Systems.” In Proc. 31st International Conf. on Software Engineering, Companion Volume,
100–10. Leipzig: IEEE Computer Society Press. doi:10.1109/ICSE.2009.5070512.

Douglass, B. 2013. “Agile Analysis Practices for Safety-Critical Software Development.” http://www
.ibm.com/developerworks/rational/library/agile-analysis-practices-safety-critical-development/.

Hall, A., and R. Chapman. 2002. “Correctness by Construction: Developing a Commercially Secure
System.” IEEE Software 19 (1): 18–25.doi:10.1109/52.976937.

Jhala, R., and R. Majumdar. 2009. “Software Model Checking.” Computing Surveys 41 (4), Article 21.
doi:1145/1592434.1592438.

Miller, S. P., E. A. Anderson, L. G. Wagner, M. W. Whalen, and M. P. E. Heimdahl. 2005. “Formal Veri-
fication of Flight Critical Software.” In Proc. AIAA Guidance, Navigation and Control Conference. San
Francisco. doi:10.2514/6.2005-6431.

Parnas, D. 2010. “Really Rethinking Formal Methods.” IEEE Computer 43 (1): 28–34. doi:10.1109/
MC.2010.22.

Parnas, D., J. van Schouwen, and P. K. Shu. 1990. “Evaluation of Safety-Critical Software.” Comm.
ACM 33 (6): 636–651. doi:10.1145/78973.78974.

Swartz, A. J. 1996. “Airport 95: Automated Baggage System?” ACM Software Engineering Notes 21
(2): 79–83. doi:10.1145/227531.227544.

Trimble, J. 2012. “Agile Development Methods for Space Operations.” In SpaceOps 2012. Stockholm.
doi:10.2514/6.2012-1264554.

Woodcock, J., P. G. Larsen, J. Bicarregui, and J. Fitzgerald. 2009. “Formal Methods: Practice and
Experience.” Computing Surveys 41 (4): 1–36. doi:10.1145/1592434.1592436.

http://www.ibm.com/developerworks/rational/library/agile-analysis-practices-safety-critical-development
http://www.ibm.com/developerworks/rational/library/agile-analysis-practices-safety-critical-development

Reliability engineering
11

Objectives
The objective of this chapter is to explain how software reliability may
be specified, implemented, and measured. When you have read this
chapter, you will:

■	 understand the distinction between software reliability and
software availability;

■	 have been introduced to metrics for reliability specification and
how these are used to specify measurable reliability requirements;

■	 understand how different architectural styles may be used to
implement reliable, fault-tolerant systems architectures;

■	 know about good programming practice for reliable software
engineering;

■	 understand how the reliability of a software system may be
measured using statistical testing.

Contents
11.1	 Availability and reliability

11.2	 Reliability requirements

11.3	 Fault-tolerant architectures

11.4	 Programming for reliability

11.5	 Reliability measurement

	 Chapter 11  ■  Reliability engineering   307

Our dependence on software systems for almost all aspects of our business and
personal lives means that we expect that software to be available when we need it.
This may be early in the morning or late at night, at weekends or during holidays—
the software must run all day, every day of the year. We expect that software will
operate without crashes and failures and will preserve our data and personal infor-
mation. We need to be able to trust the software that we use, which means that the
software must be reliable.

The use of software engineering techniques, better programming languages, and
effective quality management has led to significant improvements in software relia-
bility over the past 20 years. Nevertheless, system failures still occur that affect the
system’s availability or lead to incorrect results being produced. In situations where
software has a particularly critical role—perhaps in an aircraft or as part of the national
critical infrastructure—special reliability engineering techniques may be used to
achieve the high levels of reliability and availability that are required.

Unfortunately, it is easy to get confused when talking about system reliability, with
different people meaning different things when they talk about system faults and failures.
Brian Randell, a pioneer researcher in software reliability, defined a fault–error–failure
model (Randell 2000) based on the notion that human errors cause faults; faults lead to
errors, and errors lead to system failures. He defined these terms precisely:

1.	 Human error or mistake Human behavior that results in the introduction of
faults into a system. For example, in the wilderness weather system, a program-
mer might decide that the way to compute the time for the next transmission is
to add 1 hour to the current time. This works except when the transmission time
is between 23.00 and midnight (midnight is 00.00 in the 24-hour clock).

2.	 System fault A characteristic of a software system that can lead to a system
error. The fault in the above example is the inclusion of code to add 1 to a variable
called Transmission_time, without a check to see if the value of Transmission_
time is greater than or equal to 23.00.

3.	 System error An erroneous system state during execution that can lead to sys-
tem behavior that is unexpected by system users. In this example, the value of
the variable Transmission_time is set incorrectly to 24.XX rather than 00.XX
when the faulty code is executed.

4.	 System failure An event that occurs at some point in time when the system does
not deliver a service as expected by its users. In this case, no weather data is
transmitted because the time is invalid.

System faults do not necessarily result in system errors, and system errors do not
necessarily result in system failures:

1.	 Not all code in a program is executed. The code that includes a fault (e.g., the
failure to initialize a variable) may never be executed because of the way that
the software is used.

308   Chapter 11  ■  Reliability engineering

2.	 Errors are transient. A state variable may have an incorrect value caused by the
execution of faulty code. However, before this is accessed and causes a system
failure, some other system input may be processed that resets the state to a valid
value. The wrong value has no practical effect.

3.	 The system may include fault detection and protection mechanisms. These
ensure that the erroneous behavior is discovered and corrected before the sys-
tem services are affected.

Another reason why the faults in a system may not lead to system failures is that
users adapt their behavior to avoid using inputs that they know cause program failures.
Experienced users “work around” software features that they have found to be unrelia-
ble. For example, I avoid some features, such as automatic numbering, in the word
processing system that I use because my experience is that it often goes wrong. Repairing
faults in such unused features makes no practical difference to the system reliability.

The distinction between faults, errors, and failures leads to three complementary
approaches that are used to improve the reliability of a system:

1.	 Fault avoidance The software design and implementation process should use
approaches to software development that help avoid design and programming
errors and so minimize the number of faults introduced into the system. Fewer
faults means less chance of runtime failures. Fault-avoidance techniques include
the use of strongly typed programming language to allow extensive compiler
checking and minimizing the use of error-prone programming language con-
structs, such as pointers.

2.	 Fault detection and correction Verification and validation processes are designed
to discover and remove faults in a program, before it is deployed for operational
use. Critical systems require extensive verification and validation to discover as
many faults as possible before deployment and to convince the system stake-
holders and regulators that the system is dependable. Systematic testing and
debugging and static analysis are examples of fault-detection techniques.

3.	 Fault tolerance The system is designed so that faults or unexpected system
behavior during execution are detected at runtime and are managed in such a
way that system failure does not occur. Simple approaches to fault tolerance
based on built-in runtime checking may be included in all systems. More spe-
cialized fault-tolerance techniques, such as the use of fault-tolerant system
architectures, discussed in Section 11.3, may be used when a very high level of
system availability and reliability is required.

Unfortunately, applying fault-avoidance, fault-detection, and fault-tolerance
techniques is not always cost-effective. The cost of finding and removing the remain-
ing faults in a software system rises exponentially as program faults are discovered
and removed (Figure 11.1). As the software becomes more reliable, you need to
spend more and more time and effort to find fewer and fewer faults. At some stage,
even for critical systems, the costs of this additional effort become unjustifiable.

	 11.1  ■  Availability and reliability   309

As a result, software companies accept that their software will always contain
some residual faults. The level of faults depends on the type of system. Software
products have a relatively high level of faults, whereas critical systems usually have
a much lower fault density.

The rationale for accepting faults is that, if and when the system fails, it is cheaper
to pay for the consequences of failure than it would be to discover and remove the
faults before system delivery. However, the decision to release faulty software is not
simply an economic one. The social and political acceptability of system failure
must also be taken into account.

	 11.1	 Availability and reliability

In Chapter 10, I introduced the concepts of system reliability and system availability.
If we think of systems as delivering some kind of service (to deliver cash, control
brakes, or connect phone calls, for example), then the availability of that service is
whether or not that service is up and running and its reliability is whether or not that
service delivers correct results. Availability and reliability can both be expressed as
probabilities. If the availability is 0.999, this means that, over some time period, the
system is available for 99.9% of that time. If, on average, 2 inputs in every 1000 result
in failures, then the reliability, expressed as a rate of occurrence of failure, is 0.002.

More precise definitions of availability and reliability are:

1.	 Reliability The probability of failure-free operation over a specified time, in a
given environment, for a specific purpose.

2.	 Availability The probability that a system, at a point in time, will be operational
and able to deliver the requested services.

C
os

t
pe

r
er

ro
r

de
te

ct
ed

Few

Number of residual errors

Many Very few
Figure 11.1  The
increasing costs of
residual fault removal

310   Chapter 11  ■  Reliability engineering

System reliability is not an absolute value—it depends on where and how that
system is used. For example, let’s say that you measure the reliability of an applica-
tion in an office environment where most users are uninterested in the operation of
the software. They follow the instructions for its use and do not try to experiment
with the system. If you then measure the reliability of the same system in a university
environment, then the reliability may be quite different. Here, students may explore
the boundaries of the system and use it in unexpected ways. This may result in system
failures that did not occur in the more constrained office environment. Therefore, the
perceptions of the system’s reliability in each of these environments are different.

The above definition of reliability is based on the idea of failure-free operation,
where failures are external events that affect the users of a system. But what consti-
tutes “failure”? A technical definition of failure is behavior that does not conform to
the system’s specification. However, there are two problems with this definition:

1.	 Software specifications are often incomplete or incorrect, and it is left to soft-
ware engineers to interpret how the system should behave. As they are not
domain experts, they may not implement the behavior that users expect. The
software may behave as specified, but, for users, it is still failing.

2.	 No one except system developers reads software specification documents. Users
may therefore anticipate that the software should behave in one way when the
specification says something completely different.

Failure is therefore not something that can be objectively defined. Rather, it is a
judgment made by users of a system. This is one reason why users do not all have the
same impression of a system’s reliability.

To understand why reliability is different in different environments, we need to think
about a system as an input/output mapping. Figure 11.2 shows a software system that

IeInput set

OeOutput set

Program

Inputs causing
erroneous outputs

Erroneous
outputs

Figure 11.2  A system
as an input/output
mapping

	 11.1  ■  Availability and reliability   311

links a set of inputs with a set of outputs. Given an input or input sequence, the program
responds by producing a corresponding output. For example, given an input of a URL,
a web browser produces an output that is the display of the requested web page.

Most inputs do not lead to system failure. However, some inputs or input combi-
nations, shown in the shaded ellipse Ie in Figure 11.2, cause system failures or
erroneous outputs to be generated. The program’s reliability depends on the number
of system inputs that are members of the set of inputs that lead to an erroneous
output—in other words, the set of inputs that cause faulty code to be executed and
system errors to occur. If inputs in the set Ie are executed by frequently used parts of
the system, then failures will be frequent. However, if the inputs in Ie are executed by
code that is rarely used, then users will hardly ever see failures.

Faults that affect the reliability of the system for one user may never show up
under someone else’s mode of working. In Figure 11.3, the set of erroneous inputs
corresponds to the ellipse labeled Ie in Figure 11.2. The set of inputs produced by
User 2 intersects with this erroneous input set. User 2 will therefore experience some
system failures. User 1 and User 3, however, never use inputs from the erroneous
set. For them, the software will always appear to be reliable.

The availability of a system does not just depend on the number of system fail-
ures, but also on the time needed to repair the faults that have caused the failure.
Therefore, if system A fails once a year and system B fails once a month, then A is
apparently more reliable then B. However, assume that system A takes 6 hours to
restart after a failure, whereas system B takes 5 minutes to restart. The availability of
system B over the year (60 minutes of down time) is much better than that of system
A (360 minutes of downtime).

Furthermore, the disruption caused by unavailable systems is not reflected in the
simple availability metric that specifies the percentage of time that the system is
available. The time when the system fails is also important. If a system is unavailable
for an hour each day between 3 am and 4 am, this may not affect many users.
However, if the same system is unavailable for 10 minutes during the working day,
system unavailability has a much greater effect on users.

Reliability and availability are closely related, but sometimes one is more impor-
tant than the other. If users expect continuous service from a system, then the system

Possible
inputs

User
1

User
3

User
2

Erroneous
inputs

Figure 11.3  Software
usage patterns

312   Chapter 11  ■  Reliability engineering

has a high-availability requirement. It must be available whenever a demand is
made. However, if a system can recover quickly from failures without loss of user
data, then these failures may not significantly affect system users.

A telephone exchange switch that routes phone calls is an example of a system
where availability is more important than reliability. Users expect to be able to make a
call when they pick up a phone or activate a phone app, so the system has high-
availability requirements. If a system fault occurs while a connection is being set up,
this is often quickly recoverable. Exchange or base station switches can reset the system
and retry the connection attempt. This can be done quickly, and phone users may not
even notice that a failure has occurred. Furthermore, even if a call is interrupted, the
consequences are usually not serious. Users simply reconnect if this happens.

	 11.2	 Reliability requirements

In September 1993, a plane landed at Warsaw Airport in Poland during a thunder-
storm. For 9 seconds after landing, the brakes on the computer-controlled braking
system did not work. The braking system had not recognized that the plane had
landed and assumed that the aircraft was still airborne. A safety feature on the air-
craft had stopped the deployment of the reverse thrust system, which slows down the
aircraft, because reverse thrust is catastrophic if the plane is in the air. The plane ran
off the end of the runway, hit an earth bank, and caught fire.

The inquiry into the accident showed that the braking system software had oper-
ated according to its specification. There were no errors in the control system.
However, the software specification was incomplete and had not taken into account
a rare situation, which arose in this case. The software worked, but the system failed.

This incident shows that system dependability does not just depend on good engi-
neering. It also requires attention to detail when the system requirements are derived
and the specification of software requirements that are geared to ensuring the
dependability of a system. Those dependability requirements are of two types:

1.	 Functional requirements, which define checking and recovery facilities that
should be included in the system and features that provide protection against
system failures and external attacks.

2.	 Non-functional requirements, which define the required reliability and availa-
bility of the system.

As I discussed in Chapter 10, the overall reliability of a system depends on the
hardware reliability, the software reliability, and the reliability of the system opera-
tors. The system software has to take this requirement into account. As well as
including requirements that compensate for software failure, there may also be
related reliability requirements to help detect and recover from hardware failures
and operator errors.

	 11.2  ■  Reliability requirements   313

	 11.2.1	 Reliability metrics

Reliability can be specified as a probability that a system failure will occur when a
system is in use within a specified operating environment. If you are willing to
accept, for example, that 1 in any 1000 transactions may fail, then you can specify
the failure probability as 0.001. This doesn’t mean that there will be exactly 1 failure
in every 1000 transactions. It means that if you observe N thousand transactions, the
number of failures that you observe should be about N.

Three metrics may be used to specify reliability and availability:

1.	 Probability of failure on demand (POFOD) If you use this metric, you define
the probability that a demand for service from a system will result in a system
failure. So, POFOD = 0.001 means that there is a 1/1000 chance that a failure
will occur when a demand is made.

2.	 Rate of occurrence of failures (ROCOF) This metric sets out the probable num-
ber of system failures that are likely to be observed relative to a certain time
period (e.g., an hour), or to the number of system executions. In the example
above, the ROCOF is 1/1000. The reciprocal of ROCOF is the mean time to
failure (MTTF), which is sometimes used as a reliability metric. MTTF is the
average number of time units between observed system failures. A ROCOF of
two failures per hour implies that the mean time to failure is 30 minutes.

3.	 Availability (AVAIL) AVAIL is the probability that a system will be operational
when a demand is made for service. Therefore, an availability of 0.9999 means
that, on average, the system will be available for 99.99% of the operating time.
Figure 11.4 shows what different levels of availability mean in practice.

POFOD should be used in situations where a failure on demand can lead to a serious
system failure. This applies irrespective of the frequency of the demands. For example,
a protection system that monitors a chemical reactor and shuts down the reaction if it is
overheating should have its reliability specified using POFOD. Generally, demands on
a protection system are infrequent as the system is a last line of defense, after all other
recovery strategies have failed. Therefore a POFOD of 0.001 (1 failure in 1000 demands)

Availability Explanation

0.9 The system is available for 90% of the time. This means
that, in a 24-hour period (1440 minutes), the system
will be unavailable for 144 minutes.

0.99 In a 24-hour period, the system is unavailable for 14.4
minutes.

0.999 The system is unavailable for 84 seconds in a 24-hour
period.

0.9999 The system is unavailable for 8.4 seconds in a 24-hour
period—roughly, one minute per week.Figure 11.4  Availability

specification

314   Chapter 11  ■  Reliability engineering

might seem to be risky. However, if there are only two or three demands on the system
in its entire lifetime, then the system is unlikely to ever fail.

ROCOF should be used when demands on systems are made regularly rather than
intermittently. For example, in a system that handles a large number of transactions,
you may specify a ROCOF of 10 failures per day. This means that you are willing to
accept that an average of 10 transactions per day will not complete successfully and
will have to be canceled and resubmitted. Alternatively, you may specify ROCOF as
the number of failures per 1000 transactions.

If the absolute time between failures is important, you may specify the reliability
as the mean time to failures (MTTF). For example, if you are specifying the required
reliability for a system with long transactions (such as a computer-aided design sys-
tem), you should use this metric. The MTTF should be much longer than the average
time that a user works on his or her models without saving the user’s results. This
means that users are unlikely to lose work through a system failure in any one session.

	 11.2.2	 Non-functional reliability requirements

Non-functional reliability requirements are specifications of the required reliability
and availability of a system using one of the reliability metrics (POFOD, ROCOF, or
AVAIL) described in the previous section. Quantitative reliability and availability
specification has been used for many years in safety-critical systems but is uncom-
mon for business critical systems. However, as more and more companies demand
24/7 service from their systems, it makes sense for them to be precise about their
reliability and availability expectations.

Quantitative reliability specification is useful in a number of ways:

1.	 The process of deciding the required level of the reliability helps to clarify what
stakeholders really need. It helps stakeholders understand that there are different
types of system failure, and it makes clear to them that high levels of reliability
are expensive to achieve.

2.	 It provides a basis for assessing when to stop testing a system. You stop when
the system has reached its required reliability level.

3.	 It is a means of assessing different design strategies intended to improve the relia-
bility of a system. You can make a judgment about how each strategy might lead
to the required levels of reliability.

4.	 If a regulator has to approve a system before it goes into service (e.g., all systems
that are critical to flight safety on an aircraft are regulated), then evidence that a
required reliability target has been met is important for system certification.

To avoid incurring excessive and unnecessary costs, it is important that you spec-
ify the reliability that you really need rather than simply choose a very high level of
reliability for the whole system. You may have different requirements for different

	 11.2  ■  Reliability requirements   315

parts of the system if some parts are more critical than others. You should follow
these three guidelines when specifying reliability requirements:

1.	 Specify the availability and reliability requirements for different types of fail-
ure. There should be a lower probability of high-cost failures than failures that
don’t have serious consequences.

2.	 Specify the availability and reliability requirements for different types of system
service. Critical system services should have the highest reliability but you may
be willing to tolerate more failures in less critical services. You may decide that
it is only cost-effective to use quantitative reliability specification for the most
critical system services.

3.	 Think about whether high reliability is really required. For example, you may
use error-detection mechanisms to check the outputs of a system and have error-
correction processes in place to correct errors. There may then be no need for a
high level of reliability in the system that generates the outputs as errors can be
detected and corrected.

To illustrate these guidelines, think about the reliability and availability require-
ments for a bank ATM system that dispenses cash and provides other services to
customers. Banks have two concerns with such systems:

1.	 To ensure that they carry out customer services as requested and that they
properly record customer transactions in the account database.

2.	 To ensure that these systems are available for use when required.

Banks have many years of experience with identifying and correcting incorrect
account transactions. They use accounting methods to detect when things have gone
wrong. Most transactions that fail can simply be canceled, resulting in no loss to the
bank and minor customer inconvenience. Banks that run ATM networks therefore
accept that ATM failures may mean that a small number of transactions are incor-
rect, but they think it more cost-effective to fix these errors later rather than incur
high costs in avoiding faulty transactions. Therefore, the absolute reliability required
of an ATM may be relatively low. Several failures per day may be acceptable.

Overspecification of reliability

Overspecification of reliability means defining a level of required reliability that is higher than really necessary
for the practical operation of the software. Overspecification of reliability increases development costs dispro-
portionately. The reason for this is that the costs of reducing faults and verifying reliability increase exponentially
as reliability increases

http://software-engineering-book.com/web/over-specifying-reliability/

http://software-engineering-book.com/web/over-specifying-reliability

316   Chapter 11  ■  Reliability engineering

For a bank (and for the bank’s customers), the availability of the ATM network
is more important than whether or not individual ATM transactions fail. Lack of
availability means increased demand on counter services, customer dissatisfaction,
engineering costs to repair the network, and so on. Therefore, for transaction-based
systems such as banking and e-commerce systems, the focus of reliability specifica-
tion is usually on specifying the availability of the system.

To specify the availability of an ATM network, you should identify the system
services and specify the required availability for each of these services, notably:

■	 the customer account database service; and

■	 the individual services provided by an ATM such as “withdraw cash” and “provide
account information.”

The database service is the most critical as failure of this service means that all
of the ATMs in the network are out of action. Therefore, you should specify this
service to have a high level of availability. In this case, an acceptable figure for data-
base availability (ignoring issues such as scheduled maintenance and upgrades)
would probably be around 0.9999, between 7 am and 11 pm. This means a downtime
of less than 1 minute per week.

For an individual ATM, the overall availability depends on mechanical reliability
and the fact that it can run out of cash. Software issues are probably less significant
than these factors. Therefore, a lower level of software availability for the ATM
software is acceptable. The overall availability of the ATM software might therefore
be specified as 0.999, which means that a machine might be unavailable for between
1 and 2 minutes each day. This allows for the ATM software to be restarted in the
event of a problem.

The reliability of control systems is usually specified in terms of the probability
that the system will fail when a demand is made (POFOD). Consider the reliability
requirements for the control software in the insulin pump, introduced in Chapter 1.
This system delivers insulin a number of times per day and monitors the user’s blood
glucose several times per hour.

There are two possible types of failure in the insulin pump:

1.	 Transient software failures, which can be repaired by user actions such as
resetting or recalibrating the machine. For these types of failure, a relatively
low value of POFOD (say 0.002) may be acceptable. This means that one
failure may occur in every 500 demands made on the machine. This is approx-
imately once every 3.5 days, because the blood sugar is checked about 5
times per hour.

2.	 Permanent software failures, which require the software to be reinstalled by
the manufacturer. The probability of this type of failure should be much lower.
Roughly once a year is the minimum figure, so POFOD should be no more
than 0.00002.

	 11.2  ■  Reliability requirements   317

Failure to deliver insulin does not have immediate safety implications, so com-
mercial factors rather than safety factors govern the level of reliability required.
Service costs are high because users need fast repair and replacement. It is in the
manufacturer’s interest to limit the number of permanent failures that require repair.

	 11.2.3	 Functional reliability specification

To achieve a high level of reliability and availability in a software-intensive system,
you use a combination of fault-avoidance, fault-detection, and fault-tolerance tech-
niques. This means that functional reliability requirements have to be generated which
specify how the system should provide fault avoidance, detection, and tolerance.

These functional reliability requirements should specify the faults to be detected
and the actions to be taken to ensure that these faults do not lead to system failures.
Functional reliability specification, therefore, involves analyzing the non-functional
requirements (if these have been specified), assessing the risks to reliability and
specifying system functionality to address these risks.

There are four types of functional reliability requirements:

1.	 Checking requirements These requirements identify checks on inputs to the sys-
tem to ensure that incorrect or out-of-range inputs are detected before they are
processed by the system.

2.	 Recovery requirements These requirements are geared to helping the system
recover after a failure has occurred. These requirements are usually concerned
with maintaining copies of the system and its data and specifying how to restore
system services after failure.

3.	 Redundancy requirements These specify redundant features of the system that
ensure that a single component failure does not lead to a complete loss of ser-
vice. I discuss this in more detail in the next chapter.

4.	 Process requirements These are fault-avoidance requirements, which ensure
that good practice is used in the development process. The practices specified
should reduce the number of faults in a system.

Some examples of these types of reliability requirement are shown in Figure 11.5.

Figure 11.5  Examples
of functional reliability
requirements

RR1: A predefined range for all operator inputs shall be defined, and the system shall
check that all operator inputs fall within this predefined range. (Checking)

RR2: Copies of the patient database shall be maintained on two separate servers that
are not housed in the same building. (Recovery, redundancy)

RR3: N-version programming shall be used to implement the braking control system.
(Redundancy)

RR4: The system must be implemented in a safe subset of Ada and checked using
static analysis. (Process)

318   Chapter 11  ■  Reliability engineering

There are no simple rules for deriving functional reliability requirements.
Organizations that develop critical systems usually have organizational knowledge
about possible reliability requirements and how these requirements reflect the actual
reliability of a system. These organizations may specialize in specific types of sys-
tems, such as railway control systems, so the reliability requirements can be reused
across a range of systems.

	 11.3	 Fault-tolerant architectures

Fault tolerance is a runtime approach to dependability in which systems include
mechanisms to continue in operation, even after a software or hardware fault has
occurred and the system state is erroneous. Fault-tolerance mechanisms detect and
correct this erroneous state so that the occurrence of a fault does not lead to a system
failure. Fault tolerance is required in systems that are safety or security critical and
where the system cannot move to a safe state when an error is detected.

To provide fault tolerance, the system architecture has to be designed to include
redundant and diverse hardware and software. Examples of systems that may need
fault-tolerant architectures are aircraft systems that must be available throughout
the duration of the flight, telecommunication systems, and critical command and
control systems.

The simplest realization of a dependable architecture is in replicated servers, where
two or more servers carry out the same task. Requests for processing are channeled
through a server management component that routes each request to a particular
server. This component also keeps track of server responses. In the event of server
failure, which can be detected by a lack of response, the faulty server is switched out
of the system. Unprocessed requests are resubmitted to other servers for processing.

This replicated server approach is widely used for transaction processing systems
where it is easy to maintain copies of transactions to be processed. Transaction
processing systems are designed so that data is only updated once a transaction has
finished correctly. Delays in processing do not affect the integrity of the system. It can
be an efficient way of using hardware if the backup server is one that is normally used
for low-priority tasks. If a problem occurs with a primary server, its unprocessed trans-
actions are transferred to the backup server, which gives that work the highest priority.

Replicated servers provide redundancy but not usually diversity. The server
hardware is usually identical, and the servers run the same version of the software.
Therefore, they can cope with hardware failures and software failures that are local-
ized to a single machine. They cannot cope with software design problems that cause
all versions of the software to fail at the same time. To handle software design fail-
ures, a system has to use diverse software and hardware.

Torres-Pomales surveys a range of software fault-tolerance techniques
(Torres-Pomales 2000), and Pullum (Pullum 2001) describes different types of
fault-tolerant architecture. In the following sections, I describe three architec-
tural patterns that have been used in fault-tolerant systems.

	 11.3  ■  Fault-tolerant architectures   319

	 11.3.1	 Protection systems

A protection system is a specialized system that is associated with some other sys-
tem. This is usually a control system for some process, such as a chemical manu-
facturing process, or an equipment control system, such as the system on a
driverless train. An example of a protection system might be a system on a train
that detects if the train has gone through a red signal. If there is no indication that
the train control system is slowing down the train, then the protection system auto-
matically applies the train brakes to bring it to a halt. Protection systems indepen-
dently monitor their environment. If sensors indicate a problem that the controlled
system is not dealing with, then the protection system is activated to shut down the
process or equipment.

Figure 11.6 illustrates the relationship between a protection system and a con-
trolled system. The protection system monitors both the controlled equipment and
the environment. If a problem is detected, it issues commands to the actuators to shut
down the system or invoke other protection mechanisms such as opening a pressure-
release valve. Notice that there are two sets of sensors. One set is used for normal
system monitoring and the other specifically for the protection system. In the event
of sensor failure, backups are in place that will allow the protection system to con-
tinue in operation. The system may also have redundant actuators.

A protection system only includes the critical functionality that is required to
move the system from a potentially unsafe state to a safe state (which could be sys-
tem shutdown). It is an instance of a more general fault-tolerant architecture in which
a principal system is supported by a smaller and simpler backup system that only
includes essential functionality. For example, the control software for the U.S. Space
Shuttle had a backup system with “get you home” functionality. That is, the backup
system could land the vehicle if the principal control system failed but had no other
control functions.

Protection
sensors

System environment

Actuators

Controlled
equipment

Control system
Protection

system

Sensors

Figure 11.6  Protection
system architecture

320   Chapter 11  ■  Reliability engineering

The advantage of this architectural style is that protection system software can be
much simpler than the software that is controlling the protected process. The only
function of the protection system is to monitor operation and to ensure that the sys-
tem is brought to a safe state in the event of an emergency. Therefore, it is possible
to invest more effort in fault avoidance and fault detection. You can check that the
software specification is correct and consistent and that the software is correct with
respect to its specification. The aim is to ensure that the reliability of the protection
system is such that it has a very low probability of failure on demand (say, 0.001).
Given that demands on the protection system should be rare, a probability of failure
on demand of 1/1000 means that protection system failures should be very rare.

	 11.3.2	 Self-monitoring architectures

A self-monitoring architecture (Figure 11.7) is a system architecture in which the sys-
tem is designed to monitor its own operation and to take some action if a problem is
detected. Computations are carried out on separate channels, and the outputs of these
computations are compared. If the outputs are identical and are available at the same
time, then the system is judged to be operating correctly. If the outputs are different,
then a failure is assumed. When this occurs, the system raises a failure exception on the
status output line. This signals that control should be transferred to some other system.

To be effective in detecting both hardware and software faults, self-monitoring
systems have to be designed so that:

1.	 The hardware used in each channel is diverse. In practice, this might mean that
each channel uses a different processor type to carry out the required computa-
tions, or the chipset making up the system may be sourced from different manu-
facturers. This reduces the probability of common processor design faults
affecting the computation.

2.	 The software used in each channel is diverse. Otherwise, the same software
error could arise at the same time on each channel.

On its own, this architecture may be used in situations where it is important for
computations to be correct, but where availability is not essential. If the answers

Splitter

Channel 1

Channel 2

Comparator
Input value

Output value

Status

Figure 11.7  Self-
monitoring architecture

	 11.3  ■  Fault-tolerant architectures   321

from each channel differ, the system shuts down. For many medical treatment and
diagnostic systems, reliability is more important than availability because an incor-
rect system response could lead to the patient receiving incorrect treatment. However,
if the system shuts down in the event of an error, this is an inconvenience but the
patient will not usually be harmed.

In situations that require high availability, you have to use several self-checking
systems in parallel. You need a switching unit that detects faults and selects a
result from one of the systems, where both channels are producing a consistent
response. This approach is used in the flight control system for the Airbus 340
series of aircraft, which uses five self-checking computers. Figure 11.8 is a simpli-
fied diagram of the Airbus flight control system that shows the organization of the
self-monitoring systems.

In the Airbus flight control system, each of the flight control computers carries out
the computations in parallel, using the same inputs. The outputs are connected to
hardware filters that detect if the status indicates a fault and, if so, that the output from
that computer is switched off. The output is then taken from an alternative system.
Therefore, it is possible for four computers to fail and for the aircraft operation to
continue. In more than 15 years of operation, there have been no reports of situations
where control of the aircraft has been lost due to total flight control system failure.

Splitter

Channel 1

Channel 2

Comparator
Output

Status

Primary flight control system 1

Primary flight control system 2

Primary flight control system 3

Splitter

Channel 1

Channel 2

Comparator

Output

Status

Secondary flight control system 1

Secondary flight control system 2

Input

Filter

Filter

Filter

Filter

Filter

Status

Status

Status

Output

Output

Output

Output

Figure 11.8  The
Airbus flight control
system architecture

322   Chapter 11  ■  Reliability engineering

The designers of the Airbus system have tried to achieve diversity in a number of
different ways:

1.	 The primary flight control computers use a different processor from the second-
ary flight control systems.

2.	 The chipset that is used in each channel in the primary and secondary systems is
supplied by a different manufacturer.

3.	 The software in the secondary flight control systems provides critical function-
ality only—it is less complex than the primary software.

4.	 The software for each channel in both the primary and the secondary systems is
developed using different programming languages and by different teams.

5.	 Different programming languages are used in the secondary and primary systems.

As I discuss in Section 11.3.4, these do not guarantee diversity but they reduce
the probability of common failures in different channels.

	 11.3.3	 N-version programming

Self-monitoring architectures are examples of systems in which multiversion
programming is used to provide software redundancy and diversity. This notion of
multiversion programming has been derived from hardware systems where the
notion of triple modular redundancy (TMR) has been used for many years to build
systems that are tolerant of hardware failures (Figure 11.9).

In a TMR system, the hardware unit is replicated three (or sometimes more)
times. The output from each unit is passed to an output comparator that is usually
implemented as a voting system. This system compares all of its inputs, and, if two
or more are the same, then that value is output. If one of the units fails and does not
produce the same output as the other units, its output is ignored. A fault manager
may try to repair the faulty unit automatically, but if this is impossible, the system is
automatically reconfigured to take the unit out of service. The system then continues
to function with two working units.

This approach to fault tolerance relies on most hardware failures being the result
of component failure rather than design faults. The components are therefore likely

A2

A1

A3

Output
selector

Input

Figure 11.9  Triple
modular redundancy

	 11.3  ■  Fault-tolerant architectures   323

to fail independently. It assumes that, when fully operational, all hardware units per-
form to specification. There is therefore a low probability of simultaneous compo-
nent failure in all hardware units.

Of course, the components could all have a common design fault and thus all
produce the same (wrong) answer. Using hardware units that have a common speci-
fication but that are designed and built by different manufacturers reduces the
chances of such a common mode failure. It is assumed that the probability of differ-
ent teams making the same design or manufacturing error is small.

A similar approach can be used for fault-tolerant software where N diverse ver-
sions of a software system execute in parallel (Avizienis 1995). This approach to
software fault tolerance, illustrated in Figure 11.10, has been used in railway signal-
ing systems, aircraft systems, and reactor protection systems.

Using a common specification, the same software system is implemented by a
number of teams. These versions are executed on separate computers. Their outputs
are compared using a voting system, and inconsistent outputs or outputs that are not
produced in time are rejected. At least three versions of the system should be avail-
able so that two versions should be consistent in the event of a single failure.

 N-version programming may be less expensive than self-checking architectures
in systems for which a high level of availability is required. However, it still requires
several different teams to develop different versions of the software. This leads to
very high software development costs. As a result, this approach is only used in sys-
tems where it is impractical to provide a protection system that can guard against
safety-critical failures.

	 11.3.4	 Software diversity

All of the above fault-tolerant architectures rely on software diversity to achieve fault
tolerance. This is based on the assumption that diverse implementations of the same
specification (or a part of the specification, for protection systems) are independent.
They should not include common errors and so will not fail in the same way, at the
same time. The software should therefore be written by different teams who should
not communicate during the development process. This requirement reduces the
chances of common misunderstandings or misinterpretations of the specification.

Version 2

Version 1

Version 3

Output
selector

N software versions

Agreed
result

Fault
manager

Input

Figure 11.10  N-version
programming

324   Chapter 11  ■  Reliability engineering

The company that is procuring the system may include explicit diversity policies that
are intended to maximize the differences between the system versions. For example:

1.	 By including requirements that different design methods should be used. For
example, one team may be required to produce an object-oriented design, and
another team may produce a function-oriented design.

2.	 By stipulating that the programs should be implemented using different pro-
gramming languages. For example, in a three-version system, Ada, C++, and
Java could be used to write the software versions.

3.	 By requiring the use of different tools and development environments for the
system.

4.	 By requiring different algorithms to be used in some parts of the implementa-
tion. However, this limits the freedom of the design team and may be difficult to
reconcile with system performance requirements.

Ideally, the diverse versions of the system should have no dependencies and so
should fail in completely different ways. If this is the case, then the overall reliability
of a diverse system is obtained by multiplying the reliabilities of each channel. So, if
each channel has a probability of failure on demand of 0.001, then the overall
POFOD of a three-channel system (with all channels independent) is a million times
greater than the reliability of a single channel system.

In practice, however, achieving complete channel independence is impossible. It has
been shown experimentally that independent software design teams often make the
same mistakes or misunderstand the same parts of the specification (Brilliant, Knight,
and Leveson 1990; Leveson 1995). There are several reasons for this misunderstanding:

1.	 Members of different teams are often from the same cultural background and may
have been educated using the same approach and textbooks. This means that they
may find the same things difficult to understand and have common difficulties in
communicating with domain experts. It is quite possible that they will, indepen-
dently, make the same mistakes and design the same algorithms to solve a problem.

2.	 If the requirements are incorrect or they are based on misunderstandings about
the environment of the system, then these mistakes will be reflected in each
implementation of the system.

3.	 In a critical system, the detailed system specification that is derived from the
system’s requirements should provide an unambiguous definition of the sys-
tem’s behavior. However, if the specification is ambiguous, then different teams
may misinterpret the specification in the same way.

One way to reduce the possibility of common specification errors is to develop
detailed specifications for the system independently and to define the specifications in
different languages. One development team might work from a formal specification,

	 11.4  ■  Programming for reliability   325

another from a state-based system model, and a third from a natural language specifica-
tion. This approach helps avoid some errors of specification interpretation, but does not
get around the problem of requirements errors. It also introduces the possibility of
errors in the translation of the requirements, leading to inconsistent specifications.

In an analysis of the experiments, Hatton (Hatton 1997) concluded that a three-channel
system was somewhere between 5 and 9 times more reliable than a single-channel
system. He concluded that improvements in reliability that could be obtained by devot-
ing more resources to a single version could not match this and so N-version approaches
were more likely to lead to more reliable systems than single-version approaches.

What is unclear, however, is whether the improvements in reliability from a mul-
tiversion system are worth the extra development costs. For many systems, the extra
costs may not be justifiable, as a well-engineered single-version system may be good
enough. It is only in safety- and mission-critical systems, where the costs of failure
are very high, that multiversion software may be required. Even in such situations
(e.g., a spacecraft system), it may be enough to provide a simple backup with limited
functionality until the principal system can be repaired and restarted.

	 11.4	 Programming for reliability

I have deliberately focused in this book on programming-language independent
aspects of software engineering. It is almost impossible to discuss programming
without getting into the details of a specific programming language. However, when
considering reliability engineering, there are a set of accepted good programming
practices that are fairly universal and that help reduce faults in delivered systems.

A list of eight good practice guidelines is shown in Figure 11.11. They can be
applied regardless of the particular programming language used for systems devel-
opment, although the way they are used depends on the specific languages and nota-
tions that are used for system development. Following these guidelines also reduces
the chances of introducing security-related vulnerabilities into programs.

		 Guideline 1: Control the visibility of information in a program

A security principle that is adopted by military organizations is the “need to know”
principle. Only those individuals who need to know a particular piece of information
in order to carry out their duties are given that information. Information that is not
directly relevant to their work is withheld.

When programming, you should adopt an analogous principle to control access to the
variables and data structures that you use. Program components should only be allowed
access to data that they need for their implementation. Other program data should be
inaccessible and hidden from them. If you hide information, it cannot be corrupted by
program components that are not supposed to use it. If the interface remains the same, the
data representation may be changed without affecting other components in the system.

326   Chapter 11  ■  Reliability engineering

You can achieve this by implementing data structures in your program as abstract
data types. An abstract data type is one in which the internal structure and represen-
tation of a variable of that type are hidden. The structure and attributes of the type
are not externally visible, and all access to the data is through operations.

For example, you might have an abstract data type that represents a queue of
requests for service. Operations should include get and put, which add and remove
items from the queue, and an operation that returns the number of items in the queue.
You might initially implement the queue as an array but subsequently decide to
change the implementation to a linked list. This can be achieved without any changes
to code using the queue, because the queue representation is never directly accessed.

In some object-oriented languages, you can implement abstract data types using
interface definitions, where you declare the interface to an object without reference
to its implementation. For example, you can define an interface Queue, which sup-
ports methods to place objects onto the queue, remove them from the queue, and
query the size of the queue. In the object class that implements this interface, the
attributes and methods should be private to that class.

		 Guideline 2: Check all inputs for validity

All programs take inputs from their environment and process them. The specification
makes assumptions about these inputs that reflect their real-world use. For example, it
may be assumed that a bank account number is always an eight-digit positive integer. In
many cases, however, the system specification does not define what actions should be
taken if the input is incorrect. Inevitably, users will make mistakes and will sometimes
enter the wrong data. As I discuss in Chapter 13, malicious attacks on a system may
rely on deliberately entering invalid information. Even when inputs come from sensors
or other systems, these systems can go wrong and provide incorrect values.

You should therefore always check the validity of inputs as soon as they are read
from the program’s operating environment. The checks involved obviously depend
on the inputs themselves, but possible checks that may be used are:

1.	 Range checks You may expect inputs to be within a particular range. For exam-
ple, an input that represents a probability should be within the range 0.0 to 1.0;
an input that represents the temperature of a liquid water should be between 0
degrees Celsius and 100 degrees Celsius, and so on.

Dependable programming guidelines
1.  Limit the visibility of information in a program.
2.  Check all inputs for validity.
3.  Provide a handler for all exceptions.
4.  Minimize the use of error-prone constructs.
5.  Provide restart capabilities.
6.  Check array bounds.
7.  Include timeouts when calling external components.
8.  Name all constants that represent real-world values.

Figure 11.11  Good
practice guidelines for
dependable
programming

	 11.4  ■  Programming for reliability   327

2.	 Size checks You may expect inputs to be a given number of characters, for
example, 8 characters to represent a bank account. In other cases, the size may
not be fixed, but there may be a realistic upper limit. For example, it is unlikely
that a person’s name will have more than 40 characters.

3.	 Representation checks You may expect an input to be of a particular type, which
is represented in a standard way. For example, people’s names do not include
numeric characters, email addresses are made up of two parts, separated by a @
sign, and so on.

4.	 Reasonableness checks Where an input is one of a series and you know some-
thing about the relationships between the members of the series, then you can
check that an input value is reasonable. For example, if the input value repre-
sents the readings of a household electricity meter, then you would expect the
amount of electricity used to be approximately the same as in the corresponding
period in the previous year. Of course, there will be variations. but order of
magnitude differences suggest that something has gone wrong.

The actions that you take if an input validation check fails depend on the type
of system being implemented. In some cases, you report the problem to the user
and request that the value is re-input. Where a value comes from a sensor, you
might use the most recent valid value. In embedded real-time systems, you might
have to estimate the value based on previous data, so that the system can continue
in operation.

		 Guideline 3: Provide a handler for all exceptions

During program execution, errors or unexpected events inevitably occur. These may
arise because of a program fault, or they may be a result of unpredictable external
circumstances. An error or an unexpected event that occurs during the execution of a
program is called an exception. Examples of exceptions might be a system power
failure, an attempt to access nonexistent data, or numeric overflow or underflow.

Exceptions may be caused by hardware or software conditions. When an excep-
tion occurs, it must be managed by the system. This can be done within the program
itself, or it may involve transferring control to a system exception-handling mecha-
nism. Typically, the system’s exception management mechanism reports the error
and shuts down execution. Therefore, to ensure that program exceptions do not
cause system failure, you should define an exception handler for all possible excep-
tions that may arise; you should also make sure that all exceptions are detected and
explicitly handled.

Languages such as Java, C++, and Python have built-in exception-handling
constructs. When an exceptional situation occurs, the exception is signaled and the
language runtime system transfers control to an exception handler. This is a code
section that states exception names and appropriate actions to handle each exception
(Figure 11.12). The exception handler is outside the normal flow of control, and this
normal control flow does not resume after the exception has been handled.

328   Chapter 11  ■  Reliability engineering

An exception handler usually does one of three things:

1.	 Signals to a higher-level component that an exception has occurred and pro-
vides information to that component about the type of exception. You use this
approach when one component calls another and the calling component needs to
know if the called component has executed successfully. If not, it is up to the
calling component to take action to recover from the problem.

2.	 Carries out some alternative processing to that which was originally intended.
Therefore, the exception handler takes some actions to recover from the prob-
lem. Processing may then continue as normal. Alternatively, the exception han-
dler may indicate that an exception has occurred so that a calling component is
aware of and can deal with the exception.

3.	 Passes control to the programming language runtime support system that han-
dles the exception. This is often the default when faults occur in a program, for
example, when a numeric value overflows. The usual action of the runtime sys-
tem is to halt processing. You should only use this approach when it is possible
to move the system to a safe and quiescent state, before handing over control to
the runtime system.

Handling exceptions within a program makes it possible to detect and recover
from some input errors and unexpected external events. As such, it provides a degree
of fault tolerance. The program detects faults and can take action to recover from
them. As most input errors and unexpected external events are usually transient, it is
often possible to continue normal operation after the exception has been processed.

		 Guideline 4: Minimize the use of error-prone constructs

Faults in programs, and therefore many program failures, are usually a consequence
of human error. Programmers make mistakes because they lose track of the numer-
ous relationships between the state variables. They write program statements that
result in unexpected behavior and system state changes. People will always make

Code section

Exception-handling code

Normal flow
of control

Exception detected

Normal exit

Exception
processing

Figure 11.12  Exception
handling

	 11.4  ■  Programming for reliability   329

mistakes, but in the late 1960s it became clear that some approaches to programming
were more likely to introduce errors into a program than others.

For example, you should try to avoid using floating-point numbers because the
precision of floating point numbers is limited by their hardware representation.
Comparisons of very large or very small numbers are unreliable. Another construct
that is potentially error-prone is dynamic storage allocation where you explicitly
manage storage in the program. It is very easy to forget to release storage when it’s
no longer needed, and this can lead to hard to detect runtime errors.

Some standards for safety-critical systems development completely prohibit the
use of error-prone constructs. However, such an extreme position is not normally
practical. All of these constructs and techniques are useful, though they must be used
with care. Wherever possible, their potentially dangerous effects should be con-
trolled by using them within abstract data types or objects. These act as natural “fire-
walls” limiting the damage caused if errors occur.

		 Guideline 5: Provide restart capabilities

Many organizational information systems are based on short transactions where pro-
cessing user inputs takes a relatively short time. These systems are designed so that
changes to the system’s database are only finalized after all other processing has been
successfully completed. If something goes wrong during processing, the database is
not updated and so does not become inconsistent. Virtually all e-commerce systems,
where you only commit to your purchase on the final screen, work in this way.

User interactions with e-commerce systems usually last a few minutes and
involve minimal processing. Database transactions are short and are usually com-
pleted in less than a second. However, other types of system such as CAD systems
and word processing systems involve long transactions. In a long transaction system,
the time between starting to use the system and finishing work may be several min-
utes or hours. If the system fails during a long transaction, then all of the work may
be lost. Similarly, in computationally intensive systems such as some e-science sys-
tems, minutes or hours of processing may be required to complete the computation.
All of this time is lost in the event of a system failure.

In all of these types of systems, you should provide a restart capability that is
based on keeping copies of data collected or generated during processing. The restart
facility should allow the system to restart using these copies, rather than having to

Error-prone constructs

Some programming language features are more likely than others to lead to the introduction of program bugs.
Program reliability is likely to be improved if you avoid using these constructs. Wherever possible, you should
minimize the use of go to statements, floating-point numbers, pointers, dynamic memory allocation, parallel-
ism, recursion, interrupts, aliasing, unbounded arrays, and default input processing.

http://software-engineering-book.com/web/error-prone-constructs/

http://software-engineering-book.com/web/error-prone-constructs

330   Chapter 11  ■  Reliability engineering

start all over from the beginning. These copies are sometimes called checkpoints.
For example:

1.	 In an e-commerce system, you can keep copies of forms filled in by a user and
allow them to access and submit these forms without having to fill them in again.

2.	 In a long transaction or computationally intensive system, you can automatically
save data every few minutes and, in the event of a system failure, restart with the
most recently saved data. You should also allow for user error and provide a way
for users to go back to the most recent checkpoint and start again from there.

If an exception occurs and it is impossible to continue normal operation, you can
handle the exception using backward error recovery. This means that you reset the state
of the system to the saved state in the checkpoint and restart operation from that point.

		 Guideline 6: Check array bounds

All programming languages allow the specification of arrays—sequential data struc-
tures that are accessed using a numeric index. These arrays are usually laid out in
contiguous areas within the working memory of a program. Arrays are specified to
be of a particular size, which reflects how they are used. For example, if you wish to
represent the ages of up to 10,000 people, then you might declare an array with
10,000 locations to hold the age data.

Some programming languages, such as Java, always check that when a value is
entered into an array, the index is within that array. So, if an array A is indexed from 0 to
10,000, an attempt to enter values into elements A [-5] or A [12345] will lead to an
exception being raised. However, programming languages such as C and C++ do not
automatically include array bound checks and simply calculate an offset from the begin-
ning of the array. Therefore, A [12345] would access the word that was 12345 locations
from the beginning of the array, irrespective of whether or not this was part of the array.

These languages do not include automatic array bound checking because this
introduces an overhead every time the array is accessed and so it increases program
execution time. However, the lack of bound checking leads to security vulnerabili-
ties, such as buffer overflow, which I discuss in Chapter 13. More generally, it intro-
duces a system vulnerability that can lead to system failure. If you are using a
language such as C or C++ that does not include array bound checking, you should
always include checks that the array index is within bounds.

		 Guideline 7: Include timeouts when calling external components

In distributed systems, components of the system execute on different computers, and
calls are made across the network from component to component. To receive some
service, component A may call component B. A waits for B to respond before con-
tinuing execution. However, if component B fails to respond for some reason, then
component A cannot continue. It simply waits indefinitely for a response. A person

	 11.5  ■  Reliability measurement   331

who is waiting for a response from the system sees a silent system failure, with no
response from the system. They have no alternative but to kill the waiting process and
restart the system.

To avoid this prospect, you should always include timeouts when calling external
components. A timeout is an automatic assumption that a called component has
failed and will not produce a response. You define a time period during which you
expect to receive a response from a called component. If you have not received a
response in that time, you assume failure and take back control from the called com-
ponent. You can then attempt to recover from the failure or tell the system users
what has happened and allow them to decide what to do.

		 Guideline 8: Name all constants that represent real-world values

All nontrivial programs include a number of constant values that represent the values of
real-world entities. These values are not modified as the program executes. Sometimes,
these are absolute constants and never change (e.g., the speed of light), but more often
they are values that change relatively slowly over time. For example, a program to
calculate personal tax will include constants that are the current tax rates. These change
from year to year, and so the program must be updated with the new constant values.

You should always include a section in your program in which you name all real-
world constant values that are used. When using the constants, you should refer to
them by name rather than by their value. This has two advantages as far as depend-
ability is concerned:

1.	 You are less likely to make mistakes and use the wrong value. It is easy to mistype
a number, and the system will often be unable to detect a mistake. For example,
say a tax rate is 34%. A simple transposition error might lead to this being
mistyped as 43%. However, if you mistype a name (such as Standard-tax-rate),
this error can be detected by the compiler as an undeclared variable.

2.	 When a value changes, you do not have to look through the whole program to
discover where you have used that value. All you need do is to change the value
associated with the constant declaration. The new value is then automatically
included everywhere that it is needed.

	 11.5	 Reliability measurement

To assess the reliability of a system, you have to collect data about its operation. The
data required may include:

1.	 The number of system failures given a number of requests for system services.
This is used to measure the POFOD and applies irrespective of the time over
which the demands are made.

332   Chapter 11  ■  Reliability engineering

2.	 The time or the number of transactions between system failures plus the total
elapsed time or total number of transactions. This is used to measure ROCOF
and MTTF.

3.	 The repair or restart time after a system failure that leads to loss of service. This
is used in the measurement of availability. Availability does not just depend on
the time between failures but also on the time required to get the system back
into operation.

The time units that may be used in these metrics are calendar time or a discrete
unit such as number of transactions. You should use calendar time for systems that
are in continuous operation. Monitoring systems, such as process control systems,
fall into this category. Therefore, the ROCOF might be the number of failures per
day. Systems that process transactions such as bank ATMs or airline reservation
systems have variable loads placed on them depending on the time of day. In these
cases, the unit of “time” used could be the number of transactions; that is, the
ROCOF would be number of failed transactions per N thousand transactions.

Reliability testing is a statistical testing process that aims to measure the reliability
of a system. Reliability metrics such as POFOD, the probability of failure on
demand, and ROCOF, the rate of occurrence of failure, may be used to quantita-
tively specify the required software reliability. You can check on the reliability test-
ing process if the system has achieved that required reliability level.

The process of measuring the reliability of a system is sometimes called statistical
testing (Figure 11.13). The statistical testing process is explicitly geared to reliability
measurement rather than fault finding. Prowell et al. (Prowell et al. 1999) give a good
description of statistical testing in their book on Cleanroom software engineering.

There are four stages in the statistical testing process:

1.	 You start by studying existing systems of the same type to understand how these
are used in practice. This is important as you are trying to measure the reliability
as experienced by system users. Your aim is to define an operational profile. An
operational profile identifies classes of system inputs and the probability that
these inputs will occur in normal use.

2.	 You then construct a set of test data that reflect the operational profile. This
means that you create test data with the same probability distribution as the test
data for the systems that you have studied. Normally, you use a test data genera-
tor to support this process.

3.	 You test the system using these data and count the number and type of failures
that occur. The times of these failures are also logged. As I discussed in Chapter
10, the time units chosen should be appropriate for the reliability metric used.

Compute
observed
reliability

Apply tests to
system

Prepare test
dataset

Identify
operational

profiles
Figure 11.13  Statistical
testing for reliability
measurement

	 11.5  ■  Reliability measurement   333

4.	 After you have observed a statistically significant number of failures, you
can compute the software reliability and work out the appropriate reliability
metric value.

This conceptually attractive approach to reliability measurement is not easy to
apply in practice. The principal difficulties that arise are due to:

1.	 Operational profile uncertainty The operational profiles based on experience
with other systems may not be an accurate reflection of the real use of the system.

2.	 High costs of test data generation It can be very expensive to generate the large
volume of data required in an operational profile unless the process can be
totally automated.

3.	 Statistical uncertainty when high reliability is specified You have to generate a
statistically significant number of failures to allow accurate reliability measure-
ments. When the software is already reliable, relatively few failures occur and it
is difficult to generate new failures.

4.	 Recognizing failure It is not always obvious whether or not a system failure has
occurred. If you have a formal specification, you may be able to identify devia-
tions from that specification, but, if the specification is in natural language,
there may be ambiguities that mean observers could disagree on whether the
system has failed.

By far the best way to generate the large dataset required for reliability measure-
ment is to use a test data generator, which can be set up to automatically generate
inputs matching the operational profile. However, it is not usually possible to auto-
mate the production of all test data for interactive systems because the inputs are
often a response to system outputs. Datasets for these systems have to be generated
manually, with correspondingly higher costs. Even where complete automation is
possible, writing commands for the test data generator may take a significant amount
of time.

Statistical testing may be used in conjunction with fault injection to gather data
about how effective the process of defect testing has been. Fault injection (Voas and
McGraw 1997) is the deliberate injection of errors into a program. When the pro-
gram is executed, these lead to program faults and associated failures. You then
analyze the failure to discover if the root cause is one of the errors that you have
added to the program. If you find that X% of the injected faults lead to failures, then
proponents of fault injection argue that this suggests that the defect testing process
will also have discovered X% of the actual faults in the program.

This approach assumes that the distribution and type of injected faults reflect the
actual faults in the system. It is reasonable to think that this might be true for faults
due to programming errors, but it is less likely to be true for faults resulting from
requirements or design problems. Fault injection is ineffective in predicting the
number of faults that stem from anything but programming errors.

334   Chapter 11  ■  Reliability engineering

	 11.5.1	 Operational profiles

The operational profile of a software system reflects how it will be used in practice.
It consists of a specification of classes of input and the probability of their occur-
rence. When a new software system replaces an existing automated system, it is
reasonably easy to assess the probable pattern of usage of the new software. It should
correspond to the existing usage, with some allowance made for the new functional-
ity that is (presumably) included in the new software. For example, an operational
profile can be specified for telephone switching systems because telecommunication
companies know the call patterns that these systems have to handle.

Typically, the operational profile is such that the inputs that have the highest
probability of being generated fall into a small number of classes, as shown on the
left of Figure 11.14. There are many classes where inputs are highly improbable but
not impossible. These are shown on the right of Figure 11.14. The ellipsis (. . .)
means that there are many more of these uncommon inputs than are shown.

Musa (Musa 1998) discusses the development of operational profiles in tele-
communication systems. As there is a long history of collecting usage data in that
domain, the process of operational profile development is relatively straightfor-
ward. It simply reflects the historical usage data. For a system that required about
15 person-years of development effort, an operational profile was developed in
about 1 person-month. In other cases, operational profile generation took longer
(2–3 person-years), but the cost was spread over a number of system releases.

When a software system is new and innovative, however, it is difficult to antici-
pate how it will be used. Consequently, it is practically impossible to create an accu-
rate operational profile. Many different users with different expectations,
backgrounds, and experience may use the new system. There is no historical usage
database. These users may make use of systems in ways that the system developers
did not anticipate.

Developing an accurate operational profile is certainly possible for some types of
system, such as telecommunication systems, that have a standardized pattern of use.
However, for other types of system, developing an accurate operational profile may
be difficult or impossible:

1.	 A system may have many different users who each have their own ways of
using the system. As I explained earlier in this chapter, different users have

Reliability growth modeling

A reliability growth model is a model of how the system reliability changes over time during the testing process.
As system failures are discovered, the underlying faults causing these failures are repaired so that the reliability
of the system should improve during system testing and debugging. To predict reliability, the conceptual reliabil-
ity growth model must then be translated into a mathematical model.

http://software-engineering-book.com/web/reliability-growth-modeling/

http://software-engineering-book.com/web/reliability-growth-modeling

	 Chapter 11  ■  Key points   335

different impressions of reliability because they use a system in different ways.
It is difficult to match all of these patterns of use in a single operational profile.

2.	 Users change the ways that they use a system over time. As users learn about
a new system and become more confident with it, they start to use it in more
sophisticated ways. Therefore, an operational profile that matches the initial
usage pattern of a system may not be valid after users become familiar with
the system.

For these reasons, it is often impossible to develop a trustworthy operational pro-
file. If you use an out-of-date or incorrect operational profile, you cannot be confi-
dent about the accuracy of any reliability measurements that you make.

K e y P o i n t s

■	 Software reliability can be achieved by avoiding the introduction of faults, by detecting and
removing faults before system deployment, and by including fault-tolerance facilities that allow
the system to remain operational after a fault has caused a system failure.

■	 Reliability requirements can be defined quantitatively in the system requirements specification.
Reliability metrics include probability of failure on demand (POFOD), rate of occurrence of fail-
ure (ROCOF), and availability (AVAIL).

■	 Functional reliability requirements are requirements for system functionality, such as checking
and redundancy requirements, which help the system meet its non-functional reliability
requirements.

. . .

N
um

be
r

of
 in

pu
ts

Input classes

Figure 11.14 
Distribution of inputs in
an operational profile

336   Chapter 11  ■  Reliability engineering

■	 Dependable system architectures are system architectures that are designed for fault tolerance.
A number of architectural styles support fault tolerance, including protection systems, self-
monitoring architectures, and N-version programming.

■	 Software diversity is difficult to achieve because it is practically impossible to ensure that each
version of the software is truly independent.

■	 Dependable programming relies on including redundancy in a program as checks on the validity
of inputs and the values of program variables.

■	 Statistical testing is used to estimate software reliability. It relies on testing the system with
test data that matches an operational profile, which reflects the distribution of inputs to the
software when it is in use.

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/reliability-and-safety/

More information on the Airbus flight control system:

http://software-engineering-book.com/case-studies/airbus-340/

F u r t h e r R e a d i n g

Software Fault Tolerance Techniques and Implementation. A comprehensive discussion of tech-
niques to achieve software fault tolerance and fault-tolerant architectures. The book also covers
general issues of software dependability. Reliability engineering is a mature area, and the tech-
niques discussed here are still current. (L. L. Pullum, Artech House, 2001).

“Software Reliability Engineering: A Roadmap.” This survey paper by a leading researcher in soft-
ware reliability summarizes the state of the art in software reliability engineering and discusses
research challenges in this area. (M. R. Lyu, Proc. Future of Software Engineering, IEEE Computer
Society, 2007) http://dx.doi.org/10.1109/FOSE.2007.24

“Mars Code.” This paper discusses the approach to reliability engineering used in the development
of software for the Mars Curiosity Rover. This relied on the use of good programming practice,
redundancy, and model checking (covered in Chapter 12). (G. J. Holzmann, Comm. ACM., 57 (2),
2014) http://dx.doi.org/10.1145/2560217.2560218

336   Chapter 11  ■  Reliability engineering

http://dx.doi.org/10.1109/FOSE.2007.24
http://dx.doi.org/10.1145/2560217.2560218
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/reliability-and-safety
http://software-engineering-book.com/case-studies/airbus-340

	 11.5  ■  Reliability measurement   337

E x e r c i s e s

  11.1.	 �Explain why it is practically impossible to validate reliability specifications when these are
expressed in terms of a very small number of failures over the total lifetime of a system.

  11.2.	 �Suggest appropriate reliability metrics for the classes of software system below. Give rea-
sons for your choice of metric. Predict the usage of these systems and suggest appropriate
values for the reliability metrics.

■	 a system that monitors patients in a hospital intensive care unit

■	 a word processor

■	 an automated vending machine control system

■	 a system to control braking in a car

■	 a system to control a refrigeration unit

■	 a management report generator

  11.3.	 �Imagine that a network operations center monitors and controls the national telecommu-
nications network of a country. This includes controlling and monitoring the operational
status of switching and transmission equipment and keeping track of nationwide equip-
ment inventories. The center needs to have redundant systems. Explain three reliability
metrics you would use to specify the needs of such systems.

  11.4.	 �What is the common characteristic of all architectural styles that are geared to supporting
software fault tolerance?

  11.5. 	�Suggest circumstances where it is appropriate to use a fault-tolerant architecture when
implementing a software-based control system and explain why this approach is required.

  11.6. 	�You are responsible for the design of a communications switch that has to provide 24/7
availability but that is not safety-critical. Giving reasons for your answer, suggest an archi-
tectural style that might be used for this system.

  11.7. 	�It has been suggested that the control software for a radiation therapy machine, used to
treat patients with cancer, should be implemented using N-version programming. Comment
on whether or not you think this is a good suggestion.

  11.8. 	�Explain why all the versions in a system designed around software diversity may fail in a
similar way.

  11.9. 	�Explain how programming language support of exception handling can contribute to the reli-
ability of software systems.

11.10. 	�Software failures can cause considerable inconvenience to users of the software. Is it
ethical for companies to release software that they know includes faults that could lead
to software failures? Should they be liable for compensating users for losses that are
caused by the failure of their software? Should they be required by law to offer software
warranties in the same way that consumer goods manufacturers must guarantee
their products?

	 Chapter 11  ■  Exercises   337

338   Chapter 11  ■  Reliability engineering

R e f e r e n c e s

Avizienis, A. A. 1995. “A Methodology of N-Version Programming.” In Software Fault Tolerance,
edited by M. R. Lyu, 23–46. Chichester, UK: John Wiley & Sons.

Brilliant, S. S., J. C. Knight, and N. G. Leveson. 1990. “Analysis of Faults in an N-Version Software
Experiment.” IEEE Trans. On Software Engineering 16 (2): 238–247. doi:10.1109/32.44387.

Hatton, L. 1997. “N-Version Design Versus One Good Version.” IEEE Software 14 (6): 71–76.
doi:10.1109/52.636672.

Leveson, N. G. 1995. Safeware: System Safety and Computers. Reading, MA: Addison-Wesley.

Musa, J. D. 1998. Software Reliability Engineering: More Reliable Software, Faster Development and
Testing. New York: McGraw-Hill.

Prowell, S. J., C. J. Trammell, R. C. Linger, and J. H. Poore. 1999. Cleanroom Software Engineering:
Technology and Process. Reading, MA: Addison-Wesley.

Pullum, L. 2001. Software Fault Tolerance Techniques and Implementation. Norwood, MA: Artech
House.

Randell, B. 2000. “Facing Up To Faults.” Computer J. 45 (2): 95–106. doi:10.1093/comjnl/43.2.95.

Torres-Pomales, W. 2000. “Software Fault Tolerance: A Tutorial.” NASA. http://ntrs.nasa.gov/
archive/nasa/casi. . ./20000120144_2000175863.pdf

Voas, J., and G. McGraw. 1997. Software Fault Injection: Innoculating Programs Against Errors. New
York: John Wiley & Sons.

338   Chapter 11  ■  Reliability engineering

http://ntrs.nasa.gov/archive/nasa/casi. . ./20000120144_2000175863.pdf
http://ntrs.nasa.gov/archive/nasa/casi. . ./20000120144_2000175863.pdf

Safety engineering
12

Objectives
The objective of this chapter is to explain techniques that are used to
ensure safety when developing critical systems. When you have read this
chapter, you will:

■	 understand what is meant by a safety-critical system and why safety
has to be considered separately from reliability in critical systems
engineering;

■	 understand how an analysis of hazards can be used to derive safety
requirements;

■	 know about processes and tools that are used for software safety
assurance;

■	 understand the notion of a safety case that is used to justify the safety
of a system to regulators, and how formal arguments may be used in
safety cases.

Contents
12.1	 Safety-critical systems

12.2	 Safety requirements

12.3	 Safety engineering processes

12.4	 Safety cases

340    Chapter 12  ■  Safety engineering

In Section 11.2, I briefly described an air accident at Warsaw Airport where an
Airbus crashed on landing. Two people were killed and 54 were injured. The subse-
quent inquiry showed that a major contributory cause of the accident was a failure of
the control software that reduced the efficiency of the aircraft’s braking system. This
is one of the, thankfully rare, examples of where the behavior of a software system
has led to death or injury. It illustrates that software is now a central component in
many systems that are critical to preserving and maintaining life. These are safety-
critical software systems, and a range of specialized methods and techniques have
been developed for safety-critical software engineering.

As I discussed in Chapter 10, safety is one of the principal dependability proper-
ties. A system can be considered to be safe if it operates without catastrophic failure,
that is, failure that causes or may cause death or injury to people. Systems whose
failure may lead to environmental damage may also be safety-critical as environmen-
tal damage (such as a chemical leak) can lead to subsequent human injury or death.

Software in safety-critical systems has a dual role to play in achieving safety:

1.	 The system may be software-controlled so that the decisions made by the soft-
ware and subsequent actions are safety-critical. Therefore, the software behav-
ior is directly related to the overall safety of the system.

2.	 Software is extensively used for checking and monitoring other safety-critical com-
ponents in a system. For example, all aircraft engine components are monitored by
software looking for early indications of component failure. This software is safety-
critical because, if it fails, other components may fail and cause an accident.

Safety in software systems is achieved by developing an understanding of the situ-
ations that might lead to safety-related failures. The software is engineered so that
such failures do not occur. You might therefore think that if a safety-critical system is
reliable and behaves as specified, it will therefore be safe. Unfortunately, it isn’t quite
as simple as that. System reliability is necessary for safety achievement, but it isn’t
enough. Reliable systems can be unsafe and vice versa. The Warsaw Airport accident
was an example of such a situation, which I’ll discuss in more detail in Section 12.2.

Software systems that are reliable may not be safe for four reasons:

1.	 We can never be 100% certain that a software system is fault-free and
fault-tolerant. Undetected faults can be dormant for a long time, and software
failures can occur after many years of reliable operation.

2.	 The specification may be incomplete in that it does not describe the required
behavior of the system in some critical situations. A high percentage of system
malfunctions are the result of specification rather than design errors. In a study
of errors in embedded systems, Lutz (Lutz 1993) concludes that “difficulties
with requirements are the key root cause of the safety-related software errors,
which have persisted until integration and system testing.†”

†Lutz, R R. 1993. “Analysing Software Requirements Errors in Safety-Critical Embedded Systems.” In
RE’93, 126–133. San Diego CA: IEEE. doi:0.1109/ISRE.1993.324825.

	 12.1  ■  Safety-critical systems    341

More recent work by Veras et al. (Veras et al. 2010) in space systems confirms
that requirements errors are still a major problem for embedded systems.

3.	 Hardware malfunctions may cause sensors and actuators to behave in an unpre-
dictable way. When components are close to physical failure, they may behave
erratically and generate signals that are outside the ranges that can be handled by
the software. The software may then either fail or wrongly interpret these signals.

4.	 The system operators may generate inputs that are not individually incorrect but
that, in some situations, can lead to a system malfunction. An anecdotal exam-
ple of this occurred when an aircraft undercarriage collapsed while the aircraft
was on the ground. Apparently, a technician pressed a button that instructed the
utility management software to raise the undercarriage. The software carried out
the mechanic’s instruction perfectly. However, the system should have disal-
lowed the command unless the plane was in the air.

Therefore, safety has to be considered as well as reliability when developing
safety-critical systems. The reliability engineering techniques that I introduced in
Chapter 11 are obviously applicable for safety-critical systems engineering. I there-
fore do not discuss system architectures and dependable programming here but
instead focus on techniques for improving and assuring system safety.

	 12.1	 Safety-critical systems

Safety-critical systems are systems in which it is essential that system operation is
always safe. That is, the system should never damage people or the system’s environ-
ment, irrespective of whether or not the system conforms to its specification. Examples
of safety-critical systems include control and monitoring systems in aircraft, process
control systems in chemical and pharmaceutical plants, and automobile control systems.

Safety-critical software falls into two classes:

1.	 Primary safety-critical software This is software that is embedded as a control-
ler in a system. Malfunctioning of such software can cause a hardware malfunc-
tion, which results in human injury or environmental damage. The insulin pump
software that I introduced in Chapter 1 is an example of a primary safety-critical
system. System failure may lead to user injury.

	 The insulin pump system is a simple system, but software control is also used in
very complex safety-critical systems. Software rather than hardware control is
essential because of the need to manage large numbers of sensors and actuators,
which have complex control laws. For example, advanced, aerodynamically
unstable, military aircraft require continual software-controlled adjustment of
their flight surfaces to ensure that they do not crash.

2.	 Secondary safety-critical software This is software that can indirectly result in an
injury. An example of such software is a computer-aided engineering design system

342    Chapter 12  ■  Safety engineering

whose malfunctioning might result in a design fault in the object being designed.
This fault may cause injury to people if the designed system malfunctions. Another
example of a secondary safety-critical system is the Mentcare system for mental
health patient management. Failure of this system, whereby an unstable patient may
not be treated properly, could lead to that patient injuring himself or others.

	 Some control systems, such as those controlling critical national infrastructure (elec-
tricity supply, telecommunications, sewage treatment, etc.), are secondary safety-
critical systems. Failure of these systems is unlikely to have immediate human
consequences. However, a prolonged outage of the controlled systems could lead to
injury and death. For example, failure of a sewage treatment system could lead to a
higher level of infectious disease as raw sewage is released into the environment.

I explained in Chapter 11 how software and system availability and reliability are
achieved through fault avoidance, fault detection and removal, and fault tolerance.
Safety-critical systems development uses these approaches and augments them with
hazard-driven techniques that consider the potential system accidents that may occur:

1.	 Hazard avoidance The system is designed so that hazards are avoided. For
example, a paper-cutting system that requires an operator to use two hands to
press separate buttons simultaneously avoids the hazard of the operator’s hands
being in the blade’s pathway.

2.	 Hazard detection and removal The system is designed so that hazards are
detected and removed before they result in an accident. For example, a chemical
plant system may detect excessive pressure and open a relief valve to reduce
pressure before an explosion occurs.

3.	 Damage limitation The system may include protection features that minimize
the damage that may result from an accident. For example, an aircraft engine
normally includes automatic fire extinguishers. If there is an engine fire, it can
often be controlled before it poses a threat to the aircraft.

A hazard is a system state that could lead to an accident. Using the above example
of the paper-cutting system, a hazard arises when the operator’s hand is in a position
where the cutting blade could injure it. Hazards are not accidents—we often get our-
selves into hazardous situations and get out of them without any problems. However,
accidents are always preceded by hazards, so reducing hazards reduces accidents.

A hazard is one example of the specialized vocabulary that is used in safety-critical sys-
tems engineering. I explain other terminology used in safety-critical systems in Figure 12.1.

We are now actually pretty good at building systems that can cope with one thing
going wrong. We can design mechanisms into the system that can detect and recover
from single problems. However, when several things go wrong at the same time, acci-
dents are more likely. As systems become more and more complex, we don’t understand
the relationships between the different parts of the system. Consequently, we cannot
predict the consequences of a combination of unexpected system events or failures.

In an analysis of serious accidents, Perrow (Perrow 1984) suggested that almost
all of the accidents were due to a combination of failures in different parts of a system.

	 12.1  ■  Safety-critical systems    343

Term Definition

Accident (or mishap) An unplanned event or sequence of events that results in human death or injury,
damage to property or to the environment. An overdose of insulin is an example of
an accident.

Damage A measure of the loss resulting from a mishap. Damage can range from many
people being killed as a result of an accident to minor injury or property damage.
Damage resulting from an overdose of insulin could lead to serious injury or the
death of the user of the insulin pump.

Hazard A condition with the potential for causing or contributing to an accident. A failure of
the sensor that measures blood glucose is an example of a hazard.

Hazard probability The probability of the events occurring which create a hazard. Probability values
tend to be arbitrary but range from “probable” (say 1/100 chance of a hazard
occurring) to “implausible” (no conceivable situations are likely in which the hazard
could occur). The probability of a sensor failure in the insulin pump that
overestimates the user’s blood sugar level is low.

Hazard severity An assessment of the worst possible damage that could result from a particular
hazard. Hazard severity can range from catastrophic, where many people are killed,
to minor, where only minor damage results. When an individual death is a
possibility, a reasonable assessment of hazard severity is “very high.”

Risk A measure of the probability that the system will cause an accident. The risk is assessed
by considering the hazard probability, the hazard severity, and the probability that the
hazard will lead to an accident. The risk of an insulin overdose is medium to low.

Figure 12.1  Safety
terminology Unanticipated combinations of subsystem failures led to interactions that resulted in

overall system failure. For example, failure of an air conditioning system may lead
to overheating. Once hardware gets hot, its behavior becomes unpredictable, so
overheating may lead to the system hardware generating incorrect signals. These
wrong signals may then cause the software to react incorrectly.

Perrow made the point that, in complex systems, it is impossible to anticipate all
possible combinations of failures. He therefore coined the phrase “normal acci-
dents,” with the implication that accidents have to be considered as inevitable when
we build complex safety-critical systems.

To reduce complexity, we could use simple hardware controllers rather than soft-
ware control. However, software-controlled systems can monitor a wider range of
conditions than simpler electromechanical systems. They can be adapted relatively
easily. They use computer hardware, which has high inherent reliability and which is
physically small and lightweight.

Software-controlled systems can provide sophisticated safety interlocks. They
can support control strategies that reduce the amount of time people need to spend in
hazardous environments. Although software control may introduce more ways in
which a system can go wrong, it also allows better monitoring and protection.
Therefore, software control can contribute to improvements in system safety.

It is important to maintain a sense of proportion about safety-critical systems. Critical
software systems operate without problems most of the time. Relatively few people
worldwide have been killed or injured because of faulty software. Perrow is right in say-

344    Chapter 12  ■  Safety engineering

ing that accidents will always be a possibility. It is impossible to make a system 100%
safe, and society has to decide whether or not the consequences of an occasional
accident are worth the benefits that come from the use of advanced technologies.

	 12.2	 Safety requirements

In the introduction to this chapter, I described an air accident at Warsaw Airport
where the braking system on an Airbus failed. The inquiry into this accident showed
that the braking system software had operated according to its specification. There
were no errors in the program. However, the software specification was incomplete
and had not taken into account a rare situation, which arose in this case. The soft-
ware worked, but the system failed.

This episode illustrates that system safety does not just depend on good engineer-
ing. It requires attention to detail when the system requirements are derived and the
inclusion of special software requirements that are geared to ensuring the safety of a
system. Safety requirements are functional requirements, which define checking and
recovery facilities that should be included in the system and features that provide
protection against system failures and external attacks.

The starting point for generating functional safety requirements is usually domain
knowledge, safety standards, and regulations. These lead to high-level requirements
that are perhaps best described as “shall not” requirements. By contrast with normal
functional requirements that define what the system shall do, “shall not” requirements
define system behavior that is unacceptable. Examples of “shall not” requirements are:

“The system shall not allow reverse thrust mode to be selected when the aircraft
is in flight.”

“The system shall not allow the simultaneous activation of more than three alarm
signals.”

“The navigation system shall not allow users to set the required destination when
the car is moving.”

These “shall not” requirements cannot be implemented directly but have to be
decomposed into more specific software functional requirements. Alternatively,
they may be implemented through system design decisions such as a decision to use
particular types of equipment in the system.

Risk-based requirements specification

Risk-based specification is an approach that has been widely used by safety and security-critical systems developers.
It focuses on those events that could cause the most damage or that are likely to occur frequently. Events that have only
minor consequences or that are extremely rare may be ignored. The risk-based specification process involves under-
standing the risks faced by the system, discovering their root causes, and generating requirements to manage these risks.

http://software-engineering-book.com/web/risk-based-specification/

http://software-engineering-book.com/web/risk-based-specification

	 12.2  ■  Safety requirements    345

Safety requirements are primarily protection requirements and are not concerned
with normal system operation. They may specify that the system should be shut down
so that safety is maintained. In deriving safety requirements, you therefore need to find
an acceptable balance between safety and functionality and avoid overprotection. There
is no point in building a very safe system if it does not operate in a cost-effective way.

Risk-based requirements specification is a general approach used in critical systems
engineering where risks faced by the system are identified and requirements to avoid
or mitigate these risks are identified. It may be used for all types of dependability
requirements. For safety-critical systems, it translates into a process driven by identi-
fied hazards. As I discussed in the previous section, a hazard is something that could
(but need not) result in death or injury to a person.

There are four activities in a hazard-driven safety specification process:

1.	 Hazard identification The hazard identification process identifies hazards that
may threaten the system. These hazards may be recorded in a hazard register.
This is a formal document that records the safety analyses and assessments and
that may be submitted to a regulator as part of a safety case.

2.	 Hazard assessment The hazard assessment process decides which hazards are
the most dangerous and/or the most likely to occur. These should be prioritized
when deriving safety requirements.

3.	 Hazard analysis This is a process of root-cause analysis that identifies the
events that can lead to the occurrence of a hazard.

4.	 Risk reduction This process is based on the outcome of hazard analysis and
leads to identification of safety requirements. These requirements may be con-
cerned with ensuring that a hazard does not arise or lead to an accident or that if
an accident does occur, the associated damage is minimized.

Figure 12.2 illustrates this hazard-driven safety requirements specification process.

	 12.2.1	 Hazard identification

In safety-critical systems, hazard identification starts by identifying different classes of
hazards, such as physical, electrical, biological, radiation, and service failure hazards.
Each of these classes can then be analyzed to discover specific hazards that could occur.
Possible combinations of hazards that are potentially dangerous must also be identified.

Hazard
probability and

acceptability

Safety
requirements

Root cause
analyses

Hazard register

Hazard
identification

Hazard
assessment

Hazard
analysis

Risk reduction

Figure 12.2  Hazard-
driven requirements
specification

346    Chapter 12  ■  Safety engineering

Experienced engineers, working with domain experts and professional safety
advisers, identify hazards from previous experience and from an analysis of the appli-
cation domain. Group working techniques such as brainstorming may be used, where
a group meets to exchange ideas. For the insulin pump system, people who may be
involved include doctors, medical physicists and engineers, and software designers.

The insulin pump system that I introduced in Chapter 1 is a safety-critical system,
because failure can cause injury or even death to the system user. Accidents that may
occur when using this machine include the user suffering from long-term conse-
quences of poor blood sugar control (eye, heart, and kidney problems), cognitive
dysfunction as a result of low blood sugar levels, or the occurrence of some other
medical conditions, such as an allergic reaction.

Some of the hazards that may arise in the insulin pump system are:

■	 insulin overdose computation (service failure);

■	 insulin underdose computation (service failure);

■	 failure of the hardware monitoring system (service failure);

■	 power failure due to exhausted battery (electrical);

■	 electrical interference with other medical equipment such as a heart pacemaker
(electrical);

■	 poor sensor and actuator contact caused by incorrect fitting (physical);

■	 parts of machine breaking off in patient’s body (physical);

■	 infection caused by introduction of machine (biological); and

■	 allergic reaction to the materials or insulin used in the machine (biological).

Software-related hazards are normally concerned with failure to deliver a system
service or with the failure of monitoring and protection systems. Monitoring and
protection systems may be included in a device to detect conditions, such as a low
battery level, which could lead to device failure.

A hazard register may be used to record the identified hazards with an explanation of
why the hazard has been included. The hazard register is an important legal document
that records all safety-related decisions about each hazard. It can be used to show that
the requirements engineers have paid due care and attention in considering all foresee-
able hazards and that these hazards have been analyzed. In the event of an accident, the
hazard register may be used in a subsequent inquiry or legal proceedings to show that
the system developers have not been negligent in their system safety analysis.

	 12.2.2	 Hazard assessment

The hazard assessment process focuses on understanding the factors that lead to the
occurrence of a hazard and the consequences if an accident or incident associated
with that hazard should occur. You need to carry out this analysis to understand

	 12.2  ■  Safety requirements    347

whether a hazard is a serious threat to the system or environment. The analysis also
provides a basis for deciding on how to manage the risk associated with the hazard.

For each hazard, the outcome of the analysis and classification process is a state-
ment of acceptability. This is expressed in terms of risk, where the risk takes into
account the likelihood of an accident and its consequences. There are three risk cat-
egories that are used in hazard assessment:

1.	 Intolerable risks in safety-critical systems are those that threaten human life.
The system must be designed so that such hazards either cannot arise or, that if
they do, features in the system will ensure that they are detected before they
cause an accident. In the case of the insulin pump, an intolerable risk is that an
overdose of insulin should be delivered.

2.	 As low as reasonably practical (ALARP) risks are those that have less serious
consequences or that are serious but have a very low probability of occurrence.
The system should be designed so that the probability of an accident arising
because of a hazard is minimized, subject to other considerations such as cost and
delivery. An ALARP risk for an insulin pump might be the failure of the hardware
monitoring system. The consequences of this failure are, at worst, a short-term
insulin underdose. This situation would not lead to a serious accident.

3.	 Acceptable risks are those where the associated accidents normally result in
minor damage. System designers should take all possible steps to reduce
“acceptable” risks, as long as these measures do not significantly increase costs,
delivery time, or other non-functional system attributes. An acceptable risk in
the case of the insulin pump might be the risk of an allergic reaction arising in
the user. This reaction usually causes only minor skin irritation. It would not be
worth using special, more expensive materials in the device to reduce this risk.

Figure 12.3 shows these three regions. The width of the triangle reflects the
costs of ensuring that risks do not result in incidents or accidents. The highest

Unacceptable region
Risk cannot be tolerated

Risk tolerated only if
risk reduction is impractical
or excessively expensive

Acceptable
region

Negligible risk

ALARP
region

Figure 12.3  The risk
triangle

348    Chapter 12  ■  Safety engineering

costs are incurred by risks at the top of the diagram, the lowest costs by risks at the
apex of the triangle.

The boundaries between the regions in Figure 12.3 are not fixed but depend on
how acceptable risks are in the societies where the system will be deployed. This
varies from country to country—some societies are more risk averse and litigious
than others. Over time, however, all societies have become more risk-averse, so the
boundaries have moved downward. For rare events, the financial costs of accepting
risks and paying for any resulting accidents may be less than the costs of accident
prevention. However, public opinion may demand that money be spent to reduce the
likelihood of a system accident irrespective of cost.

For example, it may be cheaper for a company to clean up pollution on the rare occa-
sion it occurs, rather than to install systems for pollution prevention. However, because
the public and the media will not tolerate such accidents, clearing up the damage rather
than preventing the accident is no longer acceptable. Events in other systems may also
lead to a reclassification of risk. For example, risks that were thought to be improbable
(and hence in the ALARP region) may be reclassified as intolerable because of external
events, such as terrorist attacks, or natural phenomena, such as tsunamis.

Figure 12.4 shows a risk classification for the hazards identified in the previous
section for the insulin delivery system. I have separated the hazards that relate to the
incorrect computation of insulin into an insulin overdose and an insulin underdose.
An insulin overdose is potentially more serious than an insulin underdose in the
short term. Insulin overdose can result in cognitive dysfunction, coma, and ulti-
mately death. Insulin underdoses lead to high levels of blood sugar. In the short
term, these high levels cause tiredness but are not very serious; in the longer term,
however, they can lead to serious heart, kidney, and eye problems.

Hazards 4–9 in Figure 12.4 are not software related, but software nevertheless has a
role to play in hazard detection. The hardware monitoring software should monitor the
system state and warn of potential problems. The warning will often allow the hazard to

Identified hazard
Hazard
probability

Accident
severity

Estimated
risk Acceptability

1. �Insulin overdose computation Medium High High Intolerable

2. �Insulin underdose
computation

Medium Low Low Acceptable

3. �Failure of hardware
monitoring system

Medium Medium Low ALARP

4. Power failure High Low Low Acceptable

5. Machine incorrectly fitted High High High Intolerable

6. Machine breaks in patient Low High Medium ALARP

7. Machine causes infection Medium Medium Medium ALARP

8. Electrical interference Low High Medium ALARP

9. Allergic reaction Low Low Low Acceptable

Figure 12.4  Risk
classification for the
insulin pump

	 12.2  ■  Safety requirements    349

be detected before it causes an accident. Examples of hazards that might be detected are
power failure, which is detected by monitoring the battery, and incorrect fitting of the
machine, which may be detected by monitoring signals from the blood sugar sensor.

The monitoring software in the system is, of course, safety-related. Failure to detect a
hazard could result in an accident. If the monitoring system fails but the hardware is work-
ing correctly, then this is not a serious failure. However, if the monitoring system fails and
hardware failure cannot then be detected, then this could have more serious consequences.

Hazard assessment involves estimating the hazard probability and risk severity.
This is difficult as hazards and accidents are uncommon. Consequently, the engineers
involved may not have direct experience of previous incidents or accidents. In estimat-
ing probabilities and accident severity, it makes sense to use relative terms such as
probable, unlikely, rare, high, medium, and low. Quantifying these terms is practically
impossible because not enough statistical data is available for most types of accident.

	 12.2.3	 Hazard analysis

Hazard analysis is the process of discovering the root causes of hazards in a safety-critical
system. Your aim is to find out what events or combination of events could cause a system
failure that results in a hazard. To do this, you can use either a top-down or a bottom-up
approach. Deductive, top-down techniques, which are easier to use, start with the hazard
and work from that to the possible system failure. Inductive, bottom-up techniques start
with a proposed system failure and identify what hazards might result from that failure.

Various techniques have been proposed as possible approaches to hazard decom-
position or analysis (Storey 1996). One of the most commonly used techniques is
fault tree analysis, a top-down technique that was developed for the analysis of both
hardware and software hazards (Leveson, Cha, and Shimeall 1991). This technique
is fairly easy to understand without specialist domain knowledge.

To do a fault tree analysis, you start with the hazards that have been identified.
For each hazard, you then work backwards to discover the possible causes of that
hazard. You put the hazard at the root of the tree and identify the system states that
can lead to that hazard. For each of these states, you then identify further system
states that can lead to them. You continue this decomposition until you reach the root
cause(s) of the risk. Hazards that can only arise from a combination of root causes
are usually less likely to lead to an accident than hazards with a single root cause.

Figure 12.5 is a fault tree for the software-related hazards in the insulin delivery sys-
tem that could lead to an incorrect dose of insulin being delivered. In this case, I have
merged insulin underdose and insulin overdose into a single hazard, namely, “incorrect
insulin dose administered.” This reduces the number of fault trees that are required. Of
course, when you specify how the software should react to this hazard, you have to
distinguish between an insulin underdose and an insulin overdose. As I have said, they
are not equally serious—in the short term, an overdose is the more serious hazard.

From Figure 12.5, you can see that:

1.	 Three conditions could lead to the administration of an incorrect dose of insulin.
(1) The level of blood sugar may have been incorrectly measured, so the insulin
requirement has been computed with an incorrect input. (2) The delivery system

350    Chapter 12  ■  Safety engineering

may not respond correctly to commands specifying the amount of insulin to be
injected. Alternatively, (3) the dose may be correctly computed, but it is deliv-
ered too early or too late.

2.	 The left branch of the fault tree, concerned with incorrect measurement of the
blood sugar level, identifies how this might happen. This could occur either
because the sensor that provides an input to calculate the sugar level has failed or
because the calculation of the blood sugar level has been carried out incorrectly.
The sugar level is calculated from some measured parameter, such as the conduc-
tivity of the skin. Incorrect computation can result from either an incorrect algo-
rithm or an arithmetic error that results from the use of floating-point numbers.

3.	 The central branch of the tree is concerned with timing problems and concludes
that these can only result from system timer failure.

Incorrect
sugar level
measured

Incorrect
insulin dose
administered

or

Correct dose
delivered at
wrong time

Sensor
failure

or

Sugar
computation

error

Timer
failure

Pump
signals

incorrect

or

Insulin
computation

incorrect

Delivery
system
failure

Arithmetic
error

or

Algorithm
error

Arithmetic
error

or

Algorithm
error

Figure 12.5  An
example of a
fault tree

	 12.2  ■  Safety requirements    351

4.	 The right branch of the tree, concerned with delivery system failure, examines
possible causes of this failure. These could result from an incorrect computation
of the insulin requirement or from a failure to send the correct signals to the
pump that delivers the insulin. Again, an incorrect computation can result from
algorithm failure or arithmetic errors.

Fault trees are also used to identify potential hardware problems. Hardware fault
trees may provide insights into requirements for software to detect and, perhaps, cor-
rect these problems. For example, insulin doses are not administered frequently—no
more than five or six times per hour and sometimes less often than that. Therefore,
processor capacity is available to run diagnostic and self-checking programs.
Hardware errors such as sensor, pump, or timer errors can be discovered and warn-
ings issued before they have a serious effect on the patient.

	 12.2.4	 Risk reduction

Once potential risks and their root causes have been identified, you are then able to
derive safety requirements that manage the risks and ensure that incidents or acci-
dents do not occur. You can use three possible strategies:

1.	 Hazard avoidance, where a system is designed so that the hazard cannot occur.

2.	 Hazard detection and removal, where a system is designed so that hazards are
detected and neutralized before they result in an accident.

3.	 Damage limitation, where a system is designed so that the consequences of an
accident are minimized.

Normally, designers of critical systems use a combination of these approaches. In a
safety-critical system, intolerable hazards may be handled by minimizing their probabil-
ity and adding a protection system (see Chapter 11) that provides a safety backup. For
example, in a chemical plant control system, the system will attempt to detect and avoid
excess pressure in the reactor. However, there may also be an independent protection
system that monitors the pressure and opens a relief valve if high pressure is detected.

In the insulin delivery system, a safe state is a shutdown state where no insulin is
injected. Over a short period, this is not a threat to the diabetic’s health. For the soft-
ware failures that could lead to an incorrect dose of insulin, the following “solu-
tions” might be developed:

1.	 Arithmetic error This error may occur when an arithmetic computation causes a
representation failure. The specification should identify all possible arithmetic
errors that may occur and state that an exception handler must be included for
each possible error. The specification should set out the action to be taken for
each of these errors. The default safe action is to shut down the delivery system
and activate a warning alarm.

2.	 Algorithmic error This is a more difficult situation as there is no clear program
exception that must be handled. This type of error could be detected by comparing

352    Chapter 12  ■  Safety engineering

the required insulin dose computed with the previously delivered dose. If it is much
higher, this may mean that the amount has been computed incorrectly. The system
may also keep track of the dose sequence. After a number of above-average doses
have been delivered, a warning may be issued and further dosage limited.

Some of the resulting safety requirements for the insulin pump software are shown
in Figure 12.6. The requirements in Figure 12.6 are user requirements. Naturally, they
would be expressed in more detail in a more detailed system requirements specification.

	 12.3	 Safety engineering processes

The software processes used to develop safety-critical software are based on the
processes used in software reliability engineering. In general, a great deal of care is
taken in developing a complete, and often very detailed, system specification. The
design and implementation of the system usual follow a plan-based, waterfall model,
with reviews and checks at each stage in the process. Fault avoidance and fault
detection are the drivers of the process. For some types of system, such as aircraft
systems, fault-tolerant architectures, as I discussed in Chapter 11, may be used.

Reliability is a prerequisite for safety-critical systems. Because of the very high
costs and potentially tragic consequences of system failure, additional verification
activities may be used in safety-critical systems development. These activities may
include developing formal models of a system, analyzing them to discover errors
and inconsistencies, and using static analysis software tools that parse the software
source code to discover potential faults.

Safe systems have to be reliable, but, as I have discussed, reliability is not enough.
Requirements and verification errors and omissions may mean that reliable systems
are unsafe. Therefore, safety-critical systems development processes should include

Figure 12.6 
Examples of safety
requirements

�SR1: The system shall not deliver a single dose of insulin that is greater than a specified
maximum dose for a system user.

SR2: The system shall not deliver a daily cumulative dose of insulin that is greater than
a specified maximum daily dose for a system user.

SR3: The system shall include a hardware diagnostic facility that shall be executed at
least four times per hour.

SR4: The system shall include an exception handler for all of the exceptions that are
identified in Table 3.

SR5: The audible alarm shall be sounded when any hardware or software anomaly is
discovered and a diagnostic message as defined in Table 4 shall be displayed.

SR6: In the event of an alarm, insulin delivery shall be suspended until the user has
reset the system and cleared the alarm.

Note: Tables 3 and 4 relate to tables that are included in the requirements document;
they are not shown here.

	 12.3  ■  Safety engineering processes    353

safety reviews, where engineers and system stakeholders examine the work done
and explicitly look for potential issues that could affect the safety of the system.

Some types of safety-critical systems are regulated, as I explained in Chapter 10.
National and international regulators require detailed evidence that the system is
safe. This evidence might include:

1.	 The specification of the system that has been developed and records of the
checks made on that specification.

2.	 Evidence of the verification and validation processes that have been carried out
and the results of the system verification and validation.

3.	 Evidence that the organizations developing the system have defined and depend-
able software processes that include safety assurance reviews. There must also
be records showing that these processes have been properly enacted.

Not all safety-critical systems are regulated. For example, there is no regulator for
automobiles, although cars now have many embedded computer systems. The safety
of car-based systems is the responsibility of the car manufacturer. However, because
of the possibility of legal action in the event of an accident, developers of unregu-
lated systems have to maintain the same detailed safety information. If a case is
brought against them, they have to be able to show that they have not been negligent
in the development of the car’s software.

The need for this extensive process and product documentation is another reason
why agile processes cannot be used, without significant change, for safety-critical
systems development. Agile processes focus on the software itself and (rightly)
argue that a great deal of process documentation is never actually used after it has
been produced. However, where you have to keep records for legal or regulatory
reasons, you must maintain documentation about both the processes used and the
system itself.

Safety-critical systems, like other types of system that have high dependability
requirements, need to be based on dependable processes (see Chapter 10). A
dependable process will normally include activities such as requirements man-
agement, change management and configuration control, system modeling,
reviews and inspections, test planning, and test coverage analysis. When a system
is safety-critical, there may be additional safety assurance and verification and
analyses processes.

	 12.3.1	 Safety assurance processes

Safety assurance is a set of activities that check that a system will operate safely. Specific
safety assurance activities should be included at all stages in the software development
process. These activities record the safety analyses that have been carried out and the
person or persons responsible for these analyses. Safety assurance activities have to be
thoroughly documented. This documentation may be part of the evidence that is used to
convince a regulator or system owner that a system will operate safely.

354    Chapter 12  ■  Safety engineering

Examples of safety assurance activities are:

1.	 Hazard analysis and monitoring, where hazards are traced from preliminary
hazard analysis through to testing and system validation.

2.	 Safety reviews, which are used throughout the development process.

3.	 Safety certification, where the safety of critical components is formally certi-
fied. This involves a group external to the system development team examining
the available evidence and deciding whether or not a system or component
should be considered to be safe before it is made available for use.

To support these safety assurance processes, project safety engineers should be
appointed who have explicit responsibility for the safety aspects of a system. These
individuals will be accountable if a safety-related system failure occurs. They must be
able to demonstrate that the safety assurance activities have been properly carried out.

Safety engineers work with quality managers to ensure that a detailed configura-
tion management system is used to track all safety-related documentation and keep it
in step with the associated technical documentation. There is little point in having
stringent validation procedures if a failure of configuration management means that
the wrong system is delivered to the customer. Quality and configuration manage-
ment are covered in Chapters 24 and 25.

Hazard analysis is an essential part of safety-critical systems development. It
involves identifying hazards, their probability of occurrence, and the probability of a
hazard leading to an accident. If there is program code that checks for and handles
each hazard, then you can argue that these hazards will not result in accidents. Where
external certification is required before a system is used (e.g., in an aircraft), it is
usually a condition of certification that this traceability can be demonstrated.

The central safety document that should be produced is the hazard register. This docu-
ment provides evidence of how identified hazards have been taken into account during
software development. This hazard register is used at each stage of the software develop-
ment process to document how that development stage has taken the hazards into account.

A simplified example of a hazard register entry for the insulin delivery system is
shown in Figure 12.7. This register documents the process of hazard analysis and
shows design requirements that have been generated during this process. These
design requirements are intended to ensure that the control system can never deliver
an insulin overdose to a user of the insulin pump.

Individuals who have safety responsibilities should be explicitly identified in the
hazard register. Personal identification is important for two reasons:

1.	 When people are identified, they can be held accountable for their actions. They
are likely to take more care because any problems can be traced back to their work.

2.	 In the event of an accident, there may be legal proceedings or an inquiry. It is
important to be able to identify those responsible for safety assurance so that
they can defend their actions as part of the legal process.

	 12.3  ■  Safety engineering processes    355

Safety reviews are reviews of the software specification, design, and source code
whose aim is to discover potentially hazardous conditions. These are not automated
processes but involve people carefully checking for errors that have been made and
for assumptions or omissions that may affect the safety of a system. For example, in
the aircraft accident that I introduced earlier, a safety review might have questioned
the assumption that an aircraft is on the ground when there is weight on both wheels
and the wheels are rotating.

Safety reviews should be driven by the hazard register. For each of the identified
hazards, a review team examines the system and judges whether or not it would cope
with that hazard in a safe way. Any doubts raised are flagged in the review team’s
report and have to be addressed by the system development team. I discuss reviews of
different types in more detail in Chapter 24, which covers software quality assurance.

Software safety certification is used when external components are incorporated
into a safety-critical system. When all parts of a system have been locally developed,
complete information about the development processes used can be maintained.
However, it is not cost-effective to develop components that are readily available
from other vendors. The problem for safety-critical systems development is that
these external components may have been developed to different standards than
locally developed components. Their safety is unknown.

Consequently, it may be a requirement that all external components must be certified
before they can be integrated with a system. The safety certification team, which is
separate from the development team, carries out extensive verification and validation of

Figure 12.7 
A simplified hazard
register entry

Hazard Register.	 Page 4: Printed 20.02.2012

System: Insulin Pump System	 File: InsulinPump/Safety/HazardLog
Safety Engineer: James Brown	 Log version: 1/3
Identified Hazard	 Insulin overdose delivered to patient
Identified by	 Jane Williams
Criticality class	 1
Identified risk	 High
Fault tree identified	 YES	 Date	 24.01.11	 Location	 Hazard register,

					 Page 5
Fault tree creators	 Jane Williams and Bill Smith
Fault tree checked	 YES	 Date	 28.01.11	 Checker	 James Brown

System safety design requirements

1. �The system shall include self-testing software that will test the sensor system, the
clock, and the insulin delivery system.

2. The self-checking software shall be executed once per minute.
3. �In the event of the self-checking software discovering a fault in any of the system

components, an audible warning shall be issued and the pump display shall indi-
cate the name of the component where the fault has been discovered. The deliv-
ery of insulin shall be suspended.

4. �The system shall incorporate an override system that allows the system user to
modify the computed dose of insulin that is to be delivered by the system.

5. �The amount of override shall be no greater than a pre-set value (maxOverride),
which is set when the system is configured by medical staff.

356    Chapter 12  ■  Safety engineering

the components. If appropriate, they liaise with the component developers to check that
the developers have used dependable processes to create these components and to
examine the component source code. Once the safety certification team is satisfied that
a component meets its specification and does not have “hidden” functionality, they may
issue a certificate allowing that component to be used in safety-critical systems.

	 12.3.2	 Formal verification

Formal methods of software development, as I discussed in Chapter 10, rely on a
formal model of the system that serves as a system specification. These formal
methods are mainly concerned with mathematically analyzing the specification;
with transforming the specification to a more detailed, semantically equivalent rep-
resentation; or with formally verifying that one representation of the system is
semantically equivalent to another representation.

The need for assurance in safety-critical systems has been one of the principal
drivers in the development of formal methods. Comprehensive system testing is
extremely expensive and cannot be guaranteed to uncover all of the faults in a sys-
tem. This is particularly true of systems that are distributed, so that system compo-
nents are running concurrently. Several safety-critical railway systems were
developed using formal methods in the 1990s (Dehbonei and Mejia 1995; Behm
et al. 1999). Companies such as Airbus routinely use formal methods in their soft-
ware development for critical systems (Souyris et al. 2009).

Formal methods may be used at different stages in the V & V process:

1.	 A formal specification of the system may be developed and mathematically ana-
lyzed for inconsistency. This technique is effective in discovering specification
errors and omissions. Model checking, discussed in the next section, is a par-
ticularly effective approach to specification analysis.

2.	 You can formally verify, using mathematical arguments, that the code of a soft-
ware system is consistent with its specification. This requires a formal specifi-
cation. It is effective in discovering programming and some design errors.

Because of the wide semantic gap between a formal system specification and pro-
gram code, it is difficult and expensive to prove that a separately developed program is

Licensing of software engineers

In some areas of engineering, safety engineers must be licensed engineers. Inexperienced, poorly qualified engineers
are not allowed to take responsibility for safety. In 30 states of the United States, there is some form of licensing for
software engineers involved in safety-related systems development. These states require that engineering involved
in safety-critical software development should be licensed engineers, with a defined minimum level of qualifica-
tions and experience. This is a controversial issue, and licensing is not required in many other countries.

http://software-engineering-book.com/safety-licensing/

http://software-engineering-book.com/safety-licensing

	 12.3  ■  Safety engineering processes    357

consistent with its specification. Work on program verification is now mostly based on
transformational development. In a transformational development process, a formal
specification is systematically transformed through a series of representations to pro-
gram code. Software tools support the development of the transformations and help
verify that corresponding representations of the system are consistent. The B method is
probably the most widely used formal transformational method (Abrial 2010). It has
been used for the development of train control systems and avionics software.

Advocates of formal methods claim that the use of these methods leads to more
reliable and safer systems. Formal verification demonstrates that the developed pro-
gram meets its specification and that implementation errors will not compromise the
dependability of the system. If you develop a formal model of concurrent systems
using a specification written in a language such as CSP (Schneider 1999), you can
discover conditions that might result in deadlock in the final program, and you will
be able to address these problems. This is very difficult to do by testing alone.

However, formal specification and proof do not guarantee that the software will
be safe in practical use:

1.	 The specification may not reflect the real requirements of users and other system
stakeholders. As I discussed in Chapter 10, system system stakeholders rarely
understand formal notations, so they cannot directly read the formal specification
to find errors and omissions. This means that there it is likely that the formal
specification is not an accurate representation of the system requirements.

2.	 The proof may contain errors. Program proofs are large and complex, so, like
large and complex programs, they usually contain errors.

3.	 The proof may make incorrect assumptions about the way that the system is
used. If the system is not used as anticipated, then the system’s behavior lies
outside the scope of the proof.

Verifying a nontrivial software system takes a great deal of time. It requires math-
ematical expertise and specialized software tools, such as theorem provers. It is an
expensive process, and, as the system size increases, the costs of formal verification
increase disproportionately.

Many software engineers therefore think that formal verification is not
cost-effective. They believe that the same level of confidence in the system can be
achieved more cheaply by using other validation techniques, such as inspections and
system testing. However, companies such as Airbus that make use of formal verifi-
cation claim that unit testing of components is not required, which leads to signifi-
cant cost savings (Moy et al. 2013).

I am convinced that that formal methods and formal verification have an
important role to play in the development of critical software systems. Formal
specifications are very effective in discovering some types of specification prob-
lems that may lead to system failure. Although formal verification remains
impractical for large systems, it can be used to verify critical safety and security
critical core components.

358    Chapter 12  ■  Safety engineering

	 12.3.3	 Model checking

Formally verifying programs using a deductive approach is difficult and expensive,
but alternative approaches to formal analysis have been developed that are based on a
more restricted notion of correctness. The most successful of these approaches is called
model checking (Jhala and Majumdar 2009). Model checking involves creating a for-
mal state model of a system and checking the correctness of that model using special-
ized software tools. The stages involved in model checking are shown in Figure 12.8.

Model checking has been widely used to check hardware systems designs. It is
increasingly being used in critical software systems such as the control software in
NASA’s Mars exploration vehicles (Regan and Hamilton 2004; Holzmann 2014)
and by Airbus in avionics software development (Bochot et al. 2009).

Many different model-checking tools have been developed. SPIN was an early
example of a software model checker (Holzmann, 2003). More recent systems
include SLAM from Microsoft (Ball, Levin, and Rajamani 2011) and PRISM
(Kwiatkowska, Norman, and Parker 2011).

The models used by model-checking systems are extended finite-state models of
the software. Models are expressed in the language of whatever model-checking
system is used—for example, the SPIN model checker uses a language called
Promela. A set of desirable system properties are identified and written in a formal
notation, usually based on temporal logic. For example, in the wilderness weather
system, a property to be checked might be that the system will always reach the
“transmitting” state from the “recording” state.

The model checker then explores all paths through the model (i.e., all possible
state transitions), checking that the property holds for each path. If it does, then the
model checker confirms that the model is correct with respect to that property. If it
does not hold for a particular path, the model checker outputs a counterexample
illustrating where the property is not true. Model checking is particularly useful in
the validation of concurrent systems, which are notoriously difficult to test because
of their sensitivity to time. The checker can explore interleaved, concurrent transi-
tions and discover potential problems.

A key issue in model checking is the creation of the system model. If the model has to
be created manually (from a requirements or design document), it is an expensive pro-
cess as model creation takes a great deal of time. In addition, there is the possibility that
the model created will not be an accurate model of the requirements or design. It is therefore

Model
building

Requirements,
design or
program

Property
specification

Extended finite-
state model of

system

Desired system
properties

Model
checker

Confirmation or
counter-
examplesFigure 12.8  Model

checking

	 12.3  ■  Safety engineering processes    359

best if the model can be created automatically from the program source code. Model
checkers are available that work directly from programs in Java, C, C++, and Ada.

Model checking is computationally very expensive because it uses an exhaustive
approach to check all paths through the system model. As the size of a system
increases, so too does the number of states, with a consequent increase in the number
of paths to be checked. For large systems, therefore, model checking may be imprac-
tical, due to the computer time required to run the checks. However, better algo-
rithms are under development that can identify parts of the state that do not have to
be explored when checking a particular property. As these algorithms are incorpo-
rated into model checkers, it will be increasingly possible to use model checking
routinely in large-scale critical systems development.

	 12.3.4	 Static program analysis

Automated static analyzers are software tools that scan the source text of a program
and detect possible faults and anomalies. They parse the program text and thus recog-
nize the different types of statements in a program. They can then detect whether or not
statements are well formed, make inferences about the control flow in the program,
and, in many cases, compute the set of all possible values for program data. They
complement the error-detection facilities provided by the language compiler, and they
can be used as part of the inspection process or as a separate V & V process activity.

Automated static analysis is faster and cheaper than detailed code reviews and is
very effective in discovering some types of program faults. However, it cannot dis-
cover some classes of errors that could be identified in program inspection meetings.

Static analysis tools (Lopes, Vicente, and Silva 2009) work on the source code of
a system, and, for some types of analysis at least, no further inputs are required. This
means that programmers do not need to learn specialized notations to write program
specifications, so the benefits of analysis can be immediately clear. This makes auto-
mated static analysis easier to introduce into a development process than formal
verification or model checking.

The intention of automatic static analysis is to draw a code reader’s attention to
anomalies in the program, such as variables that are used without initialization, vari-
ables that are unused, or data whose values could go out of range. Examples of the
problems that can be detected by static analysis are shown in Figure 12.9.

Of course, the specific checks made by the static analyzer are programming-language-
specific and depend on what is and isn’t allowed in the language. Anomalies are
often a result of programming errors or omissions, so they highlight things that could
go wrong when the program is executed. However, these anomalies are not necessar-
ily program faults; they may be deliberate constructs introduced by the programmer,
or the anomaly may have no adverse consequences.

Three levels of checking may be implemented in static analyzers:

1.	 Characteristic error checking At this level, the static analyzer knows about com-
mon errors that are made by programmers in languages such as Java or C. The
tool analyzes the code looking for patterns that are characteristic of that problem

360    Chapter 12  ■  Safety engineering

and highlights these to the programmer. Though relatively simple, analysis based
on common errors can be very cost-effective. Zheng and his collaborators (Zheng
et al. 2006) analyzed a large code base in C and C++. They discovered that 90%
of the errors in the programs resulted from 10 types of characteristic error.

2.	 User-defined error checking In this approach, the users of the static analyzer
define error patterns to be detected. These may relate to the application domain
or may be based on knowledge of the specific system that is being developed.
An example of an error pattern is “maintain ordering”; for example, method A
must always be called before method B. Over time, an organization can collect
information about common bugs that occur in their programs and extend the
static analysis tools with error patterns to highlight these errors.

3.	 Assertion checking This is the most general and most powerful approach to
static analysis. Developers include formal assertions (often written as stylized
comments) in their program that state relationships that must hold at that point
in a program. For example, the program might include an assertion stating that
the value of some variable must lie in the range x..y. The analyzer symbolically
executes the code and highlights statements where the assertion may not hold.

Static analysis is effective in finding errors in programs but, commonly, generates a
large number of false positives. These are code sections where there are no errors but
where the static analyzer’s rules have detected a potential for error. The number of false
positives can be reduced by adding more information to the program in the form of asser-
tions, but this requires additional work by the developer of the code. Work has to be done
in screening out these false positives before the code itself can be checked for errors.

Many organizations now routinely use static analysis in their software develop-
ment processes. Microsoft introduced static analysis in the development of device

Fault class Static analysis check

Data faults Variables used before initialization
Variables declared but never used
Variables assigned twice but never used between assignments
Possible array bound violations
Undeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening assignment

Interface faults Parameter type mismatches
Parameter number mismatches
Nonusage of the results of functions
Uncalled functions and procedures

Storage management faults Unassigned pointers
Pointer arithmetic
Memory leaks

Figure 12.9 
Automated static
analysis checks

	 12.4  ■  Safety cases    361

drivers where program failures can have a serious effect. They extended the approach
across a much wider range of their software to look for security problems as well as
errors that affect program reliability (Ball, Levin, and Rajamani 2011). Checking for
well-known problems, such as buffer overflow, is effective for improving security as
attackers often base their attacks on those common vulnerabilities. Attacks may tar-
get little-used code sections that may not have been thoroughly tested. Static analy-
sis is a cost-effective way of finding these types of vulnerability.

	 12.4	 Safety cases

As I have discussed, many safety-critical, software-intensive systems are regulated.
An external authority has significant influence on their development and deployment.
Regulators are government bodies whose job is to ensure that commercial companies
do not deploy systems that pose threats to public and environmental safety or the
national economy. The owners of safety-critical systems must convince regulators
that they have made the best possible efforts to ensure that their systems are safe. The
regulator assesses the safety case for the system, which presents evidence and argu-
ments that normal operation of the system will not cause harm to a user.

This evidence is collected during the systems development process. It may
include information about hazard analysis and mitigation, test results, static analy-
ses, information about the development processes used, records of review meetings,
and so on. It is assembled and organized into a safety case, a detailed presentation of
why the system owners and developers believe that a system is safe.

A safety case is a set of documents that includes a description of the system to be
certified, information about the processes used to develop the system, and, critically,
logical arguments that demonstrate that the system is likely to be safe. More suc-
cinctly, Bishop and Bloomfield (Bishop and Bloomfield 1998) define a safety case as:

A documented body of evidence that provides a convincing and valid argument
that a system is adequately safe for a given application in a given environment†.

The organization and contents of a safety case depend on the type of system that
is to be certified and its context of operation. Figure 12.10 shows one possible struc-
ture for a safety case, but there are no universal industrial standards in this area.
Safety case structures vary, depending on the industry and the maturity of the domain.
For example, nuclear safety cases have been required for many years. They are very
comprehensive and presented in a way that is familiar to nuclear engineers. However,
safety cases for medical devices have been introduced more recently. The case struc-
ture is more flexible, and the cases themselves are less detailed than nuclear cases.

A safety case refers to a system as a whole, and, as part of that case, there may be
a subsidiary software safety case. When constructing a software safety case, you
have to relate software failures to wider system failures and demonstrate either that

†Bishop, P., and R. E. Bloomfield. 1998. “A Methodology for Safety Case Development.” In Proc. Safety-
Critical Systems Symposium. Birmingham, UK: Springer. http://www.adelard.com/papers/sss98web.pdf

http://www.adelard.com/papers/sss98web.pdf

362    Chapter 12  ■  Safety engineering

these software failures will not occur or that they will not be propagated in such a
way that dangerous system failures may occur.

Safety cases are large and complex documents, and so they are very expensive to
produce and maintain. Because of these high costs, safety-critical system developers
have to take the requirements of the safety case into account in the development process:

1.	 Graydon et al. (Graydon, Knight, and Strunk 2007) argue that the development
of a safety case should be tightly integrated with system design and implemen-
tation. This means that system design decisions may be influenced by the
requirements of the safety case. Design choices that may add significantly to the
difficulties and costs of case development can then be avoided.

2.	 Regulators have their own views on what is acceptable and unacceptable in a
safety case. It therefore makes sense for a development team to work with them
from early in the development to establish what the regulator expects from the
system safety case.

The development of safety cases is expensive because of the costs of the record
keeping required as well as the costs of comprehensive system validation and safety
assurance processes. System changes and rework also add to the costs of a safety

Chapter Description

System description An overview of the system and a description of its critical components.

Safety
requirements

The safety requirements taken from the system requirements specification. Details of
other relevant system requirements may also be included.

Hazard and risk
analysis

Documents describing the hazards and risks that have been identified and the
measures taken to reduce risk. Hazard analyses and hazard logs.

Design analysis A set of structured arguments (see Section 12.4.1) that justify why the design is safe.

Verification and
validation

A description of the V & V procedures used and, where appropriate, the test plans for
the system. Summaries of the test results showing defects that have been detected
and corrected. If formal methods have been used, a formal system specification and
any analyses of that specification. Records of static analyses of the source code.

Review reports Records of all design and safety reviews.

Team
competences

Evidence of the competence of all of the team involved in safety-related systems
development and validation.

Process QA Records of the quality assurance processes (see Chapter 24) carried out during system
development.

Change
management
processes

Records of all changes proposed, actions taken, and, where appropriate, justification of
the safety of these changes. Information about configuration management procedures
and configuration management logs.

Associated safety
cases

References to other safety cases that may impact the safety case.

Figure 12.10  Possible
contents of a software
safety case

	 12.4  ■  Safety cases    363

case. When software or hardware changes are made to a system, a large part of the
safety case may have to be rewritten to demonstrate that the system safety has not
been affected by the change.

	 12.4.1	 Structured arguments

The decision on whether or not a system is operationally safe should be based on
logical arguments. These arguments should demonstrate that the evidence presented
supports the claims about a system’s security and dependability. These claims may
be absolute (event X will or will not happen) or probabilistic (the probability of
occurrence of event Y is 0.n). An argument links the evidence and the claim. As
shown in Figure 12.11, an argument is a relationship between what is thought to be
the case (the claim) and a body of evidence that has been collected. The argument
essentially explains why the claim, which is an assertion about system security or
dependability, can be inferred from the available evidence.

Arguments in a safety case are usually presented as “claim based” arguments.
Some claim about system safety is made, and, on the basis of available evidence,
an argument is presented as to why that claim holds. For example, the following
argument might be used to justify a claim that computations carried out by the con-
trol software in an insulin pump will not lead to an overdose of insulin being deliv-
ered. Of course, this is a very simplified presentation of the argument. In a real
safety case, more detailed references to the evidence would be presented.

Claim: The maximum single dose computed by the insulin pump will not
exceed maxDose, where maxDose has been assessed as a safe single dose for a
particular patient.

Evidence: Safety argument for insulin pump software control program (covered
later in this section).

Evidence: Test datasets for the insulin pump. In 400 tests, which provided com-
plete code coverage, the value of the dose of insulin to be delivered, currentDose,
never exceeded maxDose.

EVIDENCE

EVIDENCE

EVIDENCE

<< ARGUMENT >> CLAIM

Supports

Supports

Supports Justifies

Figure 12.11  Structured
arguments

364    Chapter 12  ■  Safety engineering

Evidence: A static analysis report for the insulin pump control program. The static
analysis of the control software revealed no anomalies that affected the value of
currentDose, the program variable that holds the dose of insulin to be delivered.

Argument: The evidence presented demonstrates that the maximum dose of insu-
lin that can be computed is equal to maxDose.

It is therefore reasonable to assume, with a high level of confidence, that the evi-
dence justifies the claim that the insulin pump will not compute a dose of insulin
to be delivered that exceeds the maximum single safe dose.

The evidence presented is both redundant and diverse. The software is checked using
several different mechanisms with significant overlap between them. As I discussed
in Chapter 10, using redundant and diverse processes increases confidence. If omis-
sions and mistakes are not detected by one validation process, there is a good chance
that they will be found by one of the other processes.

There will normally be many claims about the safety of a system, with the validity of
one claim often depending on whether or not other claims are valid. Therefore, claims may
be organized in a hierarchy. Figure 12.12 shows part of this claim hierarchy for the insulin
pump. To demonstrate that a high-level claim is valid, you first have to work through the
arguments for lower-level claims. If you can show that each of these lower-level claims is
justified, then you may be able to infer that the higher-level claims are justified.

	 12.4.2	 Software safety arguments

A general assumption that underlies work in system safety is that the number of sys-
tem faults that can lead to safety hazards is significantly less than the total number of
faults that may exist in the system. Safety assurance can therefore concentrate on

The maximum single
dose computed by
the pump software
will not exceed
maxDose

maxDose is set up
correctly when the
pump is configured

maxDose is a safe
dose for the user of
the insulin pump

The insulin pump will
not deliver a single
dose of insulin that is
unsafe

In normal
operation, the
maximum dose
computed will not
exceed maxDose

If the software fails,
the maximum dose
computed will not
exceed maxDose

Figure 12.12  A safety
claim hierarchy for the
insulin pump

	 12.4  ■  Safety cases    365

these faults, which have hazard potential. If it can be demonstrated that these faults
cannot occur or, if they occur, that the associated hazard will not result in an acci-
dent, then the system is safe. This is the basis of software safety arguments.

Software safety arguments are a type of structured argument which demonstrates
that a program meets its safety obligations. In a safety argument, it is not necessary to
prove that the program works as intended. It is only necessary to show that program
execution cannot result in it reaching a potentially unsafe state. Safety arguments are
therefore cheaper to make than correctness arguments. You don’t have to consider all
program states—you can simply concentrate on states that could lead to a hazard.

Safety arguments demonstrate that, assuming normal execution conditions, a pro-
gram should be safe. They are usually based on contradiction, where you assume
that the system is unsafe and then show that it is impossible to reach an unsafe state.
The steps involved in creating a safety argument are:

1.	 You start by assuming that an unsafe state, which has been identified by the
system hazard analysis, can be reached by executing the program.

2.	 You write a predicate (a logical expression) that defines this unsafe state.

3.	 You then systematically analyze a system model or the program and show that,
for all program paths leading to that state, the terminating condition of these paths,
also defined as a predicate, contradicts the unsafe state predicate. If this is the
case, you may then claim that the initial assumption of an unsafe state is incorrect.

4.	 When you have repeated this analysis for all identified hazards, then you have
strong evidence that the system is safe.

Safety arguments can be applied at different levels, from requirements through
design models to code. At the requirements level, you are trying to demonstrate that
there are no missing safety requirements and that the requirements do not make invalid
assumptions about the system. At the design level, you might analyze a state model of
the system to find unsafe states. At the code level, you consider all of the paths through
the safety-critical code to show that the execution of all paths leads to a contradiction.

As an example, consider the code outlined in Figure 12.13, which is a simpli-
fied description of part of the implementation of the insulin delivery system. The
code computes the dose of insulin to be delivered and then applies some safety
checks that this is not an overdose for that patient. Developing a safety argument
for this code involves demonstrating that the dose of insulin administered is never
greater than the maximum safe level for a single dose. This dose is established for
each individual diabetic user in discussions with their medical advisors.

To demonstrate safety, you do not have to prove that the system delivers the “cor-
rect” dose, but merely that it never delivers an overdose to the patient. You work on
the assumption that maxDose is the safe level for that system user.

To construct the safety argument, you identify the predicate that defines the unsafe
state, which is that currentDose > maxDose. You then demonstrate that all program
paths lead to a contradiction of this unsafe assertion. If this is the case, the unsafe
condition cannot be true. If you can prove a contradiction, you can be confident that

366    Chapter 12  ■  Safety engineering

the program will not compute an unsafe dose of insulin. You can structure and present
the safety arguments graphically as shown in Figure 12.14.

The safety argument shown in Figure 12.14 presents three possible program paths
that lead to the call to the administerInsulin method. You have to show that the
amount of insulin delivered never exceeds maxDose. All possible program paths to
administerInsulin are considered:

1.	 Neither branch of if-statement 2 is executed. This can only happen if current-
Dose is outside of the range minimumDose..maxDose. The postcondition predi-
cate is therefore:

currentDose >= minimumDose and currentDose <= maxDose

2.	 The then-branch of if-statement 2 is executed. In this case, the assignment set-
ting currentDose to zero is executed. Therefore, its postcondition predicate is
currentDose = 0.

3.	 The else-if-branch of if-statement 2 is executed. In this case, the assignment set-
ting currentDose to maxDose is executed. Therefore, after this statement has
been executed, we know that the postcondition is currentDose = maxDose.

In all three cases, the postcondition predicates contradict the unsafe precondition
that currentDose > maxDose. As both cannot be true, we can claim that our initial
assumption was incorrect, and so the computation is safe.

To construct a structured argument that a program does not make an unsafe computa-
tion, you first identify all possible paths through the code that could lead to a potentially

— The insulin dose to be delivered is a function of
— blood sugar level, the previous dose delivered and
— the time of delivery of the previous dose

currentDose = computeInsulin () ;

// Safety check—adjust currentDose if necessary.

// if statement 1
if (previousDose == 0)
{
   if (currentDose > maxDose/2)
     currentDose = maxDose/2 ;
}
else
   if (currentDose > (previousDose * 2))
      currentDose = previousDose * 2 ;
// if statement 2

if (currentDose < minimumDose)
   currentDose = 0 ;
else if (currentDose > maxDose)
   currentDose = maxDose ;
administerInsulin (currentDose) ;

Figure 12.13  Insulin
dose computation with
safety checks

	 12.4  ■  Safety cases    367

unsafe assignment. You work backwards from the unsafe state and consider the last
assignment to all of the state variables on each path leading to this unsafe state. If you
can show that none of the values of these variables is unsafe, then you have shown that
your initial assumption (that the computation is unsafe) is incorrect.

Working backwards is important because it means that you can ignore all inter-
mediate states apart from the final states that lead to the exit condition for the code.
The previous values don’t matter to the safety of the system. In this example, all you
need be concerned with is the set of possible values of currentDose immediately
before the administerInsulin method is executed. You can ignore computations, such
as if-statement 1 in Figure 12.13 in the safety argument because their results are
overwritten in later program statements.

currentDose = 0

currentDose = 0

if statement 2
then branch

executed

currentDose =
maxDose

currentDose =
maxDose

if statement 2
else branch
executed

if statement 2
not executed

currentDose >= minimumDose and
currentDose <= maxDose

or

currentDose >
maxDose

administerInsulin

Contradiction

Contradiction Contradiction

Precondition
for unsafe state

Overdose
administered

assign assign

Figure 12.14  Informal
safety argument based
on demonstrating
contradictions

368    Chapter 12  ■  Safety engineering

K e y P o i n t s

■	 Safety-critical systems are systems whose failure can lead to human injury or death.

■	 A hazard-driven approach may be used to understand the safety requirements for safety-critical systems.
You identify potential hazards and decompose them (using methods such as fault tree analysis) to
discover their root causes. You then specify requirements to avoid or recover from these problems.

■	 It is important to have a well-defined, certified process for safety-critical systems development.
The process should include the identification and monitoring of potential hazards.

■	 Static analysis is an approach to V & V that examines the source code (or other representation)
of a system, looking for errors and anomalies. It allows all parts of a program to be checked, not
just those parts that are exercised by system tests.

■	 Model checking is a formal approach to static analysis that exhaustively checks all states in a
system for potential errors.

■	 Safety and dependability cases collect all of the evidence that demonstrates a system is safe
and dependable. Safety cases are required when an external regulator must certify the system
before it is used.

F u r t h e r R e a d i n g

Safeware: System Safety and Computers. Although now 20 years old, this book still offers the best
and most thorough coverage of safety-critical systems. It is particularly strong in its description of
hazard analysis and the derivation of requirements from it. (N. Leveson, Addison-Wesley, 1995).

“Safety-Critical Software.” A special edition of IEEE Software magazine that focuses on safety-critical
systems. It includes papers on model-based development of safety-critical systems, model checking
and formal methods. (IEEE Software, 30 (3), May/June 2013).

“Constructing Safety Assurance Cases for Medical Devices.” This short paper gives a practical example
of how a safety case can be created for an analgesic pump. (A. Ray and R. Cleaveland, Proc. Workshop
on Assurance Cases for Software-Intensive Systems, San Francisco, 2013) http://dx.doi.org/10.1109/
ASSURE.2013.6614270

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/reliability-and-safety/

368    Chapter 12  ■  Safety engineering

http://dx.doi.org/10.1109/ASSURE.2013.6614270
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/reliability-and-safety
http://dx.doi.org/10.1109/ASSURE.2013.6614270

	 12.4  ■  Safety cases    369

E x e r c i s e s

12.1.	 Identify six consumer products that are likely to be controlled by safety-critical software systems.

12.2.	 A software system is to be deployed for a company that has extremely high safety standards
and allows for almost no risks, not even minor injuries. How will this affect the look of the risk
triangle in Figure 12.3?

12.3.	 In the insulin pump system, the user has to change the needle and insulin supply at regular
intervals and may also change the maximum single dose and the maximum daily dose that
may be administered. Suggest three user errors that might occur and propose safety require-
ments that would avoid these errors resulting in an accident.

12.4.	 A safety-critical software system for managing roller coasters controls two main components:

■ � The lock and release of the roller coaster harness which is supposed to keep riders in place
as the coaster performs sharp and sudden moves. The roller coaster could not move with
any unlocked harnesses.

■ � The minimum and maximum speeds of the roller coaster as it moves along the various segments
of the ride to prevent derailing, given the number of people riding the roller coaster.

Identify three hazards that may arise in this system. For each hazard, suggest a
defensive requirement that will reduce the probability that these hazards will result in
an accident. Explain why your suggested defense is likely to reduce the risk associated
with the hazard.

12.5.	 A train protection system automatically applies the brakes of a train if the speed limit for a
segment of track is exceeded, or if the train enters a track segment that is currently signaled
with a red light (i.e., the segment should not be entered). There are two critical-safety
requirements for this train protection system:

The train shall not enter a segment of track that is signaled with a red light.

The train shall not exceed the specified speed limit for a section of track.

Assuming that the signal status and the speed limit for the track segment are transmitted to
on-board software on the train before it enters the track segment, propose five possible
functional system requirements for the onboard software that may be generated from the
system safety requirements.

12.6.	 Explain when it may be cost-effective to use formal specification and verification in the
development of safety-critical software systems. Why do you think that some critical systems
engineers are against the use of formal methods?

12.7.	 Explain why using model checking is sometimes a more cost-effective approach to verification
than verifying a program’s correctness against a formal specification.

12.8.	 List four types of systems that may require software safety cases, explaining why safety cases
are required.

12.9.	 The door lock control mechanism in a nuclear waste storage facility is designed for safe
operation. It ensures that entry to the storeroom is only permitted when radiation shields are

	 Chapter 12  ■  Exercises    369

370    Chapter 12  ■  Safety engineering

in place or when the radiation level in the room falls below some given value (dangerLevel).
So:

(i)	� If remotely controlled radiation shields are in place within a room, an authorized
operator may open the door.

(ii)	� If the radiation level in a room is below a specified value, an authorized operator may
open the door.

(iii)	 An authorized operator is identified by the input of an authorized door entry code.

The code shown in Figure 12.15 controls the door-locking mechanism. Note that the safe state
is that entry should not be permitted. Using the approach discussed in this chapter, develop a
safety argument for this code. Use the line numbers to refer to specific statements. If you find
that the code is unsafe, suggest how it should be modified to make it safe.

12.10.	 Should software engineers working on the specification and development of safety-related
systems be professionally certified or licensed in some way? Explain your reasoning.

1	 entryCode = lock.getEntryCode () ;
2	 if (entryCode == lock.authorizedCode)
3	 {
4		 shieldStatus = Shield.getStatus ();
5		 radiationLevel = RadSensor.get ();
6		 if (radiationLevel < dangerLevel)
7			 state = safe;
8		 else
9			 state = unsafe;
10		 if (shieldStatus == Shield.inPlace())
11			 state = safe;
12		 if (state == safe)
13			 {
14				 Door.locked = false ;
15				 Door.unlock ();
16			 }
17		 else
18		 {
19			 Door.lock ();
20			 Door.locked := true ;
21		 }
22	 }Figure 12.15  Door

entry code

R e f e r e n c e s

Abrial, J. R. 2010. Modeling in Event-B: System and Software Engineering. Cambridge, UK: Cam-
bridge University Press.

Ball, T., V. Levin, and S. K. Rajamani. 2011. “A Decade of Software Model Checking with SLAM.”
Communications of the ACM 54 (7) (July 1): 68. doi:10.1145/1965724.1965743.

370    Chapter 12  ■  Safety engineering

Behm, P., P. Benoit, A. Faivre, and J-M. Meynadier. 1999. “Meteor: A Successful Application of B
in a Large Project.” In Formal Methods’99, 369–387. Berlin: Springer-Verlag. doi:10.1007/
3-540-48119-2_22.

Bishop, P., and R. E. Bloomfield. 1998. “A Methodology for Safety Case Development.” In Proc.
Safety-Critical Systems Symposium. Birmingham, UK: Springer. http://www.adelard.com/papers/
sss98web.pdf

Bochot, T., P. Virelizier, H. Waeselynck, and V. Wiels. 2009. “Model Checking Flight Control
Systems: The Airbus Experience.” In Proc. 31st International Conf. on Software Engineering,
Companion Volume, 18–27. Leipzig: IEEE Computer Society Press. doi:10.1109/ICSE-COMPANION.
2009.5070960.

Dehbonei, B., and F. Mejia. 1995. “Formal Development of Safety-Critical Software Systems in Railway
Signalling.” In Applications of Formal Methods, edited by M. Hinchey and J. P. Bowen, 227–252.
London: Prentice-Hall.

Graydon, P. J., J. C. Knight, and E. A. Strunk. 2007. “Assurance Based Development of Critical Sys-
tems.” In Proc. 37th Annual IEEE Conf. on Dependable Systems and Networks, 347–357. Edinburgh,
Scotland. doi:10.1109/DSN.2007.17.

Holzmann, G. J. 2014. “Mars Code.” Comm ACM 57 (2): 64–73. doi:10.1145/2560217.2560218.

Jhala, R., and R. Majumdar. 2009. “Software Model Checking.” Computing Surveys 41 (4).
doi:10.1145/1592434.1592438.

Kwiatkowska, M., G. Norman, and D. Parker. 2011. “PRISM 4.0: Verification of Probabilistic Real-
Time Systems.” In Proc. 23rd Int. Conf. on Computer Aided Verification, 585–591. Snowbird,
UT: Springer-Verlag. doi:10.1007/978-3-642-22110-1_47.

Leveson, N. G., S. S. Cha, and T. J. Shimeall. 1991. “Safety Verification of Ada Programs Using
Software Fault Trees.” IEEE Software 8 (4): 48–59. doi:10.1109/52.300036.

Lopes, R., D. Vicente, and N. Silva. 2009. “Static Analysis Tools, a Practical Approach for Safety-
Critical Software Verification.” In Proceedings of DASIA 2009 Data Systems in Aerospace.
Noordwijk, Netherlands: European Space Agency.

Lutz, R. R. 1993. “Analysing Software Requirements Errors in Safety-Critical Embedded Systems.”
In RE’93, 126–133. San Diego, CA: IEEE. doi:0.1109/ISRE.1993.324825.

Moy, Y., E. Ledinot, H. Delseny, V. Wiels, and B. Monate. 2013. “Testing or Formal Verification:
DO-178C Alternatives and Industrial Experience.” IEEE Software 30 (3) (May 1): 50–57. doi:10.1109/
MS.2013.43.

Perrow, C. 1984. Normal Accidents: Living with High-Risk Technology. New York: Basic Books.

Regan, P., and S. Hamilton. 2004. “NASA’s Mission Reliable.” IEEE Computer 37 (1): 59–68.
doi:10.1109/MC.2004.1260727.

Schneider, S. 1999. Concurrent and Real-Time Systems: The CSP Approach. Chichester, UK: John
Wiley & Sons.

	 Chapter 12  ■  References    371

http://www.adelard.com/papers/sss98web.pdf
http://www.adelard.com/papers/sss98web.pdf

372    Chapter 12  ■  Safety engineering

Souyris, J., V. Weils, D. Delmas, and H. Delseny. 2009. “Formal Verification of Avionics Software
Products.” In Formal Methods’09: Proceedings of the 2nd World Congress on Formal Methods,
532–546. Springer-Verlag. doi:10.1007/978-3-642-05089-3_34.

Storey, N. 1996. Safety-Critical Computer Systems. Harlow, UK: Addison-Wesley.

Veras, P. C., E. Villani, A. M. Ambrosio, N. Silva, M. Vieira, and H. Madeira. 2010. “Errors in Space
Software Requirements: A Field Study and Application Scenarios.” In 21st Int. Symp. on Software
Reliability Engineering. San Jose, CA. doi:10.1109/ISSRE.2010.37.

Zheng, J., L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M. A. Vouk. 2006. “On the Value
of Static Analysis for Fault Detection in Software.” IEEE Trans. on Software Eng. 32 (4): 240–253.
doi:10.1109/TSE.2006.38.

372    Chapter 12  ■  Safety engineering

Security engineering
13

Objectives
The objective of this chapter is to introduce security issues that you
should consider when you are developing application systems. When you
have read this chapter, you will:

■	 understand the importance of security engineering and the difference
between application security and infrastructure security;

■	 know how a risk-based approach can be used to derive security
requirements and analyze system designs;

■	 know of software architectural patterns and design guidelines for
secure systems engineering;

■	 understand why security testing and assurance is difficult and
expensive.

Contents
13.1	 Security and dependability

13.2	 Security and organizations

13.3	 Security requirements

13.4	 Secure systems design

13.5	 Security testing and assurance

374    Chapter 13  ■  Security engineering

The widespread adoption of the Internet in the 1990s introduced a new challenge for
software engineers—designing and implementing systems that were secure. As more
and more systems were connected to the Internet, a variety of different external attacks
were devised to threaten these systems. The problems of producing dependable systems
were hugely increased. Systems engineers had to consider threats from malicious and
technically skilled attackers as well as problems resulting from accidental mistakes in
the development process.

It is now essential to design systems to withstand external attacks and to recover
from such attacks. Without security precautions, attackers will inevitably compromise
a networked system. They may misuse the system hardware, steal confidential data,
or disrupt the services offered by the system.

You have to take three security dimensions into account in secure systems engineering:

1.	 Confidentiality Information in a system may be disclosed or made accessible to
people or programs that are not authorized to have access to that information.
For example, the theft of credit card data from an e-commerce system is a
confidentiality problem.

2.	 Integrity Information in a system may be damaged or corrupted, making it
unusual or unreliable. For example, a worm that deletes data in a system is an
integrity problem.

3.	 Availability Access to a system or its data that is normally available may not be
possible. A denial-of-service attack that overloads a server is an example of a
situation where the system availability is compromised.

These dimensions are closely related. If an attack makes the system unavailable,
then you will not be able to update information that changes with time. This means
that the integrity of the system may be compromised. If an attack succeeds and the
integrity of the system is compromised, then it may have to be taken down to repair
the problem. Therefore, the availability of the system is reduced.

From an organizational perspective, security has to be considered at three levels:

1.	 Infrastructure security, which is concerned with maintaining the security of all
systems and networks that provide an infrastructure and a set of shared services
to the organization.

2.	 Application security, which is concerned with the security of individual
application systems or related groups of systems.

3.	 Operational security, which is concerned with the secure operation and use of
the organization’s systems.

Figure 13.1 is a diagram of an application system stack that shows how an
application system relies on an infrastructure of other systems in its operation. The
lower levels of the infrastructure are hardware, but the software infrastructure for
application systems may include:

	 Chapter 13  ■  Security engineering    375

■	 an operating system platform, such as Linux or Windows;

■	 other generic applications that run on that system, such as web browsers and
email clients;

■	 a database management system;

■	 middleware that supports distributed computing and database access; and

■	 libraries of reusable components that are used by the application software.

Network systems are software controlled, and networks may be subject to security
threats where an attacker intercepts and reads or changes network packets. However,
this requires specialized equipment, so the majority of security attacks are on the
software infrastructure of systems. Attackers focus on software infrastructures
because infrastructure components, such as web browsers, are universally available.
Attackers can probe these systems for weaknesses and share information about
vulnerabilities that they have discovered. As many people use the same software,
attacks have wide applicability.

Infrastructure security is primarily a system management problem, where system
managers configure the infrastructure to resist attacks. System security management
includes a range of activities such as user and permission management, system
software deployment and maintenance, and attack monitoring, detection, and recovery:

1.	 User and permission management involves adding and removing users from the
system, ensuring that appropriate user authentication mechanisms are in place,
and setting up the permissions in the system so that users only have access to the
resources they need.

2.	 System software deployment and maintenance involves installing system software
and middleware and configuring these properly so that security vulnerabilities are
avoided. It also involves updating this software regularly with new versions or
patches, which repair security problems that have been discovered.

Operating System

Generic, shared applications (browsers, email, etc.)

Database management

Middleware

Reusable components and libraries

Application

Network Computer hardware
Figure 13.1  System
layers where security
may be compromised

376    Chapter 13  ■  Security engineering

3.	 Attack monitoring, detection, and recovery involves monitoring the system for
unauthorized access, detecting and putting in place strategies for resisting
attacks, and organizing backups of programs and data so that normal operation
can be resumed after an external attack.

Operational security is primarily a human and social issue. It focuses on ensuring
that the people using the system do not behave in such a way that system security is
compromised. For example, users may leave themselves logged on to a system while
it is unattended. An attacker can then easily get access to the system. Users often
behave in an insecure way to help them do their jobs more effectively, and they have
good reason to behave in an insecure way. A challenge for operational security is to
raise awareness of security issues and to find the right balance between security and
system effectiveness.

The term cybersecurity is now commonly used in discussions of system security.
Cybersecurity is a very wide-ranging term that covers all aspects of the protection of
citizens, businesses, and critical infrastructures from threats that arise from their use
of computers and the Internet. Its scope includes all system levels from hardware
and networks through application systems to mobile devices that may be used to
access these systems. I discuss general cybersecurity issues, including infrastructure
security, in Chapter 14, which covers resilience engineering.

In this chapter, I focus on issues of application security engineering—security
requirements, design for security, and security testing. I don’t cover general security
techniques that may be used, such as encryption, and access control mechanisms or
attack vectors, such as viruses and worms. General textbooks on computer security
(Pfleeger and Pfleeger 2007; Anderson 2008; Stallings and Brown 2012) discuss
these techniques in detail.

	 13.1	 Security and dependability

Security is a system attribute that reflects the ability of the system to protect itself
from malicious internal or external attacks. These external attacks are possible
because most computers and mobile devices are networked and are therefore
accessible by outsiders. Examples of attacks might be the installation of viruses and
Trojan horses, unauthorized use of system services, or unauthorized modification of
a system or its data.

If you really want a system to be as secure as possible, it is best not to connect it
to the Internet. Then, your security problems are limited to ensuring that authorized
users do not abuse the system and to controlling the use of devices such as USB
drives. In practice, however, networked access provides huge benefits for most
systems, so disconnecting from the Internet is not a viable security option.

For some systems, security is the most important system dependability attribute.
Military systems, systems for electronic commerce, and systems that involve the
processing and interchange of confidential information must be designed so that

	 13.1  ■  Security and dependability    377

Figure 13.2  Security
terminology

Term Definition

Asset Something of value that has to be protected. The asset may be the software system
itself or the data used by that system.

Attack An exploitation of a system’s vulnerability where an attacker has the goal of causing
some damage to a system asset or assets. Attacks may be from outside the system
(external attacks) or from authorized insiders (insider attacks).

Control A protective measure that reduces a system’s vulnerability. Encryption is an example of
a control that reduces a vulnerability of a weak access control system.

Exposure Possible loss or harm to a computing system. This can be loss or damage to data or
can be a loss of time and effort if recovery is necessary after a security breach.

Threat Circumstances that have potential to cause loss or harm. You can think of a threat as a
system vulnerability that is subjected to an attack.

Vulnerability A weakness in a computer-based system that may be exploited to cause loss or harm.

they achieve a high level of security. If an airline reservation system is unavailable,
for example, this causes inconvenience and some delays in issuing tickets. However,
if the system is insecure, then an attacker could delete all bookings and it would be
practically impossible for normal airline operations to continue.

As with other aspects of dependability, a specialized terminology is associated
with security (Pfleeger and Pfleeger 2007). This terminology is explained in Figure
13.2. Figure 13.3 is a security story from the Mentcare system that I use to illustrate
some of these terms. Figure 13.4 takes the security concepts defined in Figure 13.2
and shows how they apply to this security story.

System vulnerabilities may arise because of requirements, design, or implementation
problems, or they may stem from human, social, or organizational failings. People may
choose easy-to-guess passwords or write down their passwords in places where they
can be found. System administrators make errors in setting up access control or con-
figuration files, and users don’t install or use protection software. However, we cannot
simply class these problems as human errors. User mistakes or omissions often reflect
poor systems design decisions that require, for example, frequent password changes
(so that users write down their passwords) or complex configuration mechanisms.

Unauthorized access to the Mentcare system

Clinic staff log on to the Mentcare system using a username and password. The system requires passwords to
be at least eight letters long but allows any password to be set without further checking. A criminal finds out
that a well-paid sports star is receiving treatment for mental health problems. He would like to gain illegal
access to information in this system so that he can blackmail the star.

By posing as a concerned relative and talking with the nurses in the mental health clinic, he discovers how
to access the system and personal information about the nurses and their families. By checking name badges,
he discovers the names of some of the people allowed access. He then attempts to log on to the system by
using these names and systematically guessing possible passwords, such as the names of the nurses’ children.

Figure 13.3  A security
story for the Mentcare
system

378    Chapter 13  ■  Security engineering

Four types of security threats may arise:

1.	 Interception threats that allow an attacker to gain access to an asset. So, a
possible threat to the Mentcare system might be a situation where an attacker
gains access to the records of an individual patient.

2.	 Interruption threats that allow an attacker to make part of the system unavailable.
Therefore, a possible threat might be a denial-of-service attack on a system
database server.

3.	 Modification threats that allow an attacker to tamper with a system asset. In the
Mentcare system, a modification threat would be where an attacker alters or
destroys a patient record.

4.	 Fabrication threats that allow an attacker to insert false information into a sys-
tem. This is perhaps not a credible threat in the Mentcare system but would
certainly be a threat in a banking system, where false transactions might be
added to the system that transfers money to the perpetrator’s bank account.

The controls that you might put in place to enhance system security are based on
the fundamental notions of avoidance, detection, and recovery:

1.	 Vulnerability avoidance Controls that are intended to ensure that attacks are
unsuccessful. The strategy here is to design the system so that security problems
are avoided. For example, sensitive military systems are not connected to the
Internet so that external access is more difficult. You should also think of
encryption as a control based on avoidance. Any unauthorized access to
encrypted data means that the attacker cannot read the encrypted data. It is
expensive and time consuming to crack strong encryption.

2.	 Attack detection and neutralization Controls that are intended to detect and
repel attacks. These controls involve including functionality in a system that
monitors its operation and checks for unusual patterns of activity. If these

Figure 13.4  Examples
of security terminology

Term Example

Asset The record of each patient who is receiving or has received treatment.

Attack An impersonation of an authorized user.

Control A password checking system that disallows user passwords that are proper names
or words that are normally included in a dictionary.

Exposure Potential financial loss from future patients who do not seek treatment because
they do not trust the clinic to maintain their data. Financial loss from legal action
by the sports star. Loss of reputation.

Threat An unauthorized user will gain access to the system by guessing the credentials
(login name and password) of an authorized user.

Vulnerability Authentication is based on a password system that does not require strong
passwords. Users can then set easily guessable passwords.

attacks are detected, then action may be taken, such as shutting down parts of
the system or restricting access to certain users.

3.	 Exposure limitation and recovery Controls that support recovery from prob-
lems. These can range from automated backup strategies and information “mir-
roring” through to insurance policies that cover the costs associated with a
successful attack on the system.

Security is closely related to the other dependability attributes of reliability, avail-
ability, safety, and resilience:

1.	 Security and reliability If a system is attacked and the system or its data are cor-
rupted as a consequence of that attack, then this may induce system failures that
compromise the reliability of the system.

Errors in the development of a system can lead to security loopholes. If a system
does not reject unexpected inputs or if array bounds are not checked, then attackers can
exploit these weaknesses to gain access to the system. For example, failure to check the
validity of an input may mean that an attacker can inject and execute malicious code.

2.	 Security and availability A common attack on a web-based system is a denial-
of-service attack, where a web server is flooded with service requests from a
range of different sources. The aim of this attack is to make the system unavail-
able. A variant of this attack is where a profitable site is threatened with this
type of attack unless a ransom is paid to the attackers.

3.	 Security and safety Again, the key problem is an attack that corrupts the system
or its data. Safety checks are based on the assumption that we can analyze the
source code of safety-critical software and that the executing code is a com-
pletely accurate translation of that source code. If this is not the case, because an
attacker has changed the executing code, safety-related failures may be induced
and the safety case made for the software is invalid.

Like safety, we cannot assign a numeric value to the security of a system, nor
can we exhaustively test the system for security. Both safety and security can be
thought of as “negative” or “shall not” characteristics in that they are concerned
with things that should not happen. As we can never prove a negative, we can
never prove that a system is safe or secure.

4.	 Security and resilience Resilience, covered in Chapter 14, is a system character-
istic that reflects its ability to resist and recover from damaging events. The
most probable damaging event on networked software systems is a cyberattack
of some kind, so most of the work now done in resilience is aimed at deterring,
detecting, and recovering from such attacks.

Security has to be maintained if we are to create reliable, available, and safe software-
intensive systems. It is not an add-on, which can be added later but has to be considered
at all stages of the development life cycle from early requirements to system operation.

	 13.1  ■  Security and dependability    379

380    Chapter 13  ■  Security engineering

	 13.2	 Security and organizations

Building secure systems is expensive and uncertain. It is impossible to predict the
costs of a security failure, so companies and other organizations find it difficult to
judge how much they should spend on system security. In this respect, security and
safety are different. There are laws that govern workplace and operator safety, and
developers of safety-critical systems have to comply with these irrespective of the
costs. They may be subject to legal action if they use an unsafe system. However,
unless a security failure discloses personal information, there are no laws that pre-
vent an insecure system from being deployed.

Companies assess the risks and losses that may arise from certain types of attacks
on system assets. They may then decide that it is cheaper to accept these risks rather
than build a secure system that can deter or repel the external attacks. Credit card
companies apply this approach to fraud prevention. It is usually possible to introduce
new technology to reduce credit card fraud. However, it is often cheaper for these
companies to compensate users for their losses due to fraud than to buy and deploy
fraud-reduction technology.

Security risk management is therefore a business rather than a technical issue. It
has to take into account the financial and reputational losses from a successful sys-
tem attack as well as the costs of security procedures and technologies that may
reduce these losses. For risk management to be effective, organizations should have
a documented information security policy that sets out:

1.	 The assets that must be protected It does not necessarily make sense to apply
stringent security procedures to all organizational assets. Many assets are not con-
fidential, and a company can improve its image by making these assets freely
available. The costs of maintaining the security of information that is in the public
domain are much less than the costs of keeping confidential information secure.

2.	 The level of protection that is required for different types of assets Not all assets
need the same level of protection. In some cases (e.g., for sensitive personal
information), a high level of security is required; for other information, the con-
sequences of loss may be minor, so a lower level of security is adequate.
Therefore, some information may be made available to any authorized and
logged-in user; other information may be much more sensitive and only availa-
ble to users in certain roles or positions of responsibility.

3.	 The responsibilities of individual users, managers, and the organization The
security policy should set out what is expected of users—for example, use
strong passwords, log out of computers, and lock offices. It also defines what
users can expect from the company, such as backup and information-archiving
services, and equipment provision.

4.	 Existing security procedures and technologies that should be maintained For
reasons of practicality and cost, it may be essential to continue to use existing
approaches to security even where these have known limitations. For example,

a company may require the use of a login name/password for authentication,
simply because other approaches are likely to be rejected by users.

Security policies often set out general information access strategies that should
apply across the organization. For example, an access strategy may be based on the
clearance or seniority of the person accessing the information. Therefore, a military
security policy may state: “Readers may only examine documents whose classifica-
tion is the same as or below the reader’s vetting level.” This means that if a reader
has been vetted to a “secret” level, he or she may access documents that are classed
as secret, confidential, or open but not documents classed as top secret.

The point of security policies is to inform everyone in an organization about secu-
rity, so these should not be long and detailed technical documents. From a security
engineering perspective, the security policy defines, in broad terms, the security
goals of the organization. The security engineering process is concerned with imple-
menting these goals.

	 13.2.1	 Security risk assessment

Security risk assessment and management are organizational activities that focus on iden-
tifying and understanding the risks to information assets (systems and data) in the organi-
zation. In principle, an individual risk assessment should be carried out for all assets; in
practice, however, this may be impractical if a large number of existing systems and
databases need to be assessed. In those situations, a generic assessment may be applied to
all of them. However, individual risk assessments should be carried out for new systems.

Risk assessment and management is an organizational activity rather than a tech-
nical activity that is part of the software development life cycle. The reason for this
is that some types of attack are not technology-based but rather rely on weaknesses
in more general organizational security. For example, an attacker may gain access to
equipment by pretending to be an accredited engineer. If an organization has a pro-
cess to check with the equipment supplier that an engineer’s visit is planned, this can
deter this type of attack. This approach is much simpler than trying to address the
problem using a technological solution.

When a new system is to be developed, security risk assessment and management
should be a continuing process throughout the development life cycle from initial
specification to operational use. The stages of risk assessment are:

1.	 Preliminary risk assessment The aim of this initial risk assessment is to identify
generic risks that are applicable to the system and to decide if an adequate level
of security can be achieved at a reasonable cost. At this stage, decisions on the
detailed system requirements, the system design, or the implementation technol-
ogy have not been made. You don’t know of potential technology vulnerabilities
or the controls that are included in reused system components or middleware.
The risk assessment should therefore focus on the identification and analysis of
high-level risks to the system. The outcomes of the risk assessment process are
used to help identify security requirements.

	 13.2  ■  Security and organizations    381

382    Chapter 13  ■  Security engineering

2.	 Design risk assessment This risk assessment takes place during the system devel-
opment life cycle and is informed by the technical system design and implementa-
tion decisions. The results of the assessment may lead to changes to the security
requirements and the addition of new requirements. Known and potential vulnera-
bilities are identified, and this knowledge is used to inform decision making about
the system functionality and how it is to be implemented, tested, and deployed.

3.	 Operational risk assessment This risk assessment process focuses on the use of
the system and the possible risks that can arise. For example, when a system is
used in an environment where interruptions are common, a security risk is that a
logged-in user leaves his or her computer unattended to deal with a problem. To
counter this risk, a timeout requirement may be specified so that a user is auto-
matically logged out after a period of inactivity.

Operational risk assessment should continue after a system has been installed to
take account of how the system is used and proposals for new and changed require-
ments. Assumptions about the operating requirement made when the system was
specified may be incorrect. Organizational changes may mean that the system is
used in different ways from those originally planned. These changes lead to new
security requirements that have to be implemented as the system evolves.

	 13.3	 Security requirements

The specification of security requirements for systems has much in common with
the specification of safety requirements. You cannot specify safety or security
requirements as probabilities. Like safety requirements, security requirements are
often “shall not” requirements that define unacceptable system behavior rather than
required system functionality.

However, security is a more challenging problem than safety, for a number of
reasons:

1.	 When considering safety, you can assume that the environment in which the
system is installed is not hostile. No one is trying to cause a safety-related inci-
dent. When considering security, you have to assume that attacks on the system
are deliberate and that the attacker may have knowledge of system weaknesses.

2.	 When system failures occur that pose a risk to safety, you look for the errors or
omissions that have caused the failure. When deliberate attacks cause system
failure, finding the root cause may be more difficult as the attacker may try to
conceal the cause of the failure.

3.	 It is usually acceptable to shut down a system or to degrade system services to
avoid a safety-related failure. However, attacks on a system may be denial-of-
service attacks, which are intended to compromise system availability. Shutting
down the system means that the attack has been successful.

4.	 Safety-related events are accidental and are not created by an intelligent adver-
sary. An attacker can probe a system’s defenses in a series of attacks, modifying
the attacks as he or she learns more about the system and its responses.

These distinctions mean that security requirements have to be more extensive
than safety requirements. Safety requirements lead to the generation of functional
system requirements that provide protection against events and faults that could
cause safety-related failures. These requirements are mostly concerned with check-
ing for problems and taking actions if these problems occur. By contrast, many types
of security requirements cover the different threats faced by a system.

Firesmith (Firesmith 2003) identified 10 types of security requirements that may
be included in a system specification:

1.	 Identification requirements specify whether or not a system should identify its
users before interacting with them.

2.	 Authentication requirements specify how users are identified.

3.	 Authorization requirements specify the privileges and access permissions of
identified users.

4.	 Immunity requirements specify how a system should protect itself against
viruses, worms, and similar threats.

5.	 Integrity requirements specify how data corruption can be avoided.

6.	 Intrusion detection requirements specify what mechanisms should be used to
detect attacks on the system.

7.	 Nonrepudiation requirements specify that a party in a transaction cannot deny
its involvement in that transaction.

8.	 Privacy requirements specify how data privacy is to be maintained.

9.	 Security auditing requirements specify how system use can be audited and
checked.

10.	 System maintenance security requirements specify how an application can pre-
vent authorized changes from accidentally defeating its security mechanisms.

Of course, you will not see all of these types of security requirements in every
system. The particular requirements depend on the type of system, the situation of
use, and the expected users.

Preliminary risk assessment and analysis aim to identify the generic security risks
for a system and its associated data. This risk assessment is an important input to the
security requirements engineering process. Security requirements can be proposed to
support the general risk management strategies of avoidance, detection and mitigation.

1.	 Risk avoidance requirements set out the risks that should be avoided by design-
ing the system so that these risks simply cannot arise.

	 13.3  ■  Security requirements    383

384    Chapter 13  ■  Security engineering

2.	 Risk detection requirements define mechanisms that identify the risk if it arises
and neutralize the risk before losses occur.

3.	 Risk mitigation requirements set out how the system should be designed so that
it can recover from and restore system assets after some loss has occurred.

A risk-driven security requirements process is shown in Figure 13.5. The process
stages are:

1.	 Asset identification, where the system assets that may require protection are
identified. The system itself or particular system functions may be identified as
assets as well as the data associated with the system.

2.	 Asset value assessment, where you estimate the value of the identified assets.

3.	 Exposure assessment, where you assess the potential losses associated with
each asset. This process should take into account direct losses such as the theft
of information, the costs of recovery, and the possible loss of reputation.

4.	 Threat identification, where you identify the threats to system assets.

5.	 Attack assessment, where you decompose each threat into attacks that might be
made on the system and the possible ways in which these attacks may occur.
You may use attack trees (Schneier 1999) to analyze the possible attacks. These
are similar to fault trees, (Chapter 12) as you start with a threat at the root of the
tree and then identify possible causal attacks and how these might be made.

6.	 Control identification, where you propose the controls that might be put in place
to protect an asset. The controls are the technical mechanisms, such as encryp-
tion, that you can use to protect assets.

7.	 Feasibility assessment, where you assess the technical feasibility and the costs
of the proposed controls. It is not worth having expensive controls to protect
assets that don’t have a high value.

Asset
identification

Asset value
assessment

Threat
identification

Attack
assessment

Exposure
assessment

Security req.
definition

Control
identification

Feasibility
assessment

Figure 13.5  The
preliminary risk
assessment process for
security requirements

8.	 Security requirements definition, where knowledge of the exposure, threats, and
control assessments is used to derive system security requirements. These
requirements may apply to the system infrastructure or the application system.

The Mentcare patient management system is a security-critical system. Figures
13.6 and 13.7 are fragments of a report that documents the risk analysis of that soft-
ware system. Figure 13.6 is an asset analysis that describes the assets in the system
and their value. Figure 13.7 shows some of the threats that a system may face.

Once a preliminary risk assessment has been completed, then requirements can be
proposed that aim to avoid, detect, and mitigate risks to the system. However, creating
these requirements is not a formulaic or automated process. It requires inputs from
both engineers and domain experts to suggest requirements based on their understand-
ing of the risk analysis and the functional requirements of the software system. Some
examples of the Mentcare system security requirements and associated risks are:

1.	 Patient information shall be downloaded, at the start of a clinic session, from
the database to a secure area on the system client.

	 Risk: Damage from denial-of-service attack. Maintaining local copies means
that access is still possible.

2.	 All patient information on the system client shall be encrypted.

	 Risk: External access to patient records. If data is encrypted, then attacker must
have access to the encryption key to discover patient information.

3.	 Patient information shall be uploaded to the database when a clinic session is
over and deleted from the client computer.

	 Risk: External access to patience records through stolen laptop.

4.	 A log of all changes made to the system database and the initiator of these
changes shall be maintained on a separate computer from the database server.

	 Risk: Insider or external attacks that corrupt current data. A log should allow
up-to-date records to be re-created from a backup.

Figure 13.6  Asset
analysis in a
preliminary risk
assessment report for
the Mentcare system

Asset Value Exposure

The information
system

High. Required to support
all clinical consultations.
Potentially safety critical.

High. Financial loss as clinics may have to
be canceled. Costs of restoring system.
Possible patient harm if treatment cannot
be prescribed.

The patient database High. Required to support
all clinical consultations.
Potentially safety critical.

High. Financial loss as clinics may have to
be canceled. Costs of restoring system.
Possible patient harm if treatment cannot
be prescribed.

An individual patient
record

Normally low, although
may be high for specific
high-profile patients

Low direct losses but possible loss of
reputation.

	 13.3  ■  Security requirements    385

386    Chapter 13  ■  Security engineering

The first two requirements are related—patient information is downloaded to a
local machine, so that consultations may continue if the patient database server is
attacked or becomes unavailable. However, this information must be deleted so
that later users of the client computer cannot access the information. The fourth
requirement is a recovery and auditing requirement. It means that changes can be
recovered by replaying the change log and that it is possible to discover who has
made the changes. This accountability discourages misuse of the system by
authorized staff.

	 13.3.1	 Misuse cases

The derivation of security requirements from a risk analysis is a creative process
involving engineers and domain experts. One approach that has been developed to
support this process for users of the UML is the idea of misuse cases (Sindre and
Opdahl 2005). Misuse cases are scenarios that represent malicious interactions with
a system. You can use these scenarios to discuss and identify possible threats and,
therefore also determine the system’s security requirements. They can be used
alongside use cases when deriving the system requirements (Chapters 4 and 5).

Misuse cases are associated with use case instances and represent threats or
attacks associated with these use cases. They may be included in a use case diagram
but should also have a more complete and detailed textual description. In Figure
13.8, I have taken the use cases for a medical receptionist using the Mentcare system
and have added misuse cases. These are normally represented as black ellipses.

As with use cases, misuse cases can be described in several ways. I think that it is
most helpful to describe them as a supplement to the original use case description. I
also think it is best to have a flexible format for misuse cases as different types of attack
have to be described in different ways. Figure 13.9 shows the original description of
the Transfer Data use case (Figure 5.4), with the addition of a misuse case description.

The problem with misuse cases mirrors the general problem of use cases, which
is that interactions between end-users and a system do not capture all of the system

Figure 13.7  Threat
and control analysis
in a preliminary risk
assessment report

Threat Probability Control Feasibility

An unauthorized user
gains access as system
manager and makes
system unavailable

Low Only allow system
management from
specific locations that
are physically secure.

Low cost of implementation, but care
must be taken with key distribution
and to ensure that keys are available
in the event of an emergency.

An unauthorized user
gains access as system
user to confidential
information

High Require all users to
authenticate
themselves using a
biometric mechanism.

Technically feasible but high- cost
solution. Possible user resistance.

Log all changes to
patient information to
track system usage.

Simple and transparent to
implement and also supports
recovery.

Medical
receptionist

Register
patient

Transfer data

Contact
patient

View patient
info.

Unregister
patient

Impersonate
receptionist

Intercept
transfer

Attacker

Figure 13.8  Misuse
cases

Figure 13.9  Misuse case
descriptions

Mentcare system: Intercept transfer (Misuse case)

Actors Medical receptionist, Patient records system (PRS), Attacker

Description A receptionist transfers data from his or her PC to the Mentcare system on the server.

An attacker intercepts the data transfer and takes a copy of that data.

Data (assets) Patient’s personal information, treatment summary

Attacks A network monitor is added to the system, and packets from the receptionist to the
server are intercepted.

A spoof server is set up between the receptionist and the database server so that
receptionist believes they are interacting with the real system.

Mitigations All networking equipment must be maintained in a locked room. Engineers accessing
the equipment must be accredited.

All data transfers between the client and server must be encrypted.
Certificate-based client–server communication must be used.

Requirements All communications between the client and the server must use the Secure Socket
Layer (SSL). The https protocol uses certificate-based authentication and encryption.

Mentcare system: Transfer data

Actors Medical receptionist, Patient records system (PRS)

Description A receptionist may transfer data from the Mentcare system to a general patient
record database that is maintained by a health authority. The information transferred
may either be updated personal information (address, phone number, etc.) or a
summary of the patient’s diagnosis and treatment

Data Patient’s personal information, treatment summary

Stimulus User command issued by medical receptionist

Response Confirmation that PRS has been updated

Comments The receptionist must have appropriate security permissions to access the patient
information and the PRS.

	 13.3  ■  Security requirements    387

388    Chapter 13  ■  Security engineering

requirements. Misuse cases can be used as part of the security requirements engi-
neering process, but you also need to consider risks that are associated with system
stakeholders who do not interact directly with the system.

	 13.4	 Secure systems design

It is very difficult to add security to a system after it has been implemented. Therefore,
you need to take security issues into account during the systems design process and
make design choices that enhance the security of a system. In this section, I focus on
two application-independent issues relevant to secure systems design:

1.	 Architectural design—how do architectural design decisions affect the security
of a system?

2.	 Good practice—what is accepted good practice when designing secure systems?

Of course, these are not the only design issues that are important for security.
Every application is different, and security design also has to take into account the
purpose, criticality, and operational environment of the application. For example, if
you are designing a military system, you need to adopt their security classification
model (secret, top secret, etc.) If you are designing a system that maintains personal
information, you may have to take into account data protection legislation that places
restrictions on how data is managed.

Using redundancy and diversity, which is essential for dependability, may mean
that a system can resist and recover from attacks that target specific design or imple-
mentation characteristics. Mechanisms to support a high level of availability may
help the system to recover from denial-of-service attacks, where the aim of an
attacker is to bring down the system and stop it from working properly.

Designing a system to be secure inevitably involves compromises. It is usually
possible to design multiple security measures into a system that will reduce the
chances of a successful attack. However, these security measures may require addi-
tional computation and so affect the overall performance of the system. For example,
you can reduce the chances of confidential information being disclosed by encrypt-
ing that information. However, this means that users of the information have to wait
for it to be decrypted, which may slow down their work.

There are also tensions between security and usability—another emergent system
property. Security measures sometimes require the user to remember and provide
additional information (e.g., multiple passwords). However, sometimes users forget
this information, so the additional security means that they can’t use the system.

System designers have to find a balance between security, performance, and usa-
bility. This depends on the type of system being developed, the expectations of its
users, and its operational environment. For example, in a military system, users are
familiar with high-security systems and so accept and follow processes that require
frequent checks. In a system for stock trading, where speed is essential, interruptions
of operation for security checks would be completely unacceptable.

	 13.4.1	 Design risk assessment

Security risk assessment during requirements engineering identifies a set of high-
level security requirements for a system. However, as the system is designed and
implemented, architectural and technology decisions made during the system design
process influence the security of a system. These decisions generate new design
requirements and may mean that existing requirements have to change.

System design and the assessment of design-related risks are interleaved pro-
cesses (Figure 13.10). Preliminary design decisions are made, and the risks associ-
ated with these decisions are assessed. This assessment may lead to new requirements
to mitigate the risks that have been identified or design changes to reduce these risks.
As the system design evolves and is developed in more detail, the risks are reas-
sessed and the results are fed back to the system designers. The design risk assess-
ment process ends when the design is complete and the remaining risks are acceptable.

When assessing risks during design and implementation, you have more informa-
tion about what needs to be protected, and you also will know something about the
vulnerabilities in the system. Some of these vulnerabilities will be inherent in the
design choices made. For example, an inherent vulnerability in password-based
authentication is that an authorized user reveals their password to an unauthorized
user. So, if password-based authentication is used, the risk assessment process may
suggest new requirements to mitigate the risk. For example, there may be a require-
ment for multifactor authentication where users must authenticate themselves using
some personal knowledge as well as a password.

Denial-of-service attacks

Denial-of-service attacks attempt to bring down a networked system by bombarding it with a huge number of
service requests, usually from hundreds of attacking systems. These place a load on the system for which it was
not designed and they exclude legitimate requests for system service. Consequently, the system may become
unavailable either because it crashes with the heavy load or has to be taken offline by system managers to stop
the flow of requests.

http://software-engineering-book.com/web/denial-of-service/

Design risk
assessment

System
design

Technology
choices

Design assets Design and
requirements

changes

Architectural
design

System
requirements

Figure 13.10  Interleaved
design and risk
assessment

	 13.4  ■  Secure systems design    389

http://software-engineering-book.com/web/denial-of-service

390    Chapter 13  ■  Security engineering

Figure 13.11 is a model of the design risk assessment process. The key difference
between preliminary risk analysis and design risk assessment is that, at the design
stage, you now have information about information representation and distribution
and the database organization for the high-level assets that have to be protected. You
also know about important design decisions such as the software to be reused, infra-
structure controls and protection, and so forth. Based on this information, your
assessment can identify changes to the security requirements and the system design
to provide additional protection for the important system assets.

Two examples from the Mentcare system illustrate how protection requirements
are influenced by decisions on information representation and distribution:

1.	 You may make a design decision to separate personal patient information and
information (design assets) about treatments received, with a key linking these
records. The treatment information is technical and so much less sensitive than
the personal patient information. If the key is protected, then an attacker will
only be able to access routine information, without being able to link this to an
individual patient.

2.	 Assume that, at the beginning of a session, a design decision is made to copy
patient records to a local client system. This allows work to continue if the
server is unavailable. It makes it possible for a healthcare worker to access
patient records from a laptop, even if no network connection is available.
However, you now have two sets of records to protect and the client copies are
subject to additional risks, such as theft of the laptop computer. You therefore
have to think about what controls should be used to reduce risk. You may there-
fore include a requirement that client records held on laptops or other personal
computers may have to be encrypted.

Design assets

Asset value
assessment

Threat
identification

Attack
assessment

Exposure
assessment

Control
identification

Technology and
 architecture choices

Available
controls

Design and
requirements

changes

Figure 13.11  Design
risk assessment

To illustrate how decisions on development technologies influence security,
assume that the health care provider has decided to build a Mentcare system using an
off-the-shelf information system for maintaining patient records. This system has to
be configured for each type of clinic in which it is used. This decision has been made
because it appears to offer the most extensive functionality for the lowest develop-
ment cost and fastest deployment time.

When you develop an application by reusing an existing system, you have to
accept the design decisions made by the developers of that system. Let us assume
that some of these design decisions are:

1.	 System users are authenticated using a login name/password combination. No
other authentication method is supported.

2.	 The system architecture is client–server, with clients accessing data through a
standard web browser on a client computer.

3.	 Information is presented to users as an editable web form. They can change
information in place and upload the revised information to the server.

For a generic system, these design decisions are perfectly acceptable, but design
risk assessment shows that they have associated vulnerabilities. Examples of these
possible vulnerabilities are shown in Figure 13.12.

Once vulnerabilities have been identified, you then have to decide what steps you
can take to reduce the associated risks. This will often involve making decisions

Login/password
authentication

Users set
guessable
passwords

Authorized users reveal
their passwords to
unauthorized users

Technology choice Vulnerabilities

Client/server
architecture using

web browser

Server subject to
denial-of-service

attack

Confidential information
may be left in browser

cache

Browser security
loopholes lead to

unauthorized access

Use of editable
web forms

Fine-grain logging
of changes is
impossible

Authorization can’t be
varied according to user’s

role
Figure 13.12 
Vulnerabilities
associated with
technology choices

	 13.4  ■  Secure systems design    391

392    Chapter 13  ■  Security engineering

about additional system security requirements or the operational process of using the
system. Examples of these requirements might be:

1.	 A password checker program shall be made available and shall be run daily to
check all user passwords. User passwords that appear in the system dictionary
shall be identified, and users with weak passwords shall be reported to system
administrators.

2.	 Access to the system shall only be allowed to client computers that have been
approved and registered with the system administrators.

3.	 Only one approved web browser shall be installed on client computers.

As an off-the-shelf system is used, it isn’t possible to include a password checker
in the application system itself, so a separate system must be used. Password check-
ers analyze the strength of user passwords when they are set up and notify users if
they have chosen weak passwords. Therefore, vulnerable passwords can be identi-
fied reasonably quickly after they have been set up, and action can then be taken to
ensure that users change their password.

The second and third requirements mean that all users will always access the sys-
tem through the same browser. You can decide what is the most secure browser
when the system is deployed and install that on all client computers. Security updates
are simplified because there is no need to update different browsers when security
vulnerabilities are discovered and fixed.

The process model shown in Figure 13.10 assumes a design process where the
design is developed to a fairly detailed level before implementation begins. This is
not the case for agile processes where the design and the implementation are devel-
oped together, with the code refactored as the design is developed. Frequent delivery
of system increments does not allow time for a detailed risk assessment, even if
information on assets and technology choices is available.

The issues surrounding security and agile development have been widely dis-
cussed (Lane 2010; Schoenfield 2013). So far, the issue has not really been
resolved—some people think that a fundamental conflict exists between security
and agile development, and others believe that this conflict can be resolved using
security-focused stories (Safecode 2012). This remains an outstanding problem
for developers of agile methods. Meanwhile, many security-conscious companies
refuse to use agile methods because they conflict with their security and risk
analysis policies.

	 13.4.2	 Architectural design

Software architecture design decisions can have profound effects on the emergent
properties of a software system. If an inappropriate architecture is used, it may be
very difficult to maintain the confidentiality and integrity of information in the sys-
tem or to guarantee a required level of system availability.

In designing a system architecture that maintains security, you need to consider
two fundamental issues:

1.	 Protection—how should the system be organized so that critical assets can be
protected against external attack?

2.	 Distribution—how should system assets be distributed so that the consequences
of a successful attack are minimized?

These issues are potentially conflicting. If you put all your assets in one place,
then you can build layers of protection around them. As you only have to build a
single protection system, you may be able to afford a strong system with several pro-
tection layers. However, if that protection fails, then all your assets are compromised.
Adding several layers of protection also affects the usability of a system, so it may
mean that it is more difficult to meet system usability and performance requirements.

On the other hand, if you distribute assets, they are more expensive to protect
because protection systems have to be implemented for each distributed asset.
Typically, then, you cannot afford to implement as many protection layers. The
chances are greater that the protection will be breached. However, if this happens,
you don’t suffer a total loss. It may be possible to duplicate and distribute informa-
tion assets so that if one copy is corrupted or inaccessible, then the other copy can be
used. However, if the information is confidential, keeping additional copies increases
the risk that an intruder will gain access to this information.

For the Mentcare system, a client–server architecture with a shared central data-
base is used. To provide protection, the system has a layered architecture with the

Platform-level protection

Application-level protection

Record-level protection

Patient records

System
authentication

System
authorization

File integrity
management

Database
login

Database
authorization

Transaction
management

Database
recovery

Record access
authorization

Record
encryption

Record integrity
management

Figure 13.13  A layered
protection architecture

	 13.4  ■  Secure systems design    393

394    Chapter 13  ■  Security engineering

critical protected assets at the lowest level in the system. Figure 13.13 illustrates this
multilevel system architecture in which the critical assets to be protected are the
records of individual patients.

To access and modify patient records, an attacker has to penetrate three system layers:

1.	 Platform-level protection. The top level controls access to the platform on
which the patient record system runs. This usually involves a user signing-on to
a particular computer. The platform will also normally include support for
maintaining the integrity of files on the system, backups, and so on.

2.	 Application-level protection. The next protection level is built into the applica-
tion itself. It involves a user accessing the application, being authenticated, and
getting authorization to take actions such as viewing or modifying data.
Application-specific integrity management support may be available.

3.	 Record-level protection. This level is invoked when access to specific records is
required, and involves checking that a user is authorized to carry out the
requested operations on that record. Protection at this level might also involve
encryption to ensure that records cannot be browsed using a file browser.
Integrity checking using, for example, cryptographic checksums can detect
changes that have been made outside the normal record update mechanisms.

The number of protection layers that you need in any particular application
depends on the criticality of the data. Not all applications need protection at the
record level, and, therefore, coarser-grain access control is more commonly used. To
achieve security, you should not allow the same user credentials to be used at each
level. Ideally, if you have a password-based system, then the application password
should be different from both the system password and the record-level password.
However, multiple passwords are difficult for users to remember, and they find
repeated requests to authenticate themselves irritating. Therefore, you often have to
compromise on security in favor of system usability.

If protection of data is a critical requirement, then a centralized client–server
architecture is usually the most effective security architecture. The server is respon-
sible for protecting sensitive data. However, if the protection is compromised, then
the losses associated with an attack are high, as all data may be lost or damaged.
Recovery costs may also be high (e.g., all user credentials may have to be reissued).
Centralized systems are also more vulnerable to denial-of-service attacks, which
overload the server and make it impossible for anyone to access the system database.

If the consequences of a server breach are high, you may decide to use an alternative
distributed architecture for the application. In this situation, the system’s assets are dis-
tributed across a number of different platforms, with separate protection mechanisms
used for each of these platforms. An attack on one node might mean that some assets
are unavailable, but it would still be possible to provide some system services. Data can
be replicated across the nodes in the system so that recovery from attacks is simplified.

Figure 13.14 illustrates the architecture of a banking system for trading in stocks
and funds on the New York, London, Frankfurt, and Hong Kong markets. The system

is distributed so that data about each market is maintained separately. Assets required
to support the critical activity of equity trading (user accounts and prices) are repli-
cated and available on all nodes. If a node of the system is attacked and becomes
unavailable, the critical activity of equity trading can be transferred to another coun-
try and so can still be available to users.

I have already discussed the problem of finding a balance between security and
system performance. A problem of secure system design is that in many cases, the
architectural style that is best for the security requirements may not be the best one
for meeting the performance requirements. For example, say an application has an
absolute requirement to maintain the confidentiality of a large database and another
requirement for very fast access to that data. A high-level of protection suggests that
layers of protection are required, which means that there must be communications
between the system layers. This has an inevitable performance overhead and so will
slow down access to the data.

If an alternative architecture is used, then implementing protection and guaran-
teeing confidentiality may be more difficult and expensive. In such a situation, you
have to discuss the inherent conflicts with the customer who is paying for the system
and agree on how these conflicts are to be resolved.

US equity dataUS trading
history

International
equity prices

US funds data

US user accounts International
user accounts

New York trading system

Authentication and authorization

UK equity dataUK trading
history

International
equity prices

UK funds data

UK user accounts International
user accounts

London trading system

Authentication and authorization

Euro. equity dataEuro. trading
history

International
equity prices

Euro. funds data

European user
accounts

International
user accounts

Frankfurt trading system

Authentication and authorization

Asian equity dataHK trading
history

International
equity prices

Asian funds data

HK user accounts International
user accounts

Hong Kong trading system

Authentication and authorization

Figure 13.14 
Distributed assets in an
equity trading system

	 13.4  ■  Secure systems design    395

396    Chapter 13  ■  Security engineering

	 13.4.3	 Design guidelines

There are no easy ways to ensure system security. Different types of systems require
different technical measures to achieve a level of security that is acceptable to the sys-
tem owner. The attitudes and requirements of different groups of users profoundly affect
what is and is not acceptable. For example, in a bank, users are likely to accept a higher
level of security, and hence more intrusive security procedures than, say, in a university.

However, some general guidelines have wide applicability when designing sys-
tem security solutions. These guidelines encapsulate good design practice for secure
systems engineering. General design guidelines for security, such as those discussed,
below, have two principal uses:

1.	 They help raise awareness of security issues in a software engineering team.
Software engineers often focus on the short-term goal of getting the software
working and delivered to customers. It is easy for them to overlook security
issues. Knowledge of these guidelines can mean that security issues are consid-
ered when software design decisions are made.

2.	 They can be used as a review checklist that can be used in the system validation
process. From the high-level guidelines discussed here, more specific questions
can be derived that explore how security has been engineered into a system.

Security guidelines are sometimes very general principles such as “Secure the
weakest link in a system,” “Keep it simple,” and “Avoid security through obscurity.”
I think these general guidelines are too vague to be of real use in the design process.
Consequently, I have focused here on more specific design guidelines. The 10 design
guidelines, summarized in Figure 13.15, have been taken from different sources
(Schneier 2000; Viega and McGraw 2001; Wheeler 2004).

		 Guideline 1: Base security decisions on an explicit security policy

An organizational security policy is a high-level statement that sets out fundamental secu-
rity conditions for an organization. It defines the “what” of security rather than the “how.”
so the policy should not define the mechanisms to be used to provide and enforce security.
In principle, all aspects of the security policy should be reflected in the system require-
ments. In practice, especially if agile development is used, this is unlikely to happen.

Designers should use the security policy as a framework for making and evaluat-
ing design decisions. For example, say you are designing an access control system
for the Mentcare system. The hospital security policy may state that only accredited
clinical staff may modify electronic patient records. This leads to requirements to
check the accreditation of anyone attempting to modify the system and to reject
modifications from unaccredited people.

The problem that you may face is that many organizations do not have an explicit
systems security policy. Over time, changes may have been made to systems in
response to identified problems, but with no overarching policy document to guide
the evolution of a system. In such situations, you need to work out and document the
policy from examples and confirm it with managers in the company.

		 Guideline 2: Use defense in depth

In any critical system, it is good design practice to try to avoid a single point of fail-
ure. That is, a single failure in part of the system should not result in an overall sys-
tems failure. In security terms, this means that you should not rely on a single
mechanism to ensure security; rather, you should employ several different tech-
niques. This concept is sometimes called “defense in depth.”

An example of defense in depth is multifactor authentication. For example, if you
use a password to authenticate users to a system, you may also include a challenge/
response authentication mechanism where users have to pre-register questions and
answers with the system. After they have input their login credentials, they must
then answer questions correctly before being allowed access.

		 Guideline 3: Fail securely

System failures are inevitable in all systems, and, in the same way that safety-critical
systems should always fail-safe; security-critical systems should always “fail-secure.”
When the system fails, you should not use fallback procedures that are less secure
than the system itself. Nor should system failure mean that an attacker can access
data that would not normally be allowed.

For example, in the Mentcare system, I suggested a requirement that patient data
should be downloaded to a system client at the beginning of a clinic session. This
speeds up access and means that access is possible if the server is unavailable.
Normally, the server deletes this data at the end of the clinic session. However, if the
server has failed, then it is possible that the information on the client will be main-
tained. A fail-secure approach in those circumstances is to encrypt all patient data
stored on the client. This means that an unauthorized user cannot read the data.

		 Guideline 4: Balance security and usability

The demands of security and usability are often contradictory. To make a system
secure, you have to introduce checks that users are authorized to use the system and

Figure 13.15  Design
guidelines for secure
systems engineering

Design guidelines for security

    1 Base security decisions on an explicit security policy

    2 Use defense in depth

    3 Fail securely

    4 Balance security and usability

    5 Log user actions

    6 Use redundancy and diversity to reduce risk

    7 Specify the format of system inputs

    8 Compartmentalize your assets

    9 Design for deployment

10 Design for recovery

	 13.4  ■  Secure systems design    397

398    Chapter 13  ■  Security engineering

that they are acting in accordance with security policies. All of these inevitably make
demands on users—they may have to remember login names and passwords, only
use the system from certain computers, and so on. These mean that it takes users
more time to get started with the system and use it effectively. As you add security
features to a system, it usually becomes more difficult to use. I recommend Cranor
and Garfinkel’s book (Cranor and Garfinkel 2005), which discusses a wide range of
issues in the general area of security and usability.

There comes a point when it is counterproductive to keep adding on new security
features at the expense of usability. For example, if you require users to input multi-
ple passwords or to change their passwords to impossible to remember character
strings at frequent intervals, they will simply write down these passwords. An
attacker (especially an insider) may then be able to find the passwords that have been
written down and gain access to the system.

		 Guideline 5: Log user actions

If it is practically possible to do so, you should always maintain a log of user actions.
This log should, at least, record who did what, the assets used and the time and date of
the action. If you maintain this as a list of executable commands, you can replay the log
to recover from failures. You also need tools that allow you to analyze the log and detect
potentially anomalous actions. These tools can scan the log and find anomalous actions,
and thus help detect attacks and trace how the attacker gained access to the system.

Apart from helping recover from failure, a log of user actions is useful because it
acts as a deterrent to insider attacks. If people know that their actions are being
logged, then they are less likely to do unauthorized things. This is most effective for
casual attacks, such as a nurse looking up patient records of neighbors, or for detect-
ing attacks where legitimate user credentials have been stolen through social engi-
neering. Of course, this approach is not foolproof, as technically skilled insiders may
also be able to access and change the log.

		 Guideline 6: Use redundancy and diversity to reduce risk

Redundancy means that you maintain more than one version of software or data in a
system. Diversity, when applied to software, means that the different versions should
not rely on the same platform or be implemented using the same technologies.
Therefore, platform or technology vulnerabilities will not affect all versions and so
will lead to a common failure.

I have already discussed examples of redundancy—maintaining patient informa-
tion on both the server and the client, first in the Mentcare system and then in the
distributed equity trading system shown in Figure 13.14. In the patient records sys-
tem, you could use diverse operating systems on the client and the server (e.g., Linux
on the server, Windows on the client). This ensures that an attack based on an oper-
ating system vulnerability will not affect both the server and the client. Of course,
running multiple operating systems leads to higher systems management costs. You
have to trade off security benefits against this increased cost.

		 Guideline 7: Specify the format of system inputs

A common attack on a system involves providing the system with unexpected inputs
that cause it to behave in an unanticipated way. These inputs may simply cause a sys-
tem crash, resulting in a loss of service, or the inputs could be made up of malicious
code that is executed by the system. Buffer overflow vulnerabilities, first demonstrated
in the Internet worm (Spafford 1989) and commonly used by attackers, may be trig-
gered using long input strings. So-called SQL poisoning, where a malicious user inputs
an SQL fragment that is interpreted by a server, is another fairly common attack.

You can avoid many of these problems if you specify the format and structure of
the system inputs that are expected. This specification should be based on your
knowledge of the expected system inputs. For example, if a surname is to be input,
you might specify that all characters must be alphabetic with no numbers or punc-
tuation (apart from a hyphen) allowed. You might also limit the length of the name.
For example, no one has a family name with more than 40 characters, and no
addresses are more than 100 characters long. If a numeric value is expected, no
alphabetic characters should be allowed. This information is then used in input
checks when the system is implemented.

		 Guideline 8: Compartmentalize your assets

Compartmentalizing means that you should not provide users with access to all
information in a system. Based on a general “need to know” security principle, you
should organize the information in a system into compartments. Users should only
have access to the information that they need for their work, rather than to all of the
information in a system. This means that the effects of an attack that compromises
an individual user account may be contained. Some information may be lost or dam-
aged, but it is unlikely that all of the information in the system will be affected.

For example, the Mentcare system could be designed so that clinic staff will nor-
mally only have access to the records of patients who have an appointment at their
clinic. They should not normally have access to all patient records in the system. Not
only does this limit the potential loss from insider attacks, but it also means that if an
intruder steals their credentials, then they cannot damage all patient records.

Having said this, you also may have to have mechanisms in the system to grant
unexpected access—say to a patient who is seriously ill and requires urgent treat-
ment without an appointment. In those circumstances, you might use some alterna-
tive secure mechanism to override the compartmentalization in the system. In such
situations, where security is relaxed to maintain system availability, it is essential
that you use a logging mechanism to record system usage. You can then check the
logs to trace any unauthorized use.

		 Guideline 9: Design for deployment

Many security problems arise because the system is not configured correctly when it
is deployed in its operational environment. Deployment means installing the software

	 13.4  ■  Secure systems design    399

400    Chapter 13  ■  Security engineering

on the computers where it will execute and setting software parameters to reflect the
execution environment and the preferences of the system user. Mistakes such as
forgetting to turn off debugging facilities or forgetting to change the default admin-
istration password can introduce vulnerabilities into a system.

Good management practice can avoid many security problems that arise from
configuration and deployment mistakes. However, software designers have the
responsibility to “design for deployment.” You should always provide support for
deployment that reduces the chances of users and system administrators making
mistakes when configuring the software.

I recommend four ways to incorporate deployment support in a system:

1.	 Include support for viewing and analyzing configurations You should always
include facilities in a system that allow administrators or permitted users to
examine the current configuration of the system.

2.	 Minimize default privileges You should design software so that the default con-
figuration of a system provides minimum essential privileges.

3.	 Localize configuration settings When designing system configuration support,
you should ensure that everything in a configuration that affects the same part of
a system is set up in the same place.

4.	 Provide easy ways to fix security vulnerabilities You should include straightfor-
ward mechanisms for updating the system to repair security vulnerabilities that
have been discovered.

Deployment issues are less of a problem than they used to be as more and more
software does not require client installation. Rather, the software runs as a service
and is accessed through a web browser. However, server software is still vulnerable
to deployment errors and omissions, and some types of system require dedicated
software running on the user’s computer.

		 Guideline 10: Design for recovery

Irrespective of how much effort you put into maintaining systems security, you
should always design your system with the assumption that a security failure could
occur. Therefore, you should think about how to recover from possible failures and
restore the system to a secure operational state. For example, you may include a
backup authentication system in case your password authentication is compromised.

For example, say an unauthorized person from outside the clinic gains access to
the Mentcare system and you don’t know how that person obtained a valid login/
password combination. You need to re-initialize the authentication system and not
just change the credentials used by the intruder. This is essential because the intruder
may also have gained access to other user passwords. You need, therefore, to ensure
that all authorized users change their passwords. You also must ensure that the unau-
thorized person does not have access to the password-changing mechanism.

You therefore have to design your system to deny access to everyone until they
have changed their password and to email all users asking them to make the
change. You need an alternative mechanism to authenticate real users for password
change, assuming that their chosen passwords may not be secure. One way of
doing this is to use a challenge/response mechanism, where users have to answer
questions for which they have pre-registered answers. This is only invoked when
passwords are changed, allowing for recovery from the attack with relatively little
user disruption.

Designing for recoverability is an essential element of building resilience into
systems. I cover this topic in more detail in Chapter 14.

	 13.4.4	 Secure systems programming

Secure system design means designing security into an application system. However,
as well as focusing on security at the design level, it is also important to consider security
when programming a software system. Many successful attacks on software rely on
program vulnerabilities that were introduced when the program was developed.

The first widely known attack on Internet-based systems happened in 1988 when
a worm was introduced into Unix systems across the network (Spafford 1989). This
took advantage of a well-known programming vulnerability. If systems are pro-
grammed in C, there is no automatic array bound checking. An attacker can include
a long string with program commands as an input, and this overwrites the program
stack and can cause control to be transferred to malicious code. This vulnerability
has been exploited in many other systems programmed in C or C++ since then.

This example illustrates two important aspects of secure systems programming:

1.	 Vulnerabilities are often language-specific. Array bound checking is automatic
in languages such as Java, so this is not a vulnerability that can be exploited in
Java programs. However, millions of programs are written in C and C++ as
these allow for the development of more efficient software. Thus. simply avoid-
ing the use of these languages is not a realistic option.

2.	 Security vulnerabilities are closely related to program reliability. The above
example caused the program concerned to crash, so actions taken to improve
program reliability can also improve system security.

In Chapter 11, I introduced programming guidelines for dependable system pro-
gramming. These are shown in Figure 13.16. These guidelines also help improve
the security of a program as attackers focus on program vulnerabilities to gain access
to a system. For example, an SQL poisoning attack is based on the attacker filling in
a form with SQL commands rather than the text expected by the system. These can
corrupt the database or release confidential information. You can completely avoid
this problem if you implement input checks (Guideline 2) based on the expected
format and structure of the inputs.

	 13.4  ■  Secure systems design    401

402    Chapter 13  ■  Security engineering

	 13.5	 Security testing and assurance

The assessment of system security is increasingly important so that we can be confi-
dent that the systems we use are secure. The verification and validation processes for
web-based systems should therefore focus on security assessment, where the ability of
the system to resist different types of attack is tested. However, as Anderson explains
(Anderson 2008), this type of security assessment is very difficult to carry out.
Consequently, systems are often deployed with security loopholes. Attackers use these
vulnerabilities to gain access to the system or to cause damage to the system or its data.

Fundamentally, security testing is difficult for two reasons:

1.	 Security requirements, like some safety requirements, are “shall not” require-
ments. That is, they specify what should not happen rather than system func-
tionality or required behavior. It is not usually possible to define this unwanted
behavior as simple constraints to be checked by the system.

	 If resources are available, you can demonstrate, in principle at least, that a sys-
tem meets its functional requirements. However, it is impossible to prove that a
system does not do something. Irrespective of the amount of testing, security
vulnerabilities may remain in a system after it has been deployed.

	 You may, of course, generate functional requirements that are designed to guard
the system against some known types of attack. However, you cannot derive
requirements for unknown or unanticipated types of attack. Even in systems that
have been in use for many years, an ingenious attacker can discover a new
attack and can penetrate what was thought to be a secure system.

2.	 The people attacking a system are intelligent and are actively looking for vul-
nerabilities that they can exploit. They are willing to experiment with the system
and to try things that are far outside normal activity and system use. For exam-
ple, in a surname field they may enter 1000 characters with a mixture of letters,
punctuation, and numbers simply to see how the system responds.

	 Once they find a vulnerability, they publicize it and so increase the number of
possible attackers. Internet forums have been set up to exchange information
about system vulnerabilities. There is also a thriving market in malware where

Figure 13.16 
Dependable
programming
guidelines

Dependable programming guidelines

1.	 Limit the visibility of information in a program.
2.	 Check all inputs for validity.
3.	 Provide a handler for all exceptions.
4.	 Minimize the use of error-prone constructs.
5.	 Provide restart capabilities.
6.	 Check array bounds.
7.	 Include timeouts when calling external components.
8.	 Name all constants that represent real-world values.

attackers can get access to kits that help them easily develop malware such as
worms and keystroke loggers.

Attackers may try to discover the assumptions made by system developers and
then challenge these assumptions to see what happens. They are in a position to use
and explore a system over a period of time and analyze it using software tools to
discover vulnerabilities that they may be able to exploit. They may, in fact, have
more time to spend on looking for vulnerabilities than system test engineers, as test-
ers must also focus on testing the system.

You may use a combination of testing, tool-based analysis, and formal verifica-
tion to check and analyze the security of an application system:

1.	 Experience-based testing In this case, the system is analyzed against types of
attack that are known to the validation team. This may involve developing test
cases or examining the source code of a system. For example, to check that the
system is not susceptible to the well-known SQL poisoning attack, you might
test the system using inputs that include SQL commands. To check that buffer
overflow errors will not occur, you can examine all input buffers to see if the
program is checking that assignments to buffer elements are within bounds.

	 Checklists of known security problems may be created to assist with the process.
Figure 13.17 gives some examples of questions that might be used to drive
experience-based testing. Checks on whether design and programming
guidelines for security have been followed may also be included in a security
problem checklist.

2.	 Penetration testing This is a form of experience-based testing where it is possible
to draw on experience from outside the development team to test an application
system. The penetration testing teams are given the objective of breaching the
system security. They simulate attacks on the system and use their ingenuity to
discover new ways to compromise the system security. Penetration testing team

Figure 13.17  Examples
of entries in a security
checklist

Security checklist

1.  � Do all files that are created in the application have appropriate access permissions? The wrong access permis-
sions may lead to these files being accessed by unauthorized users.

2.  � Does the system automatically terminate user sessions after a period of inactivity? Sessions that are left
active may allow unauthorized access through an unattended computer.

3. � � If the system is written in a programming language without array bound checking, are there situations
where buffer overflow may be exploited? Buffer overflow may allow attackers to send code strings to the
system and then execute them.

4. � � If passwords are set, does the system check that passwords are “strong”? Strong passwords consist of
mixed letters, numbers, and punctuation, and are not normal dictionary entries. They are more difficult to
break than simple passwords.

5. � � Are inputs from the system’s environment always checked against an input specification? Incorrect process-
ing of badly formed inputs is a common cause of security vulnerabilities.

	 13.5  ■  Security testing and assurance    403

404    Chapter 13  ■  Security engineering

members should have previous experience with security testing and finding
security weaknesses in systems.

3.	 Tool-based analysis In this approach, security tools such as password checkers
are used to analyze the system. Password checkers detect insecure passwords
such as common names or strings of consecutive letters. This approach is really
an extension of experience-based validation, where experience of security flaws
is embodied in the tools used. Static analysis is, of course, another type of tool-
based analysis, which has become increasingly used.

	 Tool-based static analysis (Chapter 12) is a particularly useful approach to secu-
rity checking. A static analysis of a program can quickly guide the testing team
to areas of a program that may include errors and vulnerabilities. Anomalies
revealed in the static analysis can be directly fixed or can help identify tests that
need to be done to reveal whether or not these anomalies actually represent a
risk to the system. Microsoft uses static analysis routinely to check its software
for possible security vulnerabilities (Jenney 2013). Hewlett-Packard offers a
tool called Fortify (Hewlett-Packard 2012) specifically designed for checking
Java programs for security vulnerabilities.

4.	 Formal verification I have discussed the use of formal program verification in
Chapters 10 and 12. Essentially, this involves making formal, mathematical
arguments that demonstrate that a program conforms to its specification. Hall
and Chapman (Hall and Chapman 2002) demonstrated the feasibility of proving
that a system met its formal security requirements more than 10 years ago, and
there have been a number of other experiments since then. However, as in other
areas, formal verification for security is not widely used. It requires specialist
expertise and is unlikely to be as cost-effective as static analysis.

Security testing takes a long time, and, usually, the time available to the testing
team is limited. This means that you should adopt a risk-based approach to security
testing and focus on what you think are the most significant risks faced by the sys-
tem. If you have an analysis of the security risks to the system, these can be used to
drive the testing process. As well as testing the system against the security require-
ments derived from these risks, the test team should also try to break the system by
adopting alternative approaches that threaten the system assets.

K e y P o i n t s

■	 Security engineering focuses on how to develop and maintain software systems that can resist
malicious attacks intended to damage a computer-based system or its data.

■	 Security threats can be threats to the confidentiality, integrity, or availability of a system or its data.

■	 Security risk management involves assessing the losses that might ensue from attacks on a
system, and deriving security requirements that are aimed at eliminating or reducing
these losses.

■	 To specify security requirements, you should identify the assets that are to be protected and
define how security techniques and technology should be used to protect these assets.

■	 Key issues when designing a secure systems architecture include organizing the system struc-
ture to protect key assets and distributing the system assets to minimize the losses from a suc-
cessful attack.

■	 Security design guidelines sensitize system designers to security issues that they may not have
considered. They provide a basis for creating security review checklists.

■	 Security validation is difficult because security requirements state what should not happen in a
system, rather than what should. Furthermore, system attackers are intelligent and may have
more time to probe for weaknesses than is available for security testing.

F u r t h e r R e a d i n g

Security Engineering: A Guide to Building Dependable Distributed Systems, 2nd ed. This is a thor-
ough and comprehensive discussion of the problems of building secure systems. The focus is on
systems rather than software engineering, with extensive coverage of hardware and networking,
with excellent examples drawn from real system failures. (R. Anderson, John Wiley & Sons, 2008)
http://www.cl.cam.ac.uk/~rja14/book.html

24 Deadly Sins of Software Security: Programming Flaws and How to Fix Them. I think this is one of
the best practical books on secure systems programming. The authors discuss the most common
programming vulnerabilities and describe how they can be avoided in practice. (M. Howard, D. LeB-
lanc, and J. Viega, McGraw-Hill, 2009).

Computer Security: Principles and Practice. This is a good general text on computer security issues.
It covers security technology, trusted systems, security management, and cryptography. (W. Stallings
and L. Brown, Addison-Wesley, 2012).

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/security-and-resilience/

	 Chapter 13  ■  Website    405

http://www.cl.cam.ac.uk/~rja14/book.html
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/security-and-resilience

E x e r c i s e s

  13.1.     �Describe the security dimensions and security levels that have to be considered in secure
systems engineering.

  13.2.     �For the Mentcare system, suggest an example of an asset, an exposure, a vulnerability, an
attack, a threat, and a control, in addition to those discussed in this chapter.

  13.3.     �Explain why security is considered a more challenging problem than safety in a system.

  13.4.     �Extend the table in Figure 13.7 to identify two further threats to the Mentcare system, along
with associated controls. Use these as a basis for generating software security requirements
that implement the proposed controls.

  13.5.     �Explain, using an analogy drawn from a non-software engineering context, why a layered
approach to asset protection should be used.

  13.6.     �Explain why it is important to log user actions in the development of secure systems.

  13.7.     �For the equity trading system discussed in Section 13.4.2, whose architecture is shown in
Figure 13.14, suggest two further plausible attacks on the system and propose possible strat-
egies that could counter these attacks.

  13.8.     �Explain why it is important when writing secure systems to validate all user inputs to check
that these have the expected format.

  13.9.      �Suggest how you would go about validating a password protection system for an application
that you have developed. Explain the function of any tools that you think may be useful.

13.10.      �The Mentcare system has to be secure against attacks that might reveal confidential patient
information. Suggest three possible attacks against this system that might occur. Using this
information, extend the checklist in Figure 13.17 to guide testers of the Mentcare system.

R e f e r e n c e s

Anderson, R. 2008. Security Engineering, 2nd ed. Chichester, UK: John Wiley & Sons.

Cranor, L. and S. Garfinkel. 2005. Designing Secure Systems That People Can Use. Sebastopol, CA:
O’Reilly Media Inc.

Firesmith, D. G. 2003. “Engineering Security Requirements.” Journal of Object Technology 2 (1):
53–68. http://www.jot.fm/issues/issue_2003_01/column6

Hall, A., and R. Chapman. 2002. “Correctness by Construction: Developing a Commercially Secure
System.” IEEE Software 19 (1): 18–25. doi:10.1109/52.976937.

Hewlett-Packard. 2012. “Securing Your Enterprise Software: Hp Fortify Code Analyzer.” http://
h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA4-2455ENW&cc=us&lc=en

406    Chapter 13  ■  Security engineering

http://www.jot.fm/issues/issue_2003_01/column6
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA4-2455ENW&cc=us&lc=en
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA4-2455ENW&cc=us&lc=en

Jenney, P. 2013. “Static Analysis Strategies: Success with Code Scanning.” http://msdn.microsoft
.com/en-us/security/gg615593.aspx

Lane, A. 2010. “Agile Development and Security.” https://securosis.com/blog/agile-development-
and-security

Pfleeger, C. P., and S. L. Pfleeger. 2007. Security in Computing, 4th ed. Boston: Addison-Wesley.

Safecode. 2012. “Practical Security Stories and Security Tasks for Agile Development Environ-
ments.” http://www.safecode.org/publications/SAFECode_Agile_Dev_Security0712.pdf

Schneier, B. 1999. “Attack Trees.” Dr Dobbs Journal 24 (12): 1–9. https://www.schneier.com/paper-
attacktrees-ddj-ft.html

	   . 2000. Secrets and Lies: Digital Security in a Networked World. New York: John Wiley & Sons.

Schoenfield, B. 2013. “Agile and Security: Enemies for Life?” http://brookschoenfield.com/?p=151

Sindre, G., and A. L. Opdahl. 2005. “Eliciting Security Requirements through Misuse Cases.”
Requirements Engineering 10 (1): 34–44. doi:10.1007/s00766-004-0194-4.

Spafford, E. 1989. “The Internet Worm: Crisis and Aftermath.” Comm ACM 32 (6): 678–687.
doi:10.1145/63526.63527.

Stallings, W., and L. Brown. 2012. Computer Security: Principles, d Practice. (2nd ed.) Boston:
Addison-Wesley.

Viega, J., and G. McGraw. 2001. Building Secure Software. Boston: Addison-Wesley.

Wheeler, D. A. 2004. Secure Programming for Linux and Unix. Self-published. http://www.dwheeler
.com/secure-programs/

	 Chapter 13  ■  References    407

http://msdn.microsoft..com/en-us/security/gg615593.aspx
https://securosis.com/blog/agile-development-and-security
http://www.safecode.org/publications/SAFECode_Agile_Dev_Security0712.pdf
https://www.schneier.com/paper-attacktrees-ddj-ft.html
http://brookschoenfield.com/?p=151
http://www.dwheeler..com/secure-programs
http://msdn.microsoft..com/en-us/security/gg615593.aspx
https://securosis.com/blog/agile-development-and-security
https://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www.dwheeler..com/secure-programs

Contents
14.1	 Cybersecurity

14.2	 Sociotechnical resilience

14.3	 Resilient systems design

Objectives
The objective of this chapter is to introduce the idea of resilience
engineering where systems are designed to withstand adverse
external events such as operator errors and cyberattacks. When you
have read this chapter, you will:

■	 understand the differences between resilience, reliability, and
security and why resilience is important for networked systems;

■	 be aware of the fundamental issues in building resilient systems,
namely, recognition of problems, resistance to failures and
attacks, recovery of critical services, and system reinstatement;

■	 understand why resilience is a sociotechnical rather than a
technical issue and the role of system operators and managers in
providing resilience;

■	 have been introduced to a system design method that supports
resilience.

14
Resilience engineering

	 Chapter 14  ■  Resilience engineering   409

In April 1970, the Apollo 13 manned mission to the moon suffered a catastrophic
failure. An oxygen tank exploded in space, resulting in a serious loss of atmospheric
oxygen and oxygen for the fuel cells that powered the spacecraft. The situation was
life threatening, with no possibility of rescue. There were no contingency plans for
this situation. However, by using equipment in unintended ways and by adapting
standard procedures, the combined efforts of the spacecraft crew and ground staff
worked around the problems. The spacecraft was brought back to earth safely, and
all the crew survived. The overall system (people, equipment, and processes) was
resilient. It adapted to cope with and recover from the failure.

I introduced the idea of resilience in Chapter 10, as one of the fundamental
attributes of system dependability. I defined resilience in Chapter 10 as:

The resilience of a system is a judgment of how well that system can maintain
the continuity of its critical services in the presence of disruptive events, such
as equipment failure and cyberattacks.

This is not a “standard” definition of resilience—different authors such as Laprie
(Laprie 2008) and Hollnagel (Hollnagel 2006) propose general definitions based on
the ability of a system to withstand change. That is, a resilient system is one that can
operate successfully when some of the fundamental assumptions made by the system
designers no longer hold.

For example, an initial design assumption may be that users will make mistakes
but will not deliberately seek out system vulnerabilities to be exploited. If the system
is used in an environment where it may be subject to cyberattacks, this is no longer
true. A resilient system can cope with the environmental change and can continue to
operate successfully.

While these definitions are more general, my definition of resilience is closer to
how the term is now used in practice by governments and industry. It embeds three
essential ideas:

1.	 The idea that some of the services offered by a system are critical services
whose failure could have serious human, social, or economic effects.

2.	 The idea that some events are disruptive and can affect the ability of a system to
deliver its critical services.

3.	 The idea that resilience is a judgment—there are no resilience metrics, and
resilience cannot be measured. The resilience of a system can only be assessed
by experts, who can examine the system and its operational processes.

Fundamental work on system resilience started in the safety-critical systems
community, where the aim was to understand what factors led to accidents being avoided
and survived. However, the increasing number of cyberattacks on networked systems has
meant that resilience is now often seen as a security issue. It is essential to build systems
that can withstand malicious cyberattacks and continue to deliver services to their users.

410   Chapter 14  ■  Resilience engineering

Obviously, resilience engineering is closely related to reliability and security
engineering. The aim of reliability engineering is to ensure that systems do not fail.
A system failure is an externally observable event, which is often a consequence of
a fault in the system. Therefore, techniques such as fault avoidance and fault toler-
ance, as discussed in Chapter 11, have been developed to reduce the number of sys-
tem faults and to trap faults before they lead to system failure.

In spite of our best efforts, faults will always be present in a large, complex sys-
tem, and they may lead to system failure. Delivery schedules are short, and testing
budgets are limited. Development teams are working under pressure, and it is practi-
cally impossible to detect all of the faults and security vulnerabilities in a software
system. We are building systems that are so complex (see Chapter 19) that we cannot
possibly understand all of the interactions between the system components. Some of
these interactions may be a trigger for overall system failure.

Resilience engineering does not focus on avoiding failure but rather on accepting
the reality that failures will occur. It makes two important assumptions:

1.	 Resilience engineering assumes that it is impossible to avoid system failures and
so is concerned with limiting the costs of these failures and recovering from them.

2.	 Resilience engineering assumes that good reliability engineering practices have
been used to minimize the number of technical faults in a system. It therefore
places more emphasis on limiting the number of system failures that arise from
external events such as operator errors or cyberattacks.

In practice, technical system failures are often triggered by events that are external
to the system. These events may involve operator actions or user errors that are unex-
pected. Over the last few years, however, as the number of networked systems has
increased, these events have often been cyberattacks. In a cyberattack, a malicious
person or group tries to damage the system or to steal confidential information. These are
now more significant than user or operator errors as a potential source of system failure.

Because of the assumption that failures will inevitably occur, resilience engineer-
ing is concerned with both the immediate recovery from failure to maintain critical
services and the longer-term reinstatement of all system services. As I discuss in
Section 14.3, this means that system designers have to include system features to
maintain the state of the system’s software and data. In the event of a failure, essential
information may then be restored.

Four related resilience activities are involved in the detection of and recovery
from system problems:

1.	 Recognition The system or its operators should be able to recognize the symp-
toms of a problem that may lead to system failure. Ideally, this recognition
should be possible before the failure occurs.

2.	 Resistance If the symptoms of a problem or signs of a cyberattack are detected
early, then resistance strategies may be invoked that reduce the probability that the
system will fail. These resistance strategies may focus on isolating critical parts of
the system so that they are unaffected by problems elsewhere. Resistance includes

	 Chapter 14  ■  Resilience engineering   411

proactive resistance where defenses are included in a system to trap problems and
reactive resistance where actions are taken when a problem is discovered.

3.	 Recovery If a failure occurs, the aim of the recovery activity is to ensure that
critical system services are restored quickly so that system users are not seri-
ously affected by the failure.

4.	 Reinstatement In this final activity, all of the system services are restored, and
normal system operation can continue.

These activities lead to changes to the system state as shown in Figure 14.1,
which shows the state changes in the system in the event of a cyberattack. In parallel
with normal system operation, the system monitors network traffic for possible
cyberattacks. In the event of a cyberattack, the system moves to a resistance state in
which normal services may be restricted.

If resistance successfully repels the attack, normal service is resumed. Otherwise, the
system moves to a recovery state where only critical services are available. Repairs to the
damage caused by the cyberattack are carried out. Finally, when repairs are complete,
the system moves to a reinstatement state. In this state, the system’s services are incre-
mentally restored. Finally, when all restoration is complete, normal service is resumed.

As the Apollo 13 example illustrates, resilience cannot be “programmed in” to a
system. It is impossible to anticipate everything that might go wrong and every con-
text where problems might arise. The key to resilience, therefore, is flexibility and
adaptability. As I discuss in Section 14.2, it should be possible for system operators
and managers to take actions to protect and repair the system, even if these actions
are abnormal or are normally disallowed.

Increasing the resilience of a system of course has significant costs. Software
may have to be purchased or modified, and additional investments made in hardware
or cloud services to provide backup systems that can be used in the event of a system
failure. The benefits from these costs are impossible to calculate because the losses
from a failure or attack can only be calculated after the event.

Companies may therefore be reluctant to invest in resilience if they have never
suffered a serious attack or associated loss. However, the increasing number of

Recognition

Normal operating
state

Attack
recognition

Resistance Recovery Reinstatement

Critical service
delivery

Critical service
delivery

Attack
resistance

System
repair

Software and data
restoration

Restricted service
delivery

Reinstatement complete

Attack
detected

Attack
successful

Repair
complete

Attack repelled

Figure 14.1  Resilience
activities

412   Chapter 14  ■  Resilience engineering

high-profile cyberattacks that have damaged business and government systems have
increased awareness of the need for resilience. It is clear that losses can be very
significant, and sometimes businesses may not survive a successful cyberattack.
Therefore, there is increasing investment in resilience engineering to reduce the
business risks associated with system failure.

	 14.1	 Cybersecurity

Maintaining the security of our networked infrastructure and government, business,
and personal computer systems is one of the most significant problems facing our
society. The ubiquity of the Internet and our dependence on computer systems have
created new criminal opportunities for theft and social disruption. It is very difficult
to measure the losses due to cybercrime. However, in 2013, it was estimated that
losses to the global economy due to cybercrime were between $100 billion and $500
billion (InfoSecurity 2013).

As I suggested in Chapter 13, cybersecurity is a broader issue than system security
engineering. Software security engineering is a primarily technical activity that focuses
on techniques and technologies to ensure that application systems are secure.
Cybersecurity is a sociotechnical concern. It covers all aspects of ensuring the protection
of citizens, businesses, and critical infrastructures from threats that arise from their use
of computers and the Internet. While technical issues are important, technology on its
own cannot guarantee security. Factors that contribute to cybersecurity failures include:

■	 organizational ignorance of the seriousness of the problem,

■	 poor design and lax application of security procedures,

■	 human carelessness, and

■	 inappropriate trade-offs between usability and security.

Cybersecurity is concerned with all of an organization’s IT assets from networks
through to application systems. The vast majority of these assets are externally procured,
and companies do not understand their detailed operation. Systems such as web brows-
ers are large and complex programs, and inevitably they contain bugs that can be a
source of vulnerability. The different systems in an organization are related to each other
in many different ways. They may be stored on the same disk, share data, rely on com-
mon operating systems components, and so on. The organizational “system of systems”
is incredibly complex. It is impossible to ensure that it is free of security vulnerabilities.

Consequently, you should generally assume that your systems are vulnerable to
cyberattack and that, at some stage, a cyberattack is likely to occur. A successful
cyberattack can have very serious financial consequences for businesses, so it is
essential that attacks are contained and losses minimized. Effective resilience engi-
neering at the organizational and systems levels can repel attacks and bring systems
back into operation quickly and so limit the losses incurred.

	 14.1  ■  Cybersecurity   413

In Chapter 13, where I discussed security engineering, I introduced concepts that
are fundamental to resilience planning. Some of these concepts are:

1.	 Assets, which are systems and data that have to be protected. Some assets are
more valuable than others and so require a higher level of protection.

2.	 Threats, which are circumstances that can cause harm by damaging or stealing
organizational IT infrastructure or system assets.

3.	 Attacks, which are manifestations of a threat where an attacker aims to damage
or steal IT assets, such as websites or personal data.

Three types of threats have to be considered in resilience planning:

1.	 Threats to the confidentiality of assets In this case, data is not damaged, but it is
made available to people who should not have access to it. An example of a
threat to confidentiality is when a credit card database held by a company is
stolen, with the potential for illegal use of card information.

2.	 Threats to the integrity of assets These are threats where systems or data are
damaged in some way by a cyberattack. This may involve introducing a virus or
a worm into software or corrupting organizational databases.

3.	 Threats to the availability of assets These are threats that aim to deny use of
assets by authorized users. The best-known example is a denial-of-service attack
that aims to take down a website and so make it unavailable for external use.

These are not independent threat classes. An attacker may compromise the integ-
rity of a user’s system by introducing malware, such as a botnet component. This
may then be invoked remotely as part of a distributed denial-of-service attack on
another system. Other types of malware may be used to capture personal details and
so allow confidential assets to be accessed.

To counter these threats, organizations should put controls in place that make it
difficult for attackers to access or damage assets. It is also important to raise aware-
ness of cybersecurity issues so that people know why these controls are important
and so are less likely to reveal information to an attacker.

Examples of controls that may be used are:

1.	 Authentication, where users of a system have to show that they are authorized to
access the system. The familiar login/password approach to authentication is a
universally used but rather weak control.

2.	 Encryption, where data is algorithmically scrambled so that an unauthorized
reader cannot access the information. Many companies now require that laptop
disks are encrypted. If the computer is lost or stolen, this reduces the likelihood
that the confidentiality of the information will be breached.

3.	 Firewalls, where incoming network packets are examined, then accepted or
rejected according to a set of organizational rules. Firewalls can be used to

414   Chapter 14  ■  Resilience engineering

ensure that only traffic from trusted sources is allowed to pass from the external
Internet into the local organizational network.

A set of controls in an organization provides a layered protection system. An
attacker has to get through all of the protection layers for the attack to succeed.
However, there is a trade-off between protection and efficiency. As the number of
layers of protection increases, the system slows down. The protection systems con-
sume an increasing amount of memory and processor resources, leaving less availa-
ble to do useful work. The more security, the more inconvenient it is for users and
the more likely that they will adopt insecure practices to increase system usability.

As with other aspects of system dependability, the fundamental means of protect-
ing against cyberattacks depends on redundancy and diversity. Recall that redun-
dancy means having spare capacity and duplicated resources in a system. Diversity
means that different types of equipment, software, and procedures are used so that
common failures are less likely to occur across a number of systems. Examples of
where redundancy and diversity are valuable for cyber-resilience are:

1.	 For each system, copies of data and software should be maintained on separate
computer systems. Shared disks should be avoided if possible. This supports
recovery after a successful cyberattack (recovery and reinstatement).

2.	 Multi-stage diverse authentication can protect against password attacks. As well
as login/password authentication, additional authentication steps may be
involved that require users to provide some personal information or a code gen-
erated by their mobile device (resistance).

3.	 Critical servers may be overprovisioned; that is, they may be more powerful
than is required to handle their expected load. The spare capacity means that
attacks may be resisted without necessarily degrading the normal response of
the server. Furthermore, if other servers are damaged, spare capacity is available
to run their software while they are being repaired (resistance and recovery).

Planning for cybersecurity has to be based on assets and controls and the 4 Rs of resil-
ience engineering—recognition, resistance, recovery, and reinstatement. Figure 14.2
shows a planning process that may be followed. The key stages in this process are:

1.	 Asset classification The organization’s hardware, software, and human assets
are examined and classified depending on how essential they are to normal
operations. They may be classed as critical, important, or useful.

2.	 Threat identification For each of the assets (or at least the critical and important
assets), you should identify and classify threats to that asset. In some cases, you
may try to estimate the probability that a threat will arise, but such estimates are
often inaccurate as you don’t have enough information about potential attackers.

3.	 Threat recognition For each threat or, sometimes asset/threat pair, you should
identify how an attack based on that threat might be recognized. You may

	 14.1  ■  Cybersecurity   415

decide that additional software needs to be bought or written for threat recogni-
tion or that regular checking procedures are put in place.

4.	 Threat resistance For each threat or asset/threat pair, you should identify possi-
ble resistance strategies. These either may be embedded in the system (technical
strategies) or may rely on operational procedures. You may also need to think of
threat neutralization strategies so that the threat does not recur.

5.	 Asset recovery For each critical asset or asset/threat pair, you should work out
how that asset could be recovered in the event of a successful cyberattack. This
may involve making extra hardware available or changing backup procedures to
make it easier to access redundant copies of data.

6.	 Asset reinstatement This is a more general process of asset recovery where you
define procedures to bring the system back into normal operation. Asset rein-
statement should be concerned with all assets and not simply assets that are
critical to the organization.

Information about all of these stages should be maintained in a cyber-resilience
plan. This plan should be regularly updated, and, wherever possible, the strategies
identified should be tested in mock attacks on the system.

Another important part of cyber-resilience planning is to decide how to support a flex-
ible response in the event of a cyberattack. Paradoxically, resilience and security
requirements often conflict. The aim of security is usually to limit privilege as far as pos-
sible so that users can only do what the security policy of the organization allows.
However, to deal with problems, a user or system operator may have to take the initiative
and take actions that are normally carried out by someone with a higher level of privilege.

For example, the system manager of a medical system may not normally be
allowed to change the access rights of medical staff to records. For security reasons,
access permissions have to be formally authorized, and two people need to be
involved in making the change. This reduces the chances of system managers col-
luding with attackers and allowing access to confidential medical information.

Now, imagine that the system manager notices that a logged-in user is accessing
a large number of records outside of normal working hours. The manager suspects

Threat
recognition

 Cyber-resilience plan

Interface
development

Integration and
deployment

Asset
classification

Threat
identification

Threat
resistance

Interface
development

Integration and
deployment

Asset
recovery

Asset
reinstatement

Figure 14.2  Cyber-
resilience planning

416   Chapter 14  ■  Resilience engineering

that an account has been compromised and that the user accessing the records is not
actually the authorized user. To limit the damage, the user’s access rights should be
removed and a check then made with the authorized user to see if the accesses were
actually illegal. However, the security procedures limiting the rights of system man-
agers to change users’ permissions make this impossible.

Resilience planning should take such situations into account. One way of doing
so is to include an “emergency” mode in systems where normal checks are ignored.
Rather than forbidding operations, the system logs what has been done and who was
responsible. Therefore, the audit trail of emergency actions can be used to check that
a system manager’s actions were justified. Of course, there is scope for misuse here,
and the existence of an emergency mode is itself a potential vulnerability. Therefore,
organizations have to trade off possible losses against the benefits of adding more
features to a system to support resilience.

	 14.2	 Sociotechnical resilience

Fundamentally, resilience engineering is a sociotechnical rather than a technical
activity. As I explained in Chapter 10, a sociotechnical system includes hardware,
software, and people and is influenced by the culture, policies, and procedures of the
organization that owns and uses the system. To design a resilient system, you have to
think about sociotechnical systems design and not exclusively focus on software.
Resilience engineering is concerned with adverse external events that can lead to
system failure. Dealing with these events is often easier and more effective in the
broader sociotechnical system.

For example, the Mentcare system maintains confidential patient data, and a possible
external cyberattack may aim to steal that data. Technical safeguards such as authentica-
tion and encryption may be used to protect the data, but these are not effective if an
attacker has access to the credentials of a genuine system user. You could try to solve
this problem at the technical level by using more complex authentication procedures.
However, these procedures annoy users and may lead to vulnerabilities as they write
down authentication information. A better strategy may be to introduce organizational
policies and procedures that emphasize the importance of not sharing login credentials
and that tell users about easy ways to create and maintain strong passwords.

Resilient systems are flexible and adaptable so that they can cope with the unex-
pected. It is very difficult to create software that can adapt to cope with problems
that have not been anticipated. However, as we saw from the Apollo 13 accident,
people are very good at this. Therefore, to achieve resilience, you should take advan-
tage of the fact that people are an inherent part of sociotechnical systems. Rather
than try to anticipate and deal with all problems in software, you should leave some
types of problem solving to the people responsible for operating and managing the
software system.

To understand why you should leave some types of problem solving to people,
you have to consider the hierarchy of sociotechnical systems that includes technical,
software-intensive systems. Figure 14.3 shows that technical systems S1 and S2 are

	 14.2  ■  Sociotechnical resilience   417

part of a broader sociotechnical system ST1. That sociotechnical system includes
operators who monitor the condition of S1 and S2 and who can take actions to
resolve problems in these systems. If system S1 (say) fails, then the operators in
ST1 may detect that failure and take recovery actions before the software failure
leads to failure in the broader sociotechnical system. Operators may also invoke
recovery and reinstatement procedures to get S1 back to its normal operating state.

Operational and management processes are the interface between the organiza-
tion and the technical systems that are used. If these processes are well designed,
they allow people to discover and to cope with technical system failures, as well as
ensuring that operator errors are minimized. As I discuss in Section 14.2.2, rigid
processes that are overautomated are not inherently resilient. They do not allow peo-
ple to use their skills and knowledge to adapt and change processes to cope with the
unexpected and deal with unanticipated failures.

The system ST1 is one of a number of sociotechnical systems in the organization.
If the system operators cannot contain a technical system failure, then this may lead
to a failure in the sociotechnical system ST1. Managers at the organizational level
then must detect the problem and take steps to recover from it. Resilience is there-
fore an organizational as well as a system characteristic.

Hollnagel (Hollnagel 2010), who was an early advocate of resilience engineer-
ing, argues that it is important for organizations to study and learn from successes as
well as failure. High-profile safety and security failures lead to inquiries and changes
in practice and procedures. However, rather than respond to these failures, it is
better to avoid them by observing how people deal with problems and maintain
resilience. This good practice can then be disseminated throughout the organization.
Figure 14.4 shows four characteristics that Hollnagel suggests reflect the resilience
of an organization. These characteristics are:

1.	 The ability to respond Organizations have to be able to adapt their processes and
procedures in response to risks. These risks may be anticipated risks, or they
may be detected threats to the organization and its systems. For example, if a
new security threat is detected and publicized, a resilient organization can make
changes quickly so that this threat does not disrupt its operations.

2.	 The ability to monitor Organizations should monitor both their internal
operations and their external environment for threats before they arise. For
example, a company should monitor how its employees follow security policies.

S2S1

ST1

Organization

Failure

Failure

Operators

Managers

Figure 14.3  Nested
technical and
sociotechnical systems

418   Chapter 14  ■  Resilience engineering

Learning from experience

Responding to threats
and vulnerabilities

Anticipating future
threats and

opportunities

Monitoring the
organization and

environment

Figure 14.4 
Characteristics of
resilient organizations

If potentially insecure behavior is detected, the company should respond by taking
actions to understand why this has occurred and to change employee behavior.

3.	 The ability to anticipate A resilient organization should not simply focus on its
current operations but should anticipate possible future events and changes that
may affect its operations and resilience. These events may include technological
innovations, changes in regulations or laws, and modifications in customer
behavior. For example, wearable technology is starting to become available,
and companies should now be thinking about how this might affect their current
security policies and procedures.

4.	 The ability to learn Organizational resilience can be improved by learning from
experience. It is particularly important to learn from successful responses to
adverse events such as the effective resistance of a cyberattack. Learning from
success allows good practice to be disseminated throughout the organization.

As Hollnagel says, to become resilient organizations have to address all of these
issues to some extent. Some will focus more on one quality than others. For exam-
ple, a company running a large-scale data center may focus mostly on monitoring
and responsiveness. However, a digital library that manages long-term archival
information may have to anticipate how future changes may affect its business as
well as respond to any immediate security threats.

	 14.2.1	 Human error

Early work on resilience engineering was concerned with accidents in safety-
critical systems and with how the behavior of human operators could lead to safety-
related system failures. This led to an understanding of system defenses that is
equally applicable to systems that have to withstand malicious as well as accidental
human actions.

We know that people make mistakes, and, unless a system is completely automated,
it is inevitable that users and system operators will sometimes do the wrong thing.
Unfortunately, these human errors sometimes lead to serious system failures. Reason
(Reason, 2000) suggests that the problem of human error can be viewed in two ways:

1.	 The person approach Errors are considered to be the responsibility of the indi-
vidual and “unsafe acts” (such as an operator failing to engage a safety barrier)

	 14.2  ■  Sociotechnical resilience   419

are a consequence of individual carelessness or reckless behavior. People who
adopt this approach believe that human errors can be reduced by threats of
disciplinary action, more stringent procedures, retraining, and so on. Their view
is that the error is the fault of the individual responsible for making the mistake.

2.	 The systems approach The basic assumption is that people are fallible and will make
mistakes. People make mistakes because they are under pressure from high work-
loads, because of poor training, or because of inappropriate system design. Good
systems should recognize the possibility of human error and include barriers and
safeguards that detect human errors and allow the system to recover before failure
occurs. When a failure does occur, the best way to avoid its recurrence is to understand
how and why the system defenses did not trap the error. Blaming and punishing the
person who triggered the failure does not improve long-term system safety.

I believe that the systems approach is the right one and that systems engineers
should assume that human errors will occur during system operation. Therefore, to
improve the resilience of a system, designers have to think about the defenses and
barriers to human error that could be part of a system. They should also think about
whether these barriers should be built into the technical components of the system.
If not, they could be part of the processes, procedures, and guidelines for using the
system. For example, two operators may be required to check critical system inputs.

The barriers and safeguards that protect against human errors may be technical or
sociotechnical. For example, code to validate all inputs is a technical defense; an approval
procedure for critical system updates that needs two people to confirm the update is a
sociotechnical defense. Using diverse barriers means that shared vulnerabilities are less
likely and that a user error is more likely to be trapped before system failure.

In general, you should use redundancy and diversity to create a set of defensive
layers (Figure 14.5), where each layer uses a different approach to deter attackers or
to trap component failures or human errors. Dark blue barriers are software checks;
light blue barriers are checks carried out by people.

As an example of this approach to defense in depth, some of the checks for con-
troller errors that may be part of an air traffic control system include:

1.	 A conflict alert warning as part of an air traffic control system When a control-
ler instructs an aircraft to change its speed or altitude, the system extrapolates its
trajectory to see if it intersects with any other aircraft. If so, it sounds an alarm.

2.	 Formalized recording procedures for air traffic management The same ATC
system may have a clearly defined procedure setting out how to record the con-
trol instructions that have been issued to aircraft. These procedures help control-
lers check if they have issued the instruction correctly and make the information
visible to others for checking.

3.	 Collaborative checking Air traffic control involves a team of controllers who
constantly monitor each other’s work. When a controller makes a mistake, oth-
ers usually detect and correct it before an incident occurs.

420   Chapter 14  ■  Resilience engineering

Reason (Reason 2000) draws on the idea of defensive layers in a theory of how
human errors lead to system failures. He introduces the so-called Swiss cheese
model, which suggests that defensive layers are not solid barriers but are instead like
slices of Swiss cheese. Some types of Swiss cheese, such as Emmenthal, have holes
of varying sizes in them. Reason suggests that vulnerabilities, or what he calls latent
conditions in the layers, are analogous to these holes.

These latent conditions are not static—they change depending on the state of the
system and the people involved in system operation. To continue with the analogy,
the holes change size and move around the defensive layers during system operation.
For example, if a system relies on operators checking each other’s work, a possible
vulnerability is that both make the same mistake. This is unlikely under normal con-
ditions so, in the Swiss cheese model, the hole is small. However, when the system
is heavily loaded and the workload of both operators is high, then mistakes are more
likely. The size of the hole representing this vulnerability increases.

Failure in a system with layered defenses occurs when there is some external trig-
ger event that has the potential to cause damage. This event might be a human error
(which Reason calls an active failure) or it could be a cyberattack. If all of the defen-
sive barriers fail, then the system as a whole will fail. Conceptually, this corresponds
to the holes in the Swiss cheese slices lining up, as shown in Figure 14.6.

This model suggests that different strategies can be used to increase system resil-
ience to adverse external events:

1.	 Reduce the probability of the occurrence of an external event that might trigger
system failures. To reduce human errors, you may introduce improved training for
operators or give operators more control over their workload so that they are not
overloaded. To reduce cyberattacks, you may reduce the number of people who have
privileged system information and so reduce the chances of disclosure to an attacker.

2.	 Increase the number of defensive layers. As a general rule, the more layers that
you have in a system, the less likely it is that the holes will line up and a system
failure will occur. However, if these layers are not independent, then they may
share a common vulnerability. Thus, the barriers are likely to have the same
“hole” in the same place, so there is only a limited benefit in adding a new layer.

Sociotechnical defenses

Technical defenses

Errors or
attacks

Figure 14.5  Defensive
layers

	 14.2  ■  Sociotechnical resilience   421

3.	 Design a system so that diverse types of barriers are included. This means that
the “holes” will probably be in different places, and so there is less chance of the
holes lining up and failing to trap an error.

4.	 Minimize the number of latent conditions in a system. Effectively, this means
reducing the number and size of system “holes.” However, this may significantly
increase systems engineering costs. Reducing the number of bugs in the system
increases testing and V & V costs. Therefore, this option may not be cost-effective.

In designing a system, you need to consider all of these options and make choices
about what might be the most cost-effective ways to improve the system’s defenses.
If you are building custom software, then using software checking to increase the
number and diversity of layers may be the best option. However, if you are using
off-the-shelf software, then you may have to consider how sociotechnical defenses
may be added. You may decide to change training procedures to reduce the chances
of problems occurring and to make it easier to deal with incidents when they arise.

	 14.2.2	 Operational and management processes

All software systems have associated operational processes that reflect the assump-
tions of the designers about how these systems will be used. Some software systems,
particularly those that control or are interfaced to special equipment, have trained
operators who are an intrinsic part of the control system. Decisions are made during
the design stage about which functions should be part of the technical system and
which functions should be the operator’s responsibility. For example, in an imaging
system in a hospital, the operator may have the responsibility of checking the quality
of the images immediately after they have been processed. This check allows the
imaging procedure to be repeated if there is a problem.

Operational processes are the processes that are involved in using the system for
its defined purpose. For example, operators of an air traffic control system follow
specific processes when aircraft enter and leave airspace, when they have to change
height or speed, when an emergency occurs, and so on. For new systems, these oper-
ational processes have to be defined and documented during the system develop-
ment process. Operators may have to be trained and other work processes adapted to
make effective use of the new system.

System failure

Active failure
(Human error)

Latent conditions in defensive layers

Figure 14.6  Reason’s
Swiss cheese model of
system failure

422   Chapter 14  ■  Resilience engineering

Most software systems, however, do not have trained operators but have system
users, who use the system as part of their work or to support their personal interests.
For personal systems, the designers may describe the expected use of the system but
have no control over how users will actually behave. For enterprise IT systems, how-
ever, training may be provided for users to teach them how to use the system.
Although user behavior cannot be controlled, it is reasonable to expect that they will
normally follow the defined process.

Enterprise IT systems will also usually have system administrators or managers
who are responsible for maintaining that system. While they are not part of the busi-
ness process supported by the system, their job is to monitor the software system for
errors and problems. If problems arise, system managers take action to resolve them
and restore the system to its normal operational state.

In the previous section, I discussed the importance of defense in depth and the use
of diverse mechanisms to check for adverse events that could lead to system failure.
Operational and management processes are an important defense mechanism, and,
in designing a process, you need to find a balance between efficient operation and
problem management. These are often in conflict as shown in Figure 14.7 as increas-
ing efficiency removes redundancy and diversity from a system.

Over the past 25 years, businesses have focused on so-called process improve-
ment. To improve the efficiency of operational and management processes, compa-
nies study how their processes are enacted and look for particularly efficient and
inefficient practice. Efficient practice is codified and documented, and software may
be developed to support this “optimum” process. Inefficient practice is replaced by
more efficient ways of doing things. Sometimes process control mechanisms are
introduced to ensure that system operators and managers follow this “best practice.”

The problem with process improvement is that it often makes it harder for people to
cope with problems. What seems to be “inefficient” practice often arises because people
maintain redundant information or share information because they know this makes it
easier to deal with problems when things go wrong. For example, air traffic controllers
may print flight details as well as rely on the flight database because they will then have
information about flights in the air if the system database becomes unavailable.

People have a unique capability to respond effectively to unexpected situations,
even when they have never had direct experience of these situations. Therefore,
when things go wrong, operators and system managers can often recover the situa-
tion, although they may sometimes have to break rules and “work around” the
defined process. You should therefore design operational processes to be flexible
and adaptable. The operational processes should not be too constraining; they should
not require operations to be done in a particular order; and the system software
should not rely on a specific process being followed.

For example, an emergency service control room system is used to manage emer-
gency calls and to initiate a response to these calls. The “normal” process of han-
dling a call is to log the caller’s details and then send a message to the appropriate
emergency service giving details of the incident and the address. This procedure
provides an audit trail of the actions taken. A subsequent investigation can check
that the emergency call has been properly handled.

	 14.2  ■  Sociotechnical resilience   423

Now imagine that this system is subject to a denial-of-service attack, which makes
the messaging system unavailable. Rather than simply not responding to calls, the oper-
ators may use their personal mobile phones and their knowledge of call responders to
call the emergency service units directly so that they can respond to serious incidents.

Management and provision of information are also important for resilient operation.
To make a process more efficient, it may make sense to present operators with the
information they need, when they need it. From a security perspective, information
should not be accessible unless the operator or manager needs that information.
However, a more liberal approach to information access can improve system resilience.

If operators are only presented with information that the process designer thinks
they “need to know,” then they may be unable to detect problems that do not directly
affect their immediate tasks. When things go wrong, the system operators do not
have a broad picture of what is happening in the system, so it is more difficult for
them to formulate strategies for dealing with problems. If they cannot access some
information in the system for security reasons, then they may be unable to stop
attacks and repair the damage that has been caused.

Automating the system management process means that a single manager may be
able to manage a large number of systems. Automated systems can detect common
problems and take actions to recover from these problems. Fewer people are needed
for system operations and management, and so costs are reduced. However, process
automation has two disadvantages:

1.	 Automated management systems may go wrong and take incorrect actions. As
problems develop, the system may take unexpected actions that make the situa-
tion worse and that cannot be understood by the system managers.

2.	 Problem solving is a collaborative process. If fewer managers are available, it is
likely to take longer to work out a strategy to recover from a problem or cyberattack.

Therefore, process automation can have both positive and negative effects on
system resilience. If the automated system works properly, it can detect problems,
invoke cyberattack resistance if necessary, and start automated recovery procedures.
However, if the automated system can’t handle the problem, fewer people will be
available to tackle the problem and the system may have been damaged by the pro-
cess automation doing the wrong thing.

In an environment where there are different types of system and equipment, it
may be impractical to expect all operators and managers to be able to deal with all of

Efficient process operation Problem management

Process optimization and control Process flexibility and adaptability

Information hiding and security Information sharing and visibility

Automation to reduce operator workload with fewer
operators and managers

Manual processes and spare operator/manager
capacity to deal with problems

Role specialization Role sharing

Figure 14.7  Efficiency
and resilience

424   Chapter 14  ■  Resilience engineering

the different systems. Individuals may therefore specialize so that they become
expert and knowledgeable about a small number of systems. This leads to more effi-
cient operation but has consequences for the resilience of the system.

The problem with role specialization is that there may not be anyone available at
a particular time who understands the interactions between systems. Consequently,
it is difficult to cope with problems if the specialist is not available. If people work
with several systems, they come to understand the dependencies and relationships
between them and so can tackle problems that affect more than one system. With no
specialist available, it becomes much more difficult to contain the problem and
repair any damage that has been caused.

You may use risk assessment, as discussed in Chapter 13, to help make decisions
on the balance between process efficiency and resilience. You consider all of the
risks where operator or manager intervention may be required and assess the likeli-
hood of these risks and the extent of the possible losses that might arise. For risks
that may lead to serious damage and extensive loss and for risks that are likely to
occur, you should favor resilience over process efficiency.

	 14.3	 Resilient systems design

Resilient systems can resist and recover from adverse incidents such as software
failures and cyberattacks. They can deliver critical services with minimal interrup-
tions and can quickly return to their normal operating state after an incident has
occurred. In designing a resilient system, you have to assume that system failures or
penetration by an attacker will occur, and you have to include redundant and diverse
features to cope with these adverse events.

Designing systems for resilience involves two closely related streams of work:

1.	 Identifying critical services and assets Critical services and assets are those ele-
ments of the system that allow a system to fulfill its primary purpose. For exam-
ple, the primary purpose of a system that handles ambulance dispatch in
response to emergency calls is to get help to people who need it as quickly as
possible. The critical services are those concerned with taking calls and dis-
patching ambulances to the medical emergency. Other services such as call log-
ging and ambulance tracking are less important.

2.	 Designing system components that support problem recognition, resistance,
recovery, and reinstatement For example, in an ambulance dispatch system, a
watchdog timer (see Chapter 12) may be included to detect if the system is not
responding to events. Operators may have to authenticate with a hardware token
to resist the possibility of unauthorized access. If the system fails, calls may be
diverted to another center so that the essential services are maintained. Copies
of the system database and software on alternative hardware may be maintained
to allow for reinstatement after an outage.

	 14.3  ■  Resilient systems design   425

The fundamental notions of recognition, resistance, and recovery were the basis
of early work in resilience engineering by Ellison et al. (Ellison et al. 1999, 2002).
They designed a method of analysis called survivable systems analysis. This method
is used to assess vulnerabilities in systems and to support the design of system archi-
tectures and features that promote system survivability.

Survivable systems analysis is a four-stage process (Figure 14.8) that analyzes
the current or proposed system requirements and architecture, identifies critical ser-
vices, attack scenarios, and system “softspots,” and proposes changes to improve the
survivability of a system. The key activities in each of these stages are as follows:

1.	 System understanding For an existing or proposed system, review the goals of
the system (sometimes called the mission objectives), the system requirements,
and the system architecture.

2.	 Critical service identification The services that must always be maintained and
the components that are required to maintain these services are identified.

3.	 Attack simulation Scenarios or use cases for possible attacks are identified,
along with the system components that would be affected by these attacks.

4.	 Survivability analysis Components that are both essential and compromisable
by an attack are identified, and survivability strategies based on resistance, rec-
ognition, and recovery are identified.

The fundamental problem with this approach to survivability analysis is that its
starting point is the requirements and architecture documentation for a system. This
is a reasonable assumption for defense systems (the work was sponsored by the U.S.
Department of Defense), but it poses two problems for business systems:

1.	 It is not explicitly related to the business requirements for resilience. I believe that
these are a more appropriate starting point than technical system requirements.

1. Review system
requirements and

architecture

2. Identify critical services
and components

3. Identify attacks and
compromisable

components

4. Identify softspots and
survivability strategies

Figure 14.8  Stages in
survivability analysis

426   Chapter 14  ■  Resilience engineering

Identify business
resilience

requirements

Identify critical
services

Plan backup
strategy

Test system
reinstatement

Plan system
reinstatement

Identify assets
that deliver

critical services

Identify events
that compromise

assets

Plan event
recognition and

resistance

Propose software
changes

Buy new software
required

Plan critical
service recovery

Plan critical
asset recovery

Develop software
to support

asset recovery

Design asset
redundancy

strategy

Resilience test
planning

Identify attack
and failure
scenarios

Test service
recovery

Test system
resistance

Develop software
to support

reinstatement
Reinstatement

Recognition and
resistance

Recovery

Testing

Figure 14.9 
Resilience engineering

2.	 It assumes that there is a detailed requirements statement for a system. In fact,
resilience may have to be “retrofitted” to a system where there is no complete or
up-to-date requirements document. For new systems, resilience may itself be a
requirement, or systems may be developed using an agile approach. The system
architecture may be designed to take resilience into account.

A more general resilience engineering method, as shown in Figure 14.9, takes the
lack of detailed requirements into account as well as explicitly designing recovery
and reinstatement into the system. For the majority of components in a system, you
will not have access to their source code and will not be able to make changes to
them. Your strategy for resilience has to be designed with this limitation in mind.

There are five interrelated streams of work in this approach to resilience engineering:

1.	 You identify business resilience requirements. These requirements set out how
the business as a whole must maintain the services that it delivers to customers
and, from this, resilience requirements for individual systems are developed.
Providing resilience is expensive, and it is important not to overengineer sys-
tems with unnecessary resilience support.

2.	 You plan how to reinstate a system or a set of systems to their normal operating
state after an adverse event. This plan has to be integrated with the business’s

	 14.3  ■  Resilient systems design   427

normal backup and archiving strategy that allows recovery of information after
a technical or human error. It should also be part of a wider disaster recovery
strategy. You have to take account of the possibility of physical events such as
fire and flooding and study how to maintain critical information in separate
locations. You may decide to use cloud backups for this plan.

3.	 You identify system failures and cyberattacks that can compromise a system, and
you design recognition and resilience strategies to cope with these adverse events.

4.	 You plan how to recover critical services quickly after they have been damaged
or taken offline by a failure or cyberattack. This step usually involves providing
redundant copies of the critical assets that provide these services and switching
to these copies when required.

5.	 Critically, you should test all aspects of your resilience planning. This testing
involves identifying failure and attack scenarios and playing these scenarios out
against your system.

Maintaining the availability of critical services is the essence of resilience.
Accordingly, you have to know:

■	 the system services that are the most critical for a business,

■	 the minimal quality of service that must be maintained,

■	 how these services might be compromised,

■	 how these services can be protected, and

■	 how you can recover quickly if the services become unavailable.

As part of the analysis of critical services, you have to identify the system assets
that are essential for delivering these services. These assets may be hardware (serv-
ers, network, etc.), software, data, and people. To build a resilient system, you have
to think about how to use redundancy and diversity to ensure that these assets remain
available in the event of a system failure.

For all of these activities, the key to providing a rapid response and recovery plan
after an adverse event is to have additional software that supports resistance, recov-
ery, and reinstatement. This may be commercial security software or resilience sup-
port that is programmed into application systems. It may also include scripts and
specially written programs that are developed for recovery and reinstatement. If you
have the right support software, the processes of recovery and reinstatement can be
partially automated and quickly invoked and executed after a system failure.

Resilience testing involves simulating possible system failures and cyberattacks to
test whether the resilience plans that have been drawn up work as expected. Testing
is essential because we know from experience that the assumptions made in resil-
ience planning are often invalid and that planned actions do not always work. Testing
for resilience can reveal these problems so that the resilience plan can be refined.

428   Chapter 14  ■  Resilience engineering

Testing can be very difficult and expensive as, obviously, the testing cannot be carried
out on an operational system. The system and its environment may have to be duplicated
for testing, and staff may have to be released from their normal responsibilities to work
on the test system. To reduce costs, you can use “desk testing.” The testing team assumes
a problem has occurred and tests their reactions to it; they do not simulate that problem
on a real system. While this approach can provide useful information about system resil-
ience, it is less effective than testing in discovering deficiencies in the resilience plan.

As an example of this approach, let us look at resilience engineering for the
Mentcare system. To recap, this system is used to support clinicians treating patients
in a variety of locations who have mental health problems. It provides patient infor-
mation and records of consultations with doctors and specialist nurses. It includes a
number of checks that can flag patients who may be potentially dangerous or sui-
cidal. Figure 14.10 shows the architecture of this system.

The system is consulted by doctors and nurses before and during a consultation,
and patient information is updated after the consultation. To ensure the effectiveness
of clinics, the business resilience requirements are that the critical system services
are available during normal working hours, that the patient data should not be per-
manently damaged or lost by a system failure or cyberattack, and that patient infor-
mation should not be released to unauthorized people.

Two critical services in the system have to be maintained:

1.	 An information service that provides information about a patient’s current diag-
nosis and treatment plan.

2.	 A warning service that highlights patients who could pose a danger to others or
to themselves.

Notice that the critical service is not the availability of the complete patient
record. Doctors and nurses only need to go back to previous treatments occasionally,

Mentcare
client

Mentcare server

Patient database

Mentcare
client

Mentcare
client

Network

Figure 14.10  The
client–server architecture
of the Mentcare system

	 14.3  ■  Resilient systems design   429

so clinical care is not seriously affected if a full record is not available. Therefore, it
is possible to deliver effective care using a summary record that only includes infor-
mation about the patient and recent treatment.

The assets required to deliver these services in normal system operations are:

1.	 The patient record database that maintains all patient information.

2.	 A database server that provides access to the database for local client computers.

3.	 A network for client/server communications.

4.	 Local laptop or desktop computers used by clinicians to access patient information.

5.	 A set of rules that identify patients who are potentially dangerous and that can flag
patient records. Client software highlights dangerous patients to system users.

To plan recognition, resistance, and recovery strategies, you need to develop a set
of scenarios that anticipate adverse events that might compromise the critical ser-
vices offered by the system. Examples of these adverse events are:

1.	 The unavailability of the database server either through a system failure, a
network failure, or a denial-of-service cyberattack.

2.	 The deliberate or accidental corruption of the patient record database or the
rules that define what is meant by a “dangerous patient.”

3.	 Infection of client computers with malware.

4.	 Access to client computers by unauthorized people who gain access to patient records.

Figure 14.11 shows possible recognition and resistance strategies for these
adverse events. Notice that these are not just technical approaches but also include
workshops to inform system users about security issues. We know that many secu-
rity breaches arise because users inadvertently reveal privileged information to an
attacker and these workshops reduce the chances of this happening. I don’t have
space here to discuss all of the options that I identified in Figure 14.11. Instead, I
focus on how the system architecture can be modified to be more resilient.

In Figure 14.11, I suggested that maintaining patient information on client com-
puters was a possible redundancy strategy that could help maintain critical services.
This leads to the modified software architecture shown in Figure 14.12. The key
features of this architecture are:

1.	 Summary patient records that are maintained on local client computers The
local computers can communicate directly with each other and exchange infor-
mation using either the system network or, if necessary, an ad hoc network cre-
ated using mobile phones. Therefore, if the database is unavailable, doctors and
nurses can still access essential patient information. (resistance and recovery)

2.	 A backup server to allow for main server failure This server is responsible for
taking regular snapshots of the database as backups. In the event the main server

430   Chapter 14  ■  Resilience engineering

fails, it can also act as the main server for the whole system. This provides con-
tinuity of service and recovery after a server failure (resistance and recovery).

3.	 Database integrity checking and recovery software Integrity checking runs as a
background task checking for signs of database corruption. If corruption is dis-
covered, it can automatically initiate the recovery of some or all of the data from
backups. The transaction log allows these backups to be updated with details of
recent changes (recognition and recovery).

To maintain the key services of patient information access and staff warning, we
can make use of the inherent redundancy in a client-server system. By downloading
information to the client at the start of a clinic session, the consultation can continue
without server access. Only the information about the patients who are scheduled to
attend consultations that day needs to be downloaded. If there is a need to access
other patient information and the server is unavailable, then other client computers
may be contacted using peer-to-peer communication to see if the information is
available on them.

The service that provides a warning to staff of patients who may be dangerous
can easily be implemented using this approach. The records of patients who may
harm themselves or others are identified before the download process. When clinical
staff access these records, the software can highlight the records to indicate the
patients that require special care.

Figure 14.11 
Recognition and
resistance strategies
for adverse events

Event Recognition Resistance

Server
unavailability

1. �Watchdog timer on client
that times out if no response
to client access

2. �Text messages from system
managers to clinical users

1. �Design system architecture to maintain local
copies of critical information

2. �Provide peer-to-peer search across clients for
patient data

3. �Provide staff with smartphones that can be
used to access the network in the event of
server failure

4. Provide backup server

Patient database
corruption

1. �Record level cryptographic
checksums

2. �Regular auto-checking of
database integrity

3. �Reporting system for
incorrect information

1. �Replayable transaction log to update database
backup with recent transactions

2. �Maintenance of local copies of patient
information and software to restore database
from local copies and backups

Malware
infection of
client computers

1. �Reporting system so that
computer users can report
unusual behavior

2. �Automated malware checks
on startup

1. �Security awareness workshops for all system users
2. �Disabling of USB ports on client computers
3. Automated system setup for new clients
4. Support access to system from mobile devices
5. Installation of security software

Unauthorized
access to patient
information

1. �Warning text messages from
users about possible intruders

2. �Log analysis for unusual
activity

1. Multilevel system authentication process
2. Disabling of USB ports on client computers
3. Access logging and real-time log analysis
4. �Security awareness workshops for all system users

	 14.3  ■  Resilient systems design   431

The features in this architecture that support the resistance to adverse events are
also useful in supporting recovery from these events. By maintaining multiple copies
of information and having backup hardware available, critical system services can
be quickly restored to normal operation. Because the system need only be available
during normal working hours (say, 8 a.m to 6 p.m), the system can be reinstated
overnight so that it is available for the following day after a failure.

As well as maintaining critical services, the other business requirements of main-
taining the confidentiality and integrity of patient data must also be supported. The
architecture shown in Figure 14.12 includes a backup system and explicit database
integrity checking to reduce the chances that patient information is damaged acci-
dentally or in a malicious attack. Information on client computers is also available
and can be used to support recovery from data corruption or damage.

While maintaining multiple copies of data is a safeguard against data corruption,
it poses a risk to confidentiality as all of these copies have to be secured. In this case,
this risk can be controlled by:

1.	 Only downloading the summary records of patients who are scheduled to attend
a clinic. This limits the number of records that could be compromised.

2.	 Encrypting the disk on local client computers. Attackers who do not have the
encryption key cannot read the disk if they gain access to the computer.

3.	 Securely deleting the downloaded information at the end of a clinic session. This
further reduces the chances of an attacker gaining access to confidential information.

Mentcare
client

Mentcare server

Patient database

Mentcare
client

Mentcare
client

Network

Summary
patient records

Summary
patient records

Summary
patient records

Backup server

Database
integrity
checker

Transaction
log

Database backup

Figure 14.12  An
architecture for
Mentcare system
resilience

432    Chapter 14  ■  Resilience engineering

4.	 Ensuring that all network transactions are encrypted. If an attacker intercepts
these transactions, they cannot get access to the information.

Because of performance degradation, it is probably impractical to encrypt the entire
patient database on the server. Strong authentication should therefore be used to
protect this information.

K e y P o i n t s

■	 The resilience of a system is a judgment of how well that system can maintain the continuity of its
critical services in the presence of disruptive events, such as equipment failure and cyberattacks.

■	 Resilience should be based on the 4 Rs model—recognition, resistance, recovery, and reinstatement.

■	 Resilience planning should be based on the assumption that networked systems will be subject to
cyberattacks by malicious insiders and outsiders and that some of these attacks will be successful.

■	 Systems should be designed with a number of defensive layers of different types. If these layers
are effective, human and technical failures can be trapped and cyberattacks resisted.

■	 To allow system operators and managers to cope with problems, processes should be flexible
and adaptable. Process automation can make it more difficult for people to cope with problems.

■	 Business resilience requirements should be the starting point for designing systems for resil-
ience. To achieve system resilience, you have to focus on recognition and recovery from prob-
lems, recovery of critical services and assets, and reinstatement of the system.

■	 An important part of design for resilience is identifying critical services, which are those services
that are essential if a system is to ensure its primary purpose. Systems should be designed so
that these services are protected and, in the event of failure, recovered as quickly as possible.

F u r t h e r R e a d i n g

“Survivable Network System Analysis: A Case Study.” An excellent paper that introduces the notion
of system survivability and uses a case study of a mental health record treatment system to illus-
trate the application of a survivability method. (R. J. Ellison, R. C. Linger, T. Longstaff, and N. R.
Mead, IEEE Software, 16 (4), July/August 1999) http://dx.doi.org/10.1109/52.776952

Resilience Engineering in Practice: A Guidebook. This is a collection of articles and case studies
on resilience engineering that takes a broad, sociotechnical systems perspective. (E. Hollnagel, 	
J. Paries, D. W. Woods, and J. Wreathall, Ashgate Publishing Co., 2011).

“Cyber Risk and Resilience Management.” This is a website with a wide range of resources on
cybersecurity and resilience, including a model for resilience management. (Software Engineering
Institute, 2013) https://www.cert.org/resilience/

http://dx.doi.org/10.1109/52.776952
https://www.cert.org/resilience

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/security-and-resilience/

E x e rc i s e s

14.1.	 Explain how the complementary strategies of resistance, recognition, recovery, and reinstate-
ment may be used to provide system resilience.

14.2.	 What are the types of threats that have to be considered in resilience planning? Provide
examples of the controls that organizations should put in place to counter those threats.

14.3.	 Describe the ways in which human error can be viewed according to Reason (Reason, 2000)
and the strategies that can be used to increase resilience according to the Swiss cheese
model (Figure 14.6).

14.4.	 A hospital proposes to introduce a policy that any member of clinical staff (doctors or nurses)
who takes or authorizes actions that leads to a patient being injured will be subject to criminal
charges. Explain why this is a bad idea, which is unlikely to improve patient safety, and why it
is likely to adversely affect the resilience of the organization.

14.5.	 What is survivable systems analysis and what are the key activities in each of the four stages
involved in it as shown in Figure 14.8?

14.6.	 Explain why process inflexibility can inhibit the ability of a sociotechnical system to resist and
recover from adverse events such as cyberattacks and software failure. If you have experience
of process inflexibility, illustrate your answer with examples from your experience.

14.7.	 Suggest how the approach to resilience engineering that I proposed in Figure 14.9 could be
used in conjunction with an agile development process for the software in the system. What
problems might arise in using agile development for systems where resilience is important?

14.8.	 In Section 13.4.2, (1) an unauthorized user places malicious orders to move prices and (2) an
intrusion corrupts the database of transactions that have taken place. For each of these cyber-
attacks, identify resistance, recognition, and recovery strategies that might be used.

14.9.	 In Figure 14.11, I suggested a number of adverse events that could affect the Mentcare system.
Draw up a test plan for this system that sets out how you could test the ability of the Mentcare
system to recognize, resist, and recover from these events.

14.10.	 �A senior manager in a company is concerned about insider attacks from disaffected staff on
the company’s IT assets. As part of a resilience improvement program, she proposes that a
logging system and data analysis software be introduced to capture and analyze all employee
actions but that employees should not be told about this system. Discuss the ethics of both
introducing a logging system and doing so without telling system users.

	 Chapter 14  ■  Exercises   433

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/security-and-resilience

R e f e r e n c e s

Ellison, R. J., R. C. Linger, T. Longstaff, and N. R. Mead. 1999. “Survivable Network System Analysis:
A Case Study.” IEEE Software 16 (4): 70–77. doi:10.1109/52.776952.

Ellison, R. J., R. C. Linger, H. Lipson, N. R. Mead, and A. Moore. 2002. “Foundations of Survivable
Systems Engineering.” Crosstalk: The Journal of Defense Software Engineering 12: 10–15.
http://resources.sei.cmu.edu/asset_files/WhitePaper/2002_019_001_77700.pdf

Hollnagel, E. 2006. “Resilience—the Challenge of the Unstable.” In Resilience Engineering: Concepts
and Precepts, edited by E. Hollnagel, D. D. Woods, and N.G. Leveson, 9–18.

	   . 2010. “RAG—The Resilience Analysis Grid.” In Resilience Engineering in Practice, edited by
E. Hollnagel, J. Paries, D. Woods, and J. Wreathall, 275–295. Farnham, UK: Ashgate Publishing Group.

InfoSecurity. 2013. “Global Cybercrime, Espionage Costs $100–$500 Billion Per Year.” http://www
.infosecurity-magazine.com/view/33569/global-cybercrime-espionage-costs-100500-billion-per-year

Laprie, J-C. 2008. “From Dependability to Resilience.” In 38th Int. Conf. on Dependable Systems and
Networks. Anchorage, Alaska. http://2008.dsn.org/fastabs/dsn08fastabs_laprie.pdf

Reason, J. 2000. “Human Error: Models and Management.” British Medical J. 320: 768–770.
doi:10.1136/bmj.320.7237.768.

434   Chapter 14  ■  Resilience engineering

http://resources.sei.cmu.edu/asset_files/WhitePaper/2002_019_001_77700.pdf
http://www.infosecurity-magazine.com/view/33569/global-cybercrime-espionage-costs-100500-billion-per-year
http://2008.dsn.org/fastabs/dsn08fastabs_laprie.pdf
http://www.infosecurity-magazine.com/view/33569/global-cybercrime-espionage-costs-100500-billion-per-year

PART

This part of the book covers more advanced software engineering topics.
I assume in these chapters that readers understand the basics of the disci-
pline, covered in Chapters 1–9.

Chapters 15–18 focus on the dominant development paradigm for web-
based information systems and enterprise systems—software reuse.
Chapter 15 introduces the topic and explains the different types of reuse
that are possible. I then cover the most common approach to reuse,
which is the reuse of application systems. These are configured and
adapted to the specific needs of each business.

Chapter 16 is concerned with the reuse of software components rather
than entire software systems. In this chapter, I explain what is meant by a
component and why standard component models are needed for effec-
tive component reuse. I also discuss the general process of component-
based software engineering and the problems of component composition.

The majority of large systems are now distributed systems and Chapter 17
covers issues and problems of building distributed systems. I introduce
the client-server approach as a fundamental paradigm of distributed sys-
tems engineering, and explain ways of implementing this architectural
style. The final section explains software as a service–the delivery of soft-
ware functionality over the Internet, which has changed the market for
software products.

3 Advanced
Software
Engineering

Chapter 18 introduces the related topic of service-oriented architectures,
which link the notions of distribution and reuse. Services are reusable
software components whose functionality can be accessed over the
Internet. I discuss two widely-used approaches to service development
namely SOAP-based and RESTful services. I explain what is involved in
creating services (service engineering) and composing services to create
new software systems.

The focus of Chapters 19–21 is systems engineering. In Chapter 19,
I introduce the topic and explain why it is important that software
engineers should understand systems engineering. I discuss the sys-
tems engineering life cycle and the importance of procurement in that
life-cycle.

Chapter 20 covers systems of systems (SoS). The large systems that we
will build in the 21st century will not be developed from scratch but will
be created by integrating existing complex systems. I explain why an
understanding of complexity is important in SoS development and dis-
cuss architectural patterns for complex systems of systems.

Most software systems are not apps or business systems but are embed-
ded real-time systems. Chapter 21 covers this important topic. I introduce
the idea of a real-time embedded system and describe architectural pat-
terns that are used in embedded systems design. I then explain the pro-
cess of timing analysis and conclude the chapter with a discussion of
real-time operating systems.

Software reuse
15

Objectives
The objectives of this chapter are to introduce software reuse and to
describe approaches to system development based on large-scale
software reuse. When you have read this chapter, you will:

■	 understand the benefits and problems of reusing software when
developing new systems;

■	 understand the concept of an application framework as a set of
reusable objects and how frameworks can be used in application
development;

■	 have been introduced to software product lines, which are made up
of a common core architecture and reusable components that are
configured for each version of the product;

■	 have learned how systems can be developed by configuring and
composing off-the-shelf application software systems.

Contents
15.1	 The reuse landscape

15.2	 Application frameworks

15.3	 Software product lines

15.4	 Application system reuse

438    Chapter 15  ■  Software reuse

Reuse-based software engineering is a software engineering strategy where the
development process is geared to reusing existing software. Until around 2000,
systematic software reuse was uncommon, but it is now used extensively in the
development of new business systems. The move to reuse-based development has
been in response to demands for lower software production and maintenance costs,
faster delivery of systems, and increased software quality. Companies see their
software as a valuable asset. They are promoting reuse of existing systems to
increase their return on software investments.

Reusable software of different kinds is now widely available. The open-source
movement has meant that there is a huge code base that can be reused. This may be in
the form of program libraries or entire applications. Many domain-specific application
systems, such as ERP systems, are available that can be tailored and adapted to cus-
tomer requirements. Some large companies provide a range of reusable components
for their customers. Standards, such as web service standards, have made it easier to
develop software services and reuse them across a range of applications.

Reuse-based software engineering is an approach to development that tries to
maximize the reuse of existing software. The software units that are reused may be
of radically different sizes. For example:

1.	 System reuse Complete systems, which may be made up of a number of
application programs, may be reused as part of a system of systems (Chapter 20).

2.	 Application reuse An application may be reused by incorporating it without
change into other systems or by configuring the application for different
customers. Alternatively, application families or software product lines that
have a common architecture, but that are adapted to individual customer
requirements, may be used to develop a new system.

3.	 Component reuse Components of an application, ranging in size from subsys-
tems to single objects, may be reused. For example, a pattern-matching system
developed as part of a text-processing system may be reused in a database
management system. Components may be hosted on the cloud or on private
servers and may be accessible through an application programming interface
(API) as services.

4.	 Object and function reuse Software components that implement a single func-
tion, such as a mathematical function, or an object class may be reused. This
form of reuse, designed around standard libraries, has been common for the past
40 years. Many libraries of functions and classes are freely available. You reuse
the classes and functions in these libraries by linking them with newly devel-
oped application code. In areas such as mathematical algorithms and graphics,
where specialized, expensive expertise is needed to develop efficient objects
and functions, reuse is particularly cost-effective.

All software systems and components that include generic functionality are
potentially reusable. However, these systems or components are sometimes so

	 Chapter 15  ■  Software reuse    439

specific that it is very expensive to modify them for a new situation. Rather than
reuse the code, however, you can reuse the ideas that are the basis of the software.
This is called concept reuse.

In concept reuse you do not reuse a software component; rather, you reuse an
idea, a way of working, or an algorithm. The concept that you reuse is represented in
an abstract notation, such as a system model, which does not include implementation
detail. It can, therefore, be configured and adapted for a range of situations. Concept
reuse is embodied in approaches such as design patterns (Chapter 7), configurable
system products, and program generators. When concepts are reused, the reuse pro-
cess must include an activity where the abstract concepts are instantiated to create
executable components.

An obvious advantage of software reuse is that overall development costs are
lower. Fewer software components need to be specified, designed, implemented,
and validated. However, cost reduction is only one benefit of software reuse. I have
listed other advantages of reusing software in Figure 15.1.

However, there are costs and difficulties associated with reuse (Figure 15.2).
There is a significant cost associated with understanding whether or not a compo-
nent is suitable for reuse in a particular situation, and in testing that component to
ensure its dependability. These additional costs mean that the savings in develop-
ment costs may not be less than anticipated. However, the other benefits of reuse
still apply.

Figure 15.1  Benefits
of software reuse

Benefit Explanation

Accelerated development Bringing a system to market as early as possible is often more important
than overall development costs. Reusing software can speed up system
production because both development and validation time may be reduced.

Effective use of specialists Instead of doing the same work over and over again, application specialists
can develop reusable software that encapsulates their knowledge.

Increased dependability Reused software, which has been tried and tested in working systems,
should be more dependable than new software. Its design and
implementation faults should have been found and fixed.

Lower development costs Development costs are proportional to the size of the software being
developed. Reusing software means that fewer lines of code have to be written.

Reduced process risk The cost of existing software is already known, while the costs of
development are always a matter of judgment. This is an important factor for
project management because it reduces the margin of error in project cost
estimation. This is especially true when large software components such as
subsystems are reused.

Standards compliance Some standards, such as user interface standards, can be implemented as a
set of reusable components. For example, if menus in a user interface are
implemented using reusable components, all applications present the same
menu formats to users. The use of standard user interfaces improves
dependability because users make fewer mistakes when presented with a
familiar interface.

440    Chapter 15  ■  Software reuse

As I discussed in Chapter 2, software development processes have to be adapted
to take reuse into account. In particular, there has to be a requirements refinement
stage where the requirements for the system are modified to reflect the reusable soft-
ware that is available. The design and implementation stages of the system may also
include explicit activities to look for and evaluate candidate components for reuse.

	 15.1 	 The reuse landscape

Over the past 20 years, many techniques have been developed to support software
reuse. These techniques exploit the facts that systems in the same application domain
are similar and have potential for reuse, that reuse is possible at different levels from
simple functions to complete applications, and that standards for reusable compo-
nents facilitate reuse. Figure 15.3 shows the “reuse landscape”—different ways of
implementing software reuse. Each of these approaches to reuse is briefly described
in Figure 15.4.

Given this array of techniques for reuse, the key question is “which is the most
appropriate technique to use in a particular situation?” Obviously, the answer to this
question depends on the requirements for the system being developed, the technology

Problem Explanation

Creating, maintaining, and using a
component library

Populating a reusable component library and ensuring the software
developers can use this library can be expensive. Development
processes have to be adapted to ensure that the library is used.

Finding, understanding, and
adapting reusable components

Software components have to be discovered in a library, understood,
and sometimes adapted to work in a new environment. Engineers
must be reasonably confident of finding a component in the library
before they include a component search as part of their normal
development process.

Increased maintenance costs If the source code of a reused software system or component is not
available, then maintenance costs may be higher because the reused
elements of the system may become incompatible with changes
made to the system.

Lack of tool support Some software tools do not support development with reuse. It may
be difficult or impossible to integrate these tools with a component
library system. The software process assumed by these tools may not
take reuse into account. This is more likely to be the case for tools
that support embedded systems engineering than for object-oriented
development tools.

“Not-invented-here” syndrome Some software engineers prefer to rewrite components because they
believe they can improve on them. This is partly to do with trust and
partly to do with the fact that writing original software is seen as
more challenging than reusing other people’s software.

Figure 15.2  Problems
with software reuse

	 15.1  ■  The reuse landscape    441

Design
patterns

Architectural
patterns

Application
frameworks

Software product
lines

Application
system integration ERP systems

Systems of
systems

Configurable
application systems

Legacy system
wrapping

Component-based
software engineering

Model-driven
engineering

Service-oriented
systems

Aspect-oriented
software engineering

Program
generators

Program
libraries

Figure 15.3  The reuse
landscape

and reusable assets available, and the expertise of the development team. Key factors
that you should consider when planning reuse are:

1.	 The development schedule for the software If the software has to be developed
quickly, you should try to reuse complete systems rather than individual compo-
nents. Although the fit to requirements may be imperfect, this approach mini-
mizes the amount of development required.

2.	 The expected software lifetime If you are developing a long-lifetime system,
you should focus on the maintainability of the system. You should not just think
about the immediate benefits of reuse but also of the long-term implications.

	 Over its lifetime, you will have to adapt the system to new requirements, which
will mean making changes to parts of the system. If you do not have access to
the source code of the reusable components, you may prefer to avoid off-the-
shelf components and systems from external suppliers. These suppliers may not
be able to continue support for the reused software. You may decide that it is
safer to reuse open-source systems and components (Chapter 7) as this means
you can access and keep copies of the source code.

3.	 The background, skills and experience of the development team All reuse tech-
nologies are fairly complex, and you need quite a lot of time to understand and
use them effectively. Therefore, you should focus your reuse effort in areas
where your development team has expertise.

4.	 The criticality of the software and its non-functional requirements For a critical
system that has to be certified by an external regulator you may have to create a
safety or security case for the system (discussed in Chapter 12). This is difficult
if you don’t have access to the source code of the software. If your software has
stringent performance requirements, it may be impossible to use strategies such
as model-driven engineering (MDE) (Chapter 5). MDE relies on generating
code from a reusable domain-specific model of a system. However, the code
generators used in MDE often generate relatively inefficient code.

442    Chapter 15  ■  Software reuse

5.	 The application domain In many application domains, such as manufacturing
and medical information systems, there are generic products that may be reused
by configuring them to a local situation. This is one of the most effective
approaches to reuse, and it is almost always cheaper to buy rather than build a
new system.

Approach Description

Application frameworks Collections of abstract and concrete classes are adapted and
extended to create application systems.

Application system integration Two or more application systems are integrated to provide extended
functionality.

Architectural patterns Standard software architectures that support common types of
application system are used as the basis of applications. Described in
Chapters 6, 11, and 17.

Aspect-oriented software
development

Shared components are woven into an application at different places
when the program is compiled. Described in web Chapter 31.

Component-based software
engineering

Systems are developed by integrating components (collections of
objects) that conform to component-model standards. Described in
Chapter 16.

Configurable application systems Domain-specific systems are designed so that they can be configured
to the needs of specific system customers.

Design patterns Generic abstractions that occur across applications are represented
as design patterns showing abstract and concrete objects and
interactions. Described in Chapter 7.

ERP systems Large-scale systems that encapsulate generic business functionality
and rules are configured for an organization.

Legacy system wrapping Legacy systems (Chapter 9) are “wrapped” by defining a set of
interfaces and providing access to these legacy systems through
these interfaces.

Model-driven engineering Software is represented as domain models and implementation
independent models, and code is generated from these models.
Described in Chapter 5.

Program generators A generator system embeds knowledge of a type of application and
is used to generate systems in that domain from a user-supplied
system model.

Program libraries Class and function libraries that implement commonly used
abstractions are available for reuse.

Service-oriented systems Systems are developed by linking shared services, which may be
externally provided. Described in Chapter 18.

Software product lines An application type is generalized around a common architecture so
that it can be adapted for different customers.

Systems of systems Two or more distributed systems are integrated to create a new
system. Described in Chapter 20.

Figure 15.4 
Approaches that
support software
reuse

	 15.2  ■  Application frameworks    443

6.	 The platform on which the system will run Some components models, such as
.NET, are specific to Microsoft platforms. Similarly, generic application sys-
tems may be platform-specific, and you may only be able to reuse these if your
system is designed for the same platform.

The range of available reuse techniques is such that, in most situations, there is the
possibility of some software reuse. Whether or not reuse is achieved is often a manage-
rial rather than a technical issue. Managers may be unwilling to compromise their
requirements to allow reusable components to be used. They may not understand the
risks associated with reuse as well as they understand the risks of original development.
Although the risks of new software development may be higher, some managers may
prefer known risks of development to unknown risks of reuse. To promote company-
wide reuse, it may be necessary to introduce a reuse program that focuses on the creation
of reusable assets and processes to facilitate reuse (Jacobsen, Griss, and Jonsson 1997).

	 15.2 	 Application frameworks

Early enthusiasts for object-oriented development suggested that one of the key ben-
efits of using an object-oriented approach was that objects could be reused in differ-
ent systems. However, experience has shown that objects are often too fine-grained
and are often specialized for a particular application. It often takes longer to under-
stand and adapt the object than to reimplement it. It has now become clear that
object-oriented reuse is best supported in an object-oriented development process
through larger-grain abstractions called frameworks.

As the name suggests, a framework is a generic structure that is extended to cre-
ate a more specific subsystem or application. Schmidt et al. (Schmidt et al. 2004)
define a framework to be

an integrated set of software artifacts (such as classes, objects and components) that
collaborate to provide a reusable architecture for a family of related applications.†

 Frameworks provide support for generic features that are likely to be used in all appli-
cations of a similar type. For example, a user interface framework will provide support

Generator-based reuse

Generator-based reuse involves incorporating reusable concepts and knowledge into automated tools and
providing an easy way for tool users to integrate specific code with this generic knowledge. This approach is
usually most effective in domain-specific applications. Known solutions to problems in that domain are
embedded in the generator system and selected by the user to create a new system.

http://software-engineering-book.com/web/generator-reuse/

†Schmidt, D. C., A. Gokhale, and B. Natarajan. 2004. “Leveraging Application Frameworks.” ACM
Queue 2 (5 (July/August)): 66–75. doi:10.1145/1016998.1017005.

http://software-engineering-book.com/web/generator-reuse

444    Chapter 15  ■  Software reuse

for interface event handling and will include a set of widgets that can be used to construct
displays. It is then left to the developer to specialize these by adding specific functionality
for a particular application. For example, in a user interface framework, the developer
defines display layouts that are appropriate to the application being implemented.

Frameworks support design reuse in that they provide a skeleton architecture for
the application as well as the reuse of specific classes in the system. The architecture
is implemented by the object classes and their interactions. Classes are reused
directly and may be extended using features such as inheritance and polymorphism.

Frameworks are implemented as a collection of concrete and abstract object
classes in an object-oriented programming language. Therefore, frameworks are
language-specific. Frameworks are available in commonly used object-oriented
programming languages such as Java, C#, and C++, as well as in dynamic languages
such as Ruby and Python. In fact, a framework can incorporate other frameworks,
where each framework is designed to support the development of part of the applica-
tion. You can use a framework to create a complete application or to implement part
of an application, such as the graphical user interface.

The most widely used application frameworks are web application frameworks
(WAFs), which support the construction of dynamic websites. The architecture of a
WAF is usually based on the Model-View-Controller (MVC) Composite pattern shown
in Figure 15.5. The MVC pattern was originally proposed in the 1980s as an approach
to GUI design that allowed for multiple presentations of an object and separate styles
of interaction with each of these presentations. In essence, it separates the state from
its presentation so that the state may be updated from each presentation.

An MVC framework supports the presentation of data in different ways and
allows interaction with each of these presentations. When the data is modified
through one of the presentations, the system model is changed and the controllers
associated with each view update their presentation.

Frameworks are often implementations of design patterns, as discussed in Chapter 7.
For example, an MVC framework includes the Observer pattern, the Strategy pattern, the
Composite pattern, and a number of others that are discussed by Gamma et al. (Gamma et
al. 1995). The general nature of patterns and their use of abstract and concrete classes allow
for extensibility. Without patterns, frameworks would almost certainly be impractical.

Model methods

Controller methods View methods

User
inputs

view modification
messages

Model edits

Model queries
and updates

Controller state View state

Model state

Figure 15.5  The
Model-View-Controller
pattern

	 15.2  ■  Application frameworks    445

While each framework includes slightly different functionality, web application
frameworks usually provide components and classes that support:

1.	 Security WAFs may include classes to help implement user authentication
(login) and access control to ensure that users can only access permitted func-
tionality in the system.

2.	 Dynamic web pages Classes are provided to help you define web page templates
and to populate these dynamically with specific data from the system database.

3.	 Database integration Frameworks don’t usually include a database but assume
that a separate database, such as MySQL, will be used. The framework may
include classes that provide an abstract interface to different databases.

4.	 Session management Classes to create and manage sessions (a number of inter-
actions with the system by a user) are usually part of a WAF.

5.	 User interaction Web frameworks provide AJAX (Holdener 2008) and/or
HTML5 support (Sarris 2013), which allows interactive web pages to be cre-
ated. They may include classes that allow device-independent interfaces to be
created, which adapt automatically to mobile phones and tablets.

To implement a system using a framework, you add concrete classes that inherit
operations from abstract classes in the framework. In addition, you define
“callbacks”—methods that are called in response to events recognized by the frame-
work. The framework objects, rather than the application-specific objects, are
responsible for control in the system. Schmidt et al. (Schmidt, Gokhale, and
Natarajan 2004) call this “inversion of control.”

In response to events from the user interface and database framework objects
invoke “hook methods” that are then linked to user-provided functionality. The user-
provided functionality defines how the application should respond to the event
(Figure 15.6). For example, a framework will have a method that handles a mouse
click from the environment. This method is called the hook method, which you must
configure to call the appropriate application methods to handle the mouse click.

Application-specific classes

GUI

Database

Event
loop

Callbacks

Event
loop

Platform Event
loop

CallbacksCallbacks

Figure 15.6  Inversion of
control in frameworks

446    Chapter 15  ■  Software reuse

Fayad and Schmidt (Fayad and Schmidt 1997) discuss three other classes of
framework:

1.	 System infrastructure frameworks support the development of system infra-
structures such as communications, user interfaces, and compilers.

2.	 Middleware integration frameworks consist of a set of standards and associated
object classes that support component communication and information
exchange. Examples of this type of framework include Microsoft’s .NET and
Enterprise Java Beans (EJB). These frameworks provide support for standard-
ized component models, as discussed in Chapter 16.

3.	 Enterprise application frameworks are concerned with specific application
domains such as telecommunications or financial systems (Baumer et al. 1997).
These embed application domain knowledge and support the development of
end-user applications. These are not now widely used and have been largely
superseded by software product lines.†

Applications that are constructed using frameworks can be the basis for further
reuse through the concept of software product lines or application families. Because
these applications are constructed using a framework, modifying family members to
create instances of the system is often a straightforward process. It involves rewrit-
ing concrete classes and methods that you have added to the framework.

Frameworks are a very effective approach to reuse. However, they are expensive to
introduce into software development processes as they are inherently complex and it can
take several months to learn to use them. It can be difficult and expensive to evaluate
available frameworks to choose the most appropriate one. Debugging framework-based
applications is more difficult than debugging original code because you may not under-
stand how the framework methods interact. Debugging tools may provide information
about the reused framework components, which the developer does not understand.

	 15.3 	 Software product lines

When a company has to support a number of similar but not identical systems, one of the
most effective approaches to reuse is to create a software product line. Hardware control
systems are often developed using this approach to reuse as are domain-specific applica-
tions in areas such as logistics or medical systems. For example, a printer manufacturer
has to develop printer control software, where there is a specific version of the product
for each type of printer. These software versions have much in common, so it makes
sense to create a core product (the product line) and adapt this for each printer type.

A software product line is a set of applications with a common architecture and
shared components, with each application specialized to reflect specific customer
requirements. The core system is designed so that it can be configured and adapted to

†Fayad, M. E., and D. C. Schmidt. 1997. “Object-Oriented Application Frameworks.” Comm. ACM 40 (10):
32–38. doi:10.1145/262793.262798.

	 15.3  ■  Software product lines    447

suit the needs of different customers or equipment. This may involve the configuration
of some components, implementing additional components, and modifying some of
the components to reflect new requirements.

Developing applications by adapting a generic version of the application means
that a high proportion of the application code is reused in each system. Testing is
simplified because tests for large parts of the application may also be reused, thus
reducing the overall application development time. Engineers learn about the appli-
cation domain through the software product line and so become specialists who can
work quickly to develop new applications.

Software product lines usually emerge from existing applications. That is, an
organization develops an application and then, when a similar system is required,
informally reuses code from this in the new application. The same process is used as
other similar applications are developed. However, change tends to corrupt application
structure so, as more new instances are developed, it becomes increasingly difficult to
create a new version. Consequently, a decision to design a generic product line may
then be made. This involves identifying common functionality in product instances
and developing a base application, which is then used for future development.

This base application (Figure 15.7) is designed to simplify reuse and reconfigura-
tion. Generally, a base application includes:

1.	 Core components that provide infrastructure support. These are not usually
modified when developing a new instance of the product line.

2.	 Configurable components that may be modified and configured to specialize them
to a new application. Sometimes it is possible to reconfigure these components
without changing their code by using a built-in component configuration language.

3.	 Specialized, domain-specific components some or all of which may be replaced
when a new instance of a product line is created.

Application frameworks and software product lines have much in common. They
both support a common architecture and components, and require new development
to create a specific version of a system. The main differences between these
approaches are as follows:

1.	 Application frameworks rely on object-oriented features such as inheritance and
polymorphism to implement extensions to the framework. Generally, the framework

Core
components

Configurable application
components

Specialized application components

Figure 15.7  The
organization of a base
system for a product line

448    Chapter 15  ■  Software reuse

code is not modified, and the possible modifications are limited to whatever is sup-
ported by the framework. Software product lines are not necessarily created using
an object-oriented approach. Application components are changed, deleted, or
rewritten. There are no limits, in principle at least, to the changes that can be made.

2.	 Most application frameworks provide general support rather than domain-specific
support. For example, there are application frameworks to create web-based
applications. A software product line usually embeds detailed domain and plat-
form information. For example, there could be a software product line con-
cerned with web-based applications for health record management.

3.	 Software product lines are often control applications for equipment. For exam-
ple, there may be a software product line for a family of printers. This means
that the product line has to provide support for hardware interfacing. Application
frameworks are usually software-oriented, and they do not usually include hard-
ware interaction components.

4.	 Software product lines are made up of a family of related applications, owned by
the same organization. When you create a new application, your starting point is
often the closest member of the application family, not the generic core application.

If you are developing a software product line using an object-oriented program-
ming language, then you may use an application framework as a basis for the system.
You create the core of the product line by extending the framework with domain-
specific components using its built-in mechanisms. There is then a second phase of
development where versions of the system for different customers are created. For
example, you can use a web-based framework to build the core of a software product
line that supports web-based help desks. This “help desk product line” may then be
further specialized to provide particular types of help desk support.

The architecture of a software product line often reflects a general, application-
specific architectural style or pattern. For example, consider a product-line system
that is designed to handle vehicle dispatching for emergency services. Operators of
this system take calls about incidents, find the appropriate vehicle to respond to the
incident, and dispatch the vehicle to the incident site. The developers of such a
system may market versions of it for police, fire, and ambulance services.

This vehicle dispatching system is an example of a generic resource allocation
and management architecture (Figure 15.8). Resource management systems use a
database of available resources and include components to implement the resource
allocation policy that has been decided by the company using the system. Users
interact with a resource management system to request and release resources and to
ask questions about resources and their availability.

You can see how this four-layer structure may be instantiated in Figure 15.9,
which shows the modules that might be included in a vehicle dispatching system
product line. The components at each level in the product-line system are as follows:

1.	 At the interaction level, components provide an operator display interface and
an interface with the communications systems used.

	 15.3  ■  Software product lines    449

2.	 At the I/O management level (level 2), components handle operator authentication,
generate reports of incidents and vehicles dispatched, support map output and route
planning, and provide a mechanism for operators to query the system databases.

3.	 At the resource management level (level 3), components allow vehicles to be
located and dispatched, update the status of vehicles and equipment, and log
details of incidents.

4.	 At the database level, as well as the usual transaction management support,
there are separate databases of vehicles, equipment, and maps.

User interface

Resource
tracking

Resource policy
control

Resource
allocation

User
authentication

Query
management

Resource database

Resource
delivery

Transaction management

Interaction

I/O management

Resource management

Database management

Figure 15.8  The
architecture of a
resource management
system

I/O management
Operator interface

Vehicle status
manager

Incident
logger

Resource managementOperator
authentication

Query
manager

Equipment
database

Map and route
planner

Transaction management

Vehicle database

Incident log

Map database

Vehicle
dispatcher

Equipment
manager

Vehicle
locator

Report
generator

Comms system
interface

Database management

Resource management

I/O management

Interaction

Figure 15.9  A product-
line architecture
of a vehicle
dispatcher system

450    Chapter 15  ■  Software reuse

To create a new instance of this system, you may have to modify individual com-
ponents. For example, the police have a large number of vehicles but a relatively
small number of vehicle types. By contrast, the fire service has many types of spe-
cialized vehicles but relatively few vehicles. Therefore, when you are implementing
a system for these different services, you may have to define a different vehicle
database structure.

Various types of specialization of a software product line may be developed:

1.	 Platform specialization Versions of the application may be developed for differ-
ent platforms. For example, versions of the application may exist for Windows,
Mac OS, and Linux platforms. In this case, the functionality of the application is
normally unchanged; only those components that interface with the hardware
and operating system are modified.

2.	 Environment specialization Versions of the application may be created to handle
different operating environments and peripheral devices. For example, a system
for the emergency services may exist in different versions, depending on the
communications hardware used by each service. For example, police radios may
have built-in encryption that has to be used. The product-line components are
changed to reflect the functionality and characteristics of the equipment used.

3.	 Functional specialization Versions of the application may be created for specific
customers who have different requirements. For example, a library automation
system may be modified depending on whether it is used in a public library, a
reference library, or a university library. In this case, components that implement
functionality may be modified and new components added to the system.

4.	 Process specialization The system may be adapted to cope with specific business
processes. For example, an ordering system may be adapted to cope with a central-
ized ordering process in one company and with a distributed process in another.

Figure 15.10 shows the process for extending a software product line to create a
new application. The activities in this process are:

1.	 Elicit stakeholder requirements You may start with a normal requirements engi-
neering process. However, because a system already exists, you can demon-
strate the system and have stakeholders experiment with it, expressing their
requirements as modifications to the functions provided.

Elicit
stakeholder

requirements

Choose
closest-fit

system instance
Deliver new

system instance

Renegotiate
requirements

Adapt existing
system

Figure 15.10  Product
instance development

	 15.3  ■  Software product lines    451

2.	 Select the existing system that is the closest fit to the requirements When creat-
ing a new member of a product line, you may start with the nearest product
instance. The requirements are analyzed, and the family member that is the clos-
est fit is chosen for modification.

3.	 Renegotiate requirements As more details of required changes emerge and the
project is planned, some requirements may be renegotiated with the customer to
minimize the changes that will have to be made to the base application.

4.	 Adapt existing system New modules are developed for the existing system, and
existing system modules are adapted to meet the new requirements.

5.	 Deliver new product family member The new instance of the product line is
delivered to the customer. Some deployment-time configuration may be
required to reflect the particular environments where the system will be used. At
this stage, you should document its key features so that it may be used as a basis
for other system developments in the future.

When you create a new member of a product line, you may have to find a com-
promise between reusing as much of the generic application as possible and satis-
fying detailed stakeholder requirements. The more detailed the system
requirements, the less likely it is that the existing components will meet these
requirements. However, if stakeholders are willing to be flexible and to limit the
system modifications that are required, you can usually deliver the system more
quickly and at a lower cost.

Software product lines are designed to be reconfigurable. This reconfigura-
tion may involve adding or removing components from the system, defining
parameters and constraints for system components, and including knowledge of
business processes. This configuration may occur at different stages in the devel-
opment process:

1.	 Design-time configuration The organization that is developing the software
modifies a common product-line core by developing, selecting, or adapting
components to create a new system for a customer.

2.	 Deployment-time configuration A generic system is designed for configuration
by a customer or consultants working with the customer. Knowledge of the
customer’s specific requirements and the system’s operating environment is
embedded in the configuration data used by the generic system.

When a system is configured at design time, the supplier starts with either a
generic system or an existing product instance. By modifying and extending mod-
ules in this system, the supplier creates a specific system that delivers the required
customer functionality. This usually involves changing and extending the source
code of the system so that greater flexibility is possible than with deployment-
time configuration.

452    Chapter 15  ■  Software reuse

Design-time configuration is used when it is impossible to use the existing
deployment-time configuration facilities in a system to develop a new system
version. However, over time, when you have created several family members with
comparable functionality, you may decide to refactor the core product line to include
functionality that has been implemented in several application family members. You
then make that new functionality configurable when the system is deployed.

Deployment-time configuration involves using a configuration tool to create a
specific system configuration that is recorded in a configuration database or as a set
of configuration files (Figure 15.11). The executing system, which may either run on
a server or as a stand-alone system on a PC, consults this database when executing so
that its functionality may be specialized to its execution context.

Several levels of deployment-time configuration may be provided in a system:

1.	 Component selection, where you select the modules in a system that provide the
required functionality. For example, in a patient information system, you may
select an image management component that allows you to link medical images
(X-rays, CT scans, etc.) to the patient’s medical record.

2.	 Workflow and rule definition, where you define workflows (how information is
processed, stage by stage), and validation rules that should apply to information
entered by users or generated by the system.

3.	 Parameter definition, where you specify the values of specific system parameters
that reflect the instance of the application that you are creating. For example, you
may specify the maximum length of fields for data input by a user or the charac-
teristics of hardware attached to the system.

Deployment-time configuration can be very complex, and for large systems, it may
take several months to configure and test a system for a customer. Large configurable
systems may support the configuration process by providing software tools, such as
planning tools, to support the configuration process. I discuss deployment-time con-
figuration further in Section 15.4.1. This discussion covers the reuse of application
systems that have to be configured to work in different operational environments.

Configuration
database

System database

Generic system

Configuration
planning tool

Figure 15.11 
Deployment-time
configuration

	 15.4  ■  Application system reuse    453

	 15.4 	 Application system reuse

An application system product is a software system that can be adapted to the needs
of different customers without changing the source code of the system. Application
systems are developed by a system vendor for a general market; they are not spe-
cially developed for an individual customer. These system products are sometimes
known as COTS (Commercial Off-the Shelf System) products. However, the term
“COTS” is mostly used in military systems, and I prefer to call these system prod-
ucts application systems.

Virtually all desktop software for business and many server-based systems are
application systems. This software is designed for general use, so it includes many
features and functions. It therefore has the potential to be reused in different environ-
ments and as part of different applications. Torchiano and Morisio (Torchiano and
Morisio 2004) also discovered that open-source products were often used without
change and without looking at the source code.

Application system products are adapted by using built-in configuration mecha-
nisms that allow the functionality of the system to be tailored to specific customer
needs. For example, in a hospital patient record system, separate input forms and
output reports might be defined for different types of patients. Other configuration
features may allow the system to accept plug-ins that extend functionality or check
user inputs to ensure that they are valid.

This approach to software reuse has been very widely adopted by large com-
panies since the late 1990s, as it offers significant benefits over customized soft-
ware development:

1.	 As with other types of reuse, more rapid deployment of a reliable system may
be possible.

2.	 It is possible to see what functionality is provided by the applications, and so it
is easier to judge whether or not they are likely to be suitable. Other companies
may already use the applications, so experience of the systems is available.

3.	 Some development risks are avoided by using existing software. However, this
approach has its own risks, as I discuss below.

4.	 Businesses can focus on their core activity without having to devote a lot of
resources to IT systems development.

5.	 As operating platforms evolve, technology updates may be simplified as these
are the responsibility of the application system vendor rather than the customer.

Of course, this approach to software engineering has its own problems:

1.	 Requirements usually have to be adapted to reflect the functionality and mode
of operation of the off-the-shelf application system. This can lead to disruptive
changes to existing business processes.

454    Chapter 15  ■  Software reuse

2.	 The application system may be based on assumptions that are practically impos-
sible to change. The customer must therefore adapt its business to reflect these
assumptions.

3.	 Choosing the right application system for an enterprise can be a difficult process,
especially as many of these systems are not well documented. Making the wrong
choice means that it may be impossible to make the new system work as required.

4.	 There may be a lack of local expertise to support systems development.
Consequently, the customer has to rely on the vendor and external consultants
for development advice. This advice may be geared to selling products and ser-
vices, with insufficient time taken to understand the real needs of the customer.

5.	 The system vendor controls system support and evolution. It may go out of busi-
ness, be taken over, or make changes that cause difficulties for customers.

Application systems may be used as individual systems or in combination, where
two or more systems are integrated. Individual systems consist of a generic application
from a single vendor that is configured to customer requirements. Integrated systems
involve integrating the functionality of individual systems, often from different vendors,
to create a new application system. Figure 15.12 summarizes the differences between
these different approaches. I discuss application system integration in Section 15.4.2.

	 15.4.1 	 Configurable application systems

Configurable application systems are generic application systems that may be
designed to support a particular business type, business activity, or, sometimes, a
complete business enterprise. For example, a system produced for dentists may han-
dle appointments, reminders, dental records, patient recall, and billing. At a larger
scale, an Enterprise Resource Planning (ERP) system may support the manufactur-
ing, ordering, and customer relationship management processes in a large company.

Domain-specific application systems, such as systems to support a business function
(e.g., document management), provide functionality that is likely to be required by a
range of potential users. However, they also incorporate built-in assumptions about how

Configurable application systems Application system integration

Single product that provides the functionality
required by a customer

Several different application systems are
integrated to provide customized functionality

Based on a generic solution and standardized
processes

Flexible solutions may be developed for customer
processes

Development focus is on system configuration Development focus is on system integration

System vendor is responsible for maintenance System owner is responsible for maintenance

System vendor provides the platform for the system System owner provides the platform for the system

Figure 15.12 
Individual and
integrated application
systems

	 15.4  ■  Application system reuse    455

users work, and these assumptions may cause problems in specific situations. For exam-
ple, a system to support student registration in a university may assume that students will
be registered for one degree at one university. However, if universities collaborate to offer
joint degrees, then it may be practically impossible to represent this detail in the system.

Enterprise Resource Planning (ERP) systems, such as those produced by SAP and
Oracle, are large-scale, integrated systems designed to support business practices
such as ordering and invoicing, inventory management, and manufacturing schedul-
ing (Monk and Wagner 2013). The configuration process for these systems involves
gathering detailed information about the customer’s business and business pro-
cesses, and embedding this information in a configuration database. This often
requires detailed knowledge of configuration notations and tools and is usually car-
ried out by consultants working alongside system customers.

A generic ERP system includes a number of modules that may be composed in
different ways to create a system for a customer. The configuration process involves
choosing which modules are to be included, configuring these individual modules,
defining business processes and business rules, and defining the structure and organ-
ization of the system database. A model of the overall architecture of an ERP system
that supports a range of business functions is shown in Figure 15.13.

The key features of this architecture are as follows:

1.	 A number of modules to support different business functions. These are large grain
modules that may support entire departments or divisions of the business. In the
example shown in Figure 15.13, the modules that have been selected for inclusion
in the system are a module to support purchasing; a module to support supply chain
management; a logistics module to support the delivery of goods; and a customer
relationship management (CRM) module to maintain customer information.

2.	 A defined set of business process models, associated with each module, which
relate to activities in that module. For example, the ordering process model may
define how orders are created and approved. This will specify the roles and
activities involved in placing an order.

3.	 A common database that maintains information about all related business func-
tions. Thus, it should not be necessary to replicate information, such as cus-
tomer details, in different parts of the business.

System database

Business rules

Purchasing Supply chain Logistics CRM

Processes Processes Processes Processes

Figure 15.13  The
architecture of an
ERP system

456    Chapter 15  ■  Software reuse

4.	 A set of business rules that apply to all data in the database. Therefore, when
data is input from one function, these rules should ensure that it is consistent
with the data required by other functions. For example, a business rule may
require that all expense claims have to be approved by someone more senior
than the person making the claim.

ERP systems are used in almost all large companies to support some or all of their
functions. They are, therefore, a very widely used form of software reuse. The obvi-
ous limitation of this approach to reuse is that the functionality of the customer’s
application is restricted to the functionality of the ERP system’s built-in modules. If
a company needs additional functionality, it may have to develop a separate add-on
system to provide this functionality.

Furthermore, the buyer company’s processes and operations have to be defined in
the ERP system’s configuration language. This language embeds the understanding
of business processes as seen by the system vendor, and there may be a mismatch
between these assumptions and the concepts and processes used in the customer’s
business. A serious mismatch between the customer’s business model and the sys-
tem model used by the ERP system makes it highly probable that the ERP system
will not meet the customer’s real needs (Scott 1999).

For example, in an ERP system that was sold to a university, a fundamental system
concept was the notion of a customer. In this system, a customer was an external agent
that bought goods and services from a supplier. This concept caused great difficulties
when configuring the system. Universities do not really have customers. Rather, they
have customer-type relationships with a range of people and organizations such as
students, research funding agencies, and educational charities. None of these relation-
ships is compatible with a customer relationship where a person or business buys prod-
ucts or services from another. In this particular case, it took several months to resolve
this mismatch, and the final solution only partially met the university’s requirements.

ERP systems usually require extensive configuration to adapt them to the require-
ments of each organization where they are installed. This configuration may involve:

1.	 Selecting the required functionality from the system, for example, by deciding
what modules should be included.

2.	 Establishing a data model that defines how the organization’s data will be struc-
tured in the system database.

3.	 Defining business rules that apply to that data.

4.	 Defining the expected interactions with external systems.

5.	 Designing the input forms and the output reports generated by the system.

6.	 Designing new business processes that conform to the underlying process model
supported by the system.

7.	 Setting parameters that define how the system is deployed on its underlying
platform.

	 15.4  ■  Application system reuse    457

Once the configuration settings are completed, the new system is then ready for
testing. Testing is a major problem when systems are configured rather than pro-
grammed using a conventional language. There are two reasons for this:

1.	 Test automation may be difficult or impossible. There may be no easy access to
an API that can be used by testing frameworks such as JUnit, so the system has
to be tested manually by testers inputting test data to the system. Furthermore,
systems are often specified informally, so defining test cases may be difficult
without a lot of help from end-users.

2.	 Systems errors are often subtle and specific to business processes. The
application system or ERP system is a reliable platform, so technical system
failures are rare. The problems that occur are often due to misunderstand-
ings between those configuring the system and user stakeholders. System
testers without detailed knowledge of the end-user processes cannot detect
these errors.

	 15.4.2 	 Integrated application systems

Integrated application systems include two or more application systems or, some-
times, legacy systems. You may use this approach when no single application sys-
tem meets all of your needs or when you wish to integrate a new application system
with systems that you are already using. The component systems may interact
through their APIs or service interfaces if these are defined. Alternatively, they may
be composed by connecting the output of one system to the input of another or by
updating the databases used by the applications.

To develop integrated application systems, you have to make a number of
design choices:

1.	 Which individual application systems offer the most appropriate functionality?
Typically, several system products will be available, which can be combined in
different ways. If you don’t already have experience with a particular applica-
tion system, it can be difficult to decide which product is the most suitable.

2.	 How will data be exchanged? Different systems normally use unique data
structures and formats. You have to write adaptors that convert from one repre-
sentation to another. These adaptors are runtime systems that operate alongside
the constituent application systems.

3.	 What features of a product will actually be used? Individual application sys-
tems may include more functionality than you need, and functionality may be
duplicated across different products. You have to decide which features in what
product are most appropriate for your requirements. If possible, you should
also deny access to unused functionality because this can interfere with normal
system operation.

458    Chapter 15  ■  Software reuse

Consider the following scenario as an illustration of application system integration.
A large organization intends to develop a procurement system that allows staff to
place orders from their desk. By introducing this system across the organization, the
company estimates that it can save $5 million per year. By centralizing buying, the
new procurement system can ensure that orders are always made from suppliers who
offer the best prices and should reduce the administration associated with orders.
As with manual systems, the system involves choosing the goods available from a
supplier, creating an order, having the order approved, sending the order to a sup-
plier, receiving the goods, and confirming that payment should be made.

The company has a legacy ordering system that is used by a central procurement
office. This order processing software is integrated with an existing invoicing and
delivery system. To create the new ordering system, the legacy system is integrated
with a web-based e-commerce platform and an email system that handles commu-
nications with users. The structure of the final procurement system is shown in
Figure 15.14.

This procurement system should be a client–server system with standard web
browsing and email systems used on the client. On the server, the e-commerce
platform has to integrate with the existing ordering system through an adaptor. The
e-commerce system has its own format for orders, confirmations of delivery, and
so forth, and these have to be converted into the format used by the ordering sys-
tem. The e-commerce system uses the email system to send notifications to users,
but the ordering system was never designed for this purpose. Therefore, another
adaptor has to be written to convert the notifications from the ordering system into
email messages.

Months, sometimes years, of implementation effort can be saved, and the time to
develop and deploy a system can be drastically reduced by integrating existing appli-
cation systems. The procurement system described above was implemented and
deployed in a very large company in nine months. It had originally been estimated
that it would take three years to develop a procurement system in Java that could be
integrated with the legacy ordering system.

Client

Web browser Email system

Server

E-commerce
system

Ordering and
invoicing system

Email system

Adaptor

AdaptorFigure 15.14  An
integrated procurement
system

	 15.4  ■  Application system reuse    459

Application system integration can be simplified if a service-oriented approach
is used. Essentially, a service-oriented approach means allowing access to the
application system’s functionality through a standard service interface, with a
service for each discrete unit of functionality. Some applications may offer a ser-
vice interface, but sometimes this service interface has to be implemented by the
system integrator. Essentially, you have to program a wrapper that hides the
application and provides externally visible services (Figure 15.15). This approach
is particularly valuable for legacy systems that have to be integrated with newer
application systems.

In principle, integrating application systems is the same as integrating any other
component. You have to understand the system interfaces and use them exclusively
to communicate with the software; you have to trade off specific requirements
against rapid development and reuse; and you have to design a system architecture
that allows the application systems to operate together.

However, the fact that these products are usually large systems in their own right, and
are often sold as separate standalone systems, introduces additional problems. Boehm
and Abts (Boehm and Abts 1999) highlight four important system integration problems:

1.	 Lack of control over functionality and performance Although the published
interface of a product may appear to offer the required facilities, the system may
not be properly implemented or may perform poorly. The product may have
hidden operations that interfere with its use in a specific situation. Fixing these
problems may be a priority for the system integrator but may not be of real con-
cern for the product vendor. Users may simply have to find workarounds to
problems if they wish to reuse the application system.

2.	 Problems with system interoperability It is sometimes difficult to get individual
application systems to work together because each system embeds its own
assumptions about how it will be used. Garlan et al. (Garlan, Allen, and
Ockerbloom 1995), reporting on their experience integrating four application
systems, found that three of these products were event-based but that each used
a different model of events. Each system assumed that it had exclusive access to
the event queue. As a consequence, integration was very difficult. The project

Application
system

Service wrapper

ServicesServices
Figure 15.15 
Application wrapping

460    Chapter 15  ■  Software reuse

required five times as much effort as originally predicted. The schedule was
extended to two years rather than the predicted six months.

	 In a retrospective analysis of their work 10 years later, Garlan et al. (Garlan,
Allen, and Ockerbloom 2009) concluded that the integration problems that they
discovered had not been solved. Torchiano and Morisio (Torchiano and Morisio
2004) found that lack of compliance with standards in many application systems
meant that integration was more difficult than anticipated.

3.	 No control over system evolution Vendors of application systems make their own
decisions on system changes, in response to market pressures. For PC products in
particular, new versions are often produced frequently and may not be compatible
with all previous versions. New versions may have additional unwanted function-
ality, and previous versions may become unavailable and unsupported.

4.	 Support from system vendors The level of support available from system
vendors varies widely. Vendor support is particularly important when problems
arise as developers do not have access to the source code and detailed documen-
tation of the system. While vendors may commit to providing support, changing
market and economic circumstances may make it difficult for them to deliver
this commitment. For example, a system vendor may decide to discontinue a
product because of limited demand, or they may be taken over by another com-
pany that does not wish to support the products that have been acquired.

Boehm and Abts reckon that, in many cases, the cost of system maintenance and
evolution may be greater for integrated application systems. The above difficulties
are life-cycle problems; they don’t just affect the initial development of the system.
The further removed the people involved in the system maintenance become from
the original system developers, the more likely it is that difficulties will arise with the
integrated system.

K e y P o i n t s

■	 There are many different ways to reuse software. These range from the reuse of classes and
methods in libraries to the reuse of complete application systems.

■	 The advantages of software reuse are lower costs, faster software development, and lower risks.
System dependability is increased. Specialists can be used more effectively by concentrating
their expertise on the design of reusable components.

■	 Application frameworks are collections of concrete and abstract objects that are designed for
reuse through specialization and the addition of new objects. They usually incorporate good
design practice through design patterns.

	 Chapter 15  ■  Website    461

■	 Software product lines are related applications that are developed from one or more base appli-
cations. A generic system is adapted and specialized to meet specific requirements for function-
ality, target platform, or operational configuration.

■	 Application system reuse is concerned with the reuse of large-scale, off-the-shelf systems.
These provide a lot of functionality, and their reuse can radically reduce costs and development
time. Systems may be developed by configuring a single, generic application system or by inte-
grating two or more application systems.

■	 Potential problems with application system reuse include lack of control over functionality, per-
formance, and system evolution; the need for support from external vendors; and difficulties in
ensuring that systems can interoperate.

F u r t h e r R e a d i n g

“Overlooked Aspects of COTS-Based Development.” An interesting article that discusses a survey of
developers using a COTS-based approach, and the problems that they encountered. (M. Torchiano
and M. Morisio, IEEE Software, 21 (2), March–April 2004) http://dx.doi.org/10.1109/
MS.2004.1270770

CRUISE—Component Reuse in Software Engineering. This e-book covers a wide range of reuse top-
ics, including case studies, component-based reuse, and reuse processes. However, its coverage of
application system reuse is limited. (L. Nascimento et al., 2007) http://www.academia.edu/179616/
C.R.U.I.S.E_-_Component_Reuse_in_Software_Engineering

“Construction by Configuration: A New Challenge for Software Engineering.” In this invited paper,
I discuss the problems and difficulties of constructing a new application by configuring existing
systems. (I. Sommerville, Proc. 19th Australian Software Engineering Conference, 2008) http://dx.
doi.org/10.1109/ASWEC.2008.75

“Architectural Mismatch: Why Reuse Is Still So Hard.” This article looks back on an earlier paper
that discussed the problems of reusing and integrating a number of application systems. The
authors concluded that, although some progress has been made, there were still problems in
conflicting assumptions made by the designers of the individual systems. (D. Garlan et al., IEEE
Software, 26 (4), July–August 2009) http://dx.doi.org//10.1109/MS.2009.86

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-reuse/

http://dx.doi.org/10.1109/MS.2004.1270770
http://www.academia.edu/179616/C.R.U.I.S.E_-_Component_Reuse_in_Software_Engineering
http://dx.doi.org/10.1109/ASWEC.2008.75
http://dx.doi.org//10.1109/MS.2009.86
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-reuse
http://dx.doi.org/10.1109/MS.2004.1270770
http://www.academia.edu/179616/C.R.U.I.S.E_-_Component_Reuse_in_Software_Engineering
http://dx.doi.org/10.1109/ASWEC.2008.75

462    Chapter 15  ■  Software reuse

E x e r c i s e s

  15.1. 	�What major technical and nontechnical factors hinder software reuse? Do you personally
reuse much software and, if not, why not?

  15.2. 	�List the benefits of software reuse and explain why the expected lifetime of the software
should be considered when planning reuse.

  15.3. 	�How does the base application’s design in the product line simplify reuse and reconfiguration?

  15.4. 	�Explain what is meant by “inversion of control” in application frameworks. Explain why this
approach could cause problems if you integrated two separate systems that were originally
created using the same application framework.

  15.5. 	�Using the example of the weather station system described in Chapters 1 and 7, suggest a
product-line architecture for a family of applications that are concerned with remote monitor-
ing and data collection. You should present your architecture as a layered model, showing
the components that might be included at each level.

  15.6. 	�Most desktop software, such as word processing software, can be configured in a number of
different ways. Examine software that you regularly use and list the configuration options for
that software. Suggest difficulties that users might have in configuring the software. Micro-
soft Office (or one of its open-source alternatives) is a good example to use for this exercise.

  15.7.	� Why have many large companies chosen ERP systems as the basis for their organizational
information system? What problems may arise when deploying a large-scale ERP system in
an organization?

  15.8.	 �What are the significant benefits offered by the application system reuse approach when
compared with the custom software development approach?

  15.9.	 �Explain why adaptors are usually needed when systems are constructed by integrating
application systems. Suggest three practical problems that might arise in writing adaptor
software to link two application systems.

15.10. 	�The reuse of software raises a number of copyright and intellectual property issues. If a customer
pays a software contractor to develop a system, who has the right to reuse the developed code?
Does the software contractor have the right to use that code as a basis for a generic component?
What payment mechanisms might be used to reimburse providers of reusable components?
Discuss these issues and other ethical issues associated with the reuse of software.

R e f e r e n c e s

Baumer, D., G. Gryczan, R. Knoll, C. Lilienthal, D. Riehle, and H. Zullighoven. 1997. “Framework
Development for Large Systems.” Comm. ACM 40 (10): 52–59. doi:10.1145/262793.262804.

Boehm, B., and C. Abts. 1999. “COTS Integration: Plug and Pray?” Computer 32 (1): 135–138.
doi:10.1109/2.738311.

Fayad, M.E., and D.C. Schmidt. 1997. “Object-Oriented Application Frameworks.” Comm. ACM 40
(10): 32–38. doi:10.1145/262793.262798.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley.

Garlan, D., R. Allen, and J. Ockerbloom. 1995. “Architectural Mismatch: Why Reuse Is So Hard.” IEEE
Software 12 (6): 17–26. doi:10.1109/52.469757.

 ––––––. 2009. “Architectural Mismatch: Why Reuse Is Still so Hard.” IEEE Software 26 (4): 66–69.
doi:10.1109/MS.2009.86.

Holdener, A.T. 2008. Ajax: The Definitive Guide. Sebastopol, CA: O’Reilly and Associates.

Jacobsen, I., M. Griss, and P. Jonsson. 1997. Software Reuse. Reading, MA: Addison-Wesley.

Monk, E., and B. Wagner. 2013. Concepts in Enterprise Resource Planning, 4th ed. Independence,
KY: CENGAGE Learning.

Sarris, S. 2013. HTML5 Unleashed. Indianapolis, IN: Sams Publishing.

Schmidt, D. C., A. Gokhale, and B. Natarajan. 2004. “Leveraging Application Frameworks.” ACM
Queue 2 (5 (July/August)): 66–75. doi:10.1145/1016998.1017005.

Scott, J. E. 1999. “The FoxMeyer Drug’s Bankruptcy: Was It a Failure of ERP.” In Proc. Association for
Information Systems 5th Americas Conf. on Information Systems. Milwaukee, WI. http://www.uta.
edu/faculty/weltman/OPMA5364TW/FoxMeyer.pdf

Torchiano, M., and M. Morisio. 2004. “Overlooked Aspects of COTS-Based Development.” IEEE
Software 21 (2): 88–93. doi:10.1109/MS.2004.1270770.

	 Chapter 15  ■  References    463

http://www.uta.edu/faculty/weltman/OPMA5364TW/FoxMeyer.pdf
http://www.uta.edu/faculty/weltman/OPMA5364TW/FoxMeyer.pdf

16
Component-based
software engineering

Contents
16.1	 Components and component models

16.2	 CBSE processes

16.3	 Component composition

Objectives
The objective of this chapter is to describe an approach to software
reuse based on the composition of standardized, reusable
components. When you have read this chapter, you will:

■	 understand what is meant by a software component that may be
included in a program as an executable element;

■	 understand the key elements of software component models and
the support provided by middleware for these models;

■	 be aware of the key activities in the component-based software
engineering (CBSE) process for reuse and the CBSE process with
reuse;

■	 understand three different types of component composition and
some of the problems that have to be resolved when components
are composed to create new components or systems.

Component-based software engineering (CBSE) emerged in the late 1990s as an
approach to software systems development based on reusing software components.
Its creation was motivated by frustration that object-oriented development had not
led to extensive reuse, as had been originally suggested. Single-object classes were
too detailed and specific and often had to be bound with an application at compile-
time. You had to have detailed knowledge of the classes to use them, which usually
meant that you had to have the component source code. Selling or distributing
objects as individual reusable components was therefore practically impossible.

Components are higher-level abstractions than objects and are defined by their
interfaces. They are usually larger than individual objects, and all implementation
details are hidden from other components. Component-based software engineering
is the process of defining, implementing, and integrating or composing these loosely
coupled, independent components into systems.

CBSE has become as an important software development approach for large-
scale enterprise systems, with demanding performance and security requirements.
Customers are demanding secure and dependable software that is delivered and
deployed more quickly. The only way that these demands can be met is to build soft-
ware by reusing existing components.

The essentials of component-based software engineering are:

1.	 Independent components that are completely specified by their interfaces. There
should be a clear separation between the component interface and its implemen-
tation. This means that one implementation of a component can be replaced by
another, without the need to change other parts of the system.

2.	 Component standards that define interfaces and so facilitate the integration of
components. These standards are embodied in a component model. They define, at
the very minimum, how component interfaces should be specified and how com-
ponents communicate. Some models go much further and define interfaces that
should be implemented by all conformant components. If components conform to
standards, then their operation is independent of their programming language.
Components written in different languages can be integrated into the same system.

3.	 Middleware that provides software support for component integration. To
make independent, distributed components work together, you need
middleware support that handles component communications. Middleware for
component support handles low-level issues efficiently and allows you to
focus on application-related problems. In addition, middleware for component
support may provide support for resource allocation, transaction management,
security, and concurrency.

4.	 A development process that is geared to component-based software engineer-
ing. You need a development process that allows requirements to evolve,
depending on the functionality of available components.

Component-based development embodies good software engineering practice. It
often makes sense to design a system using components, even if you have to develop

	 Chapter 16  ■  Component-based software engineering   465

466   Chapter 16  ■  Component-based software engineering

rather than reuse these components. Underlying CBSE are sound design principles
that support the construction of understandable and maintainable software:

1.	 Components are independent, so they do not interfere with each other’s opera-
tion. Implementation details are hidden. The component’s implementation can
be changed without affecting the rest of the system.

2.	 Components communicate through well-defined interfaces. If these interfaces
are maintained, one component can be replaced by another component provid-
ing additional or enhanced functionality.

3.	 Component infrastructures offer a range of standard services that can be used in
application systems. This reduces the amount of new code that has to be developed.

The initial motivation for CBSE was the need to support both reuse and distributed
software engineering. A component was seen as an element of a software system that
could be accessed, using a remote procedure call mechanism, by other components run-
ning on separate computers. Each system that reused a component had to incorporate its
own copy of that component. This idea of a component extended the notion of distrib-
uted objects, as defined in distributed systems models such as the CORBA specification
(Pope 1997). Several different protocols and technology-specific “standards” were
introduced to support this view of a component, including Sun’s Enterprise Java Beans
(EJB), Microsoft’s COM and .NET, and CORBA’s CCM (Lau and Wang 2007).

Unfortunately, the companies involved in proposing standards could not agree on
a single standard for components, thereby limiting the impact of this approach to soft-
ware reuse. It is impossible for components developed using different approaches to
work together. Components that are developed for different platforms, such as .NET
or J2EE, cannot interoperate. Furthermore, the standards and protocols proposed
were complex and difficult to understand. This was also a barrier to their adoption.

In response to these problems, the notion of a component as a service was devel-
oped, and standards were proposed to support service-oriented software engineering.
The most significant difference between a component as a service and the original
notion of a component is that services are stand-alone entities that are external to a
program using them. When you build a service-oriented system, you reference the
external service rather than including a copy of that service in your system.

Service-oriented software engineering is a type of component-based software engi-
neering. It uses a simpler notion of a component than that originally proposed in CBSE,

Problems with CBSE

CBSE is now a mainstream approach to software engineering and is widely used when creating new systems.
However, when used as an approach to reuse, problems include component trustworthiness, component
certification, requirements compromises, and prediction of the properties of components, especially when they
are integrated with other components.

http://software-engineering-book.com/web/cbse-problems/

http://software-engineering-book.com/web/cbse-problems

	 16.1  ■  Components and component models   467

where components were executable routines that were included in larger systems. Each
system that used a component embedded its own version of that component. Service-
oriented approaches are gradually replacing CBSE with embedded components as an
approach to systems development. In this chapter, I discuss the use of CBSE with
embedded components; service-oriented software engineering is covered in Chapter 18.

	 16.1 	 Components and component models

The software reuse community generally agrees that a component is an independent
software unit that can be composed with other components to create a software system.
Beyond that, however, people have proposed varying definitions of a software compo-
nent. Councill and Heineman (Councill and Heineman 2001) define a component as:

A software element that conforms to a standard component model and can be
independently deployed and composed without modification according to a
composition standard.†

This definition is standards-based so that a software unit that conforms to these stand-
ards is a component. Szyperski (Szyperski 2002), however, does not mention standards in
his definition of a component but focuses instead on the key characteristics of components:

A software component is a unit of composition with contractually-specified
interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties.‡

Both of these definitions were developed around the idea of a component as an
element that is embedded in a system, rather than a service that is referenced by the
system. However, they are equally applicable to service components.

Szyperski also states that a component has no externally observable state; that is,
copies of components are indistinguishable. However, some component models,
such as the Enterprise Java Beans model, allow stateful components, so these do not
correspond with Szyperski’s definition. While stateless components are certainly
simpler to use, in some systems stateful components are more convenient and reduce
system complexity.

What the above definitions have in common is that they agree that components
are independent and that they are the fundamental unit of composition in a system. I
think that, if we combine these proposals, we get a more rounded description of a
reusable component. Figure 16.1 shows what I consider to be the essential character-
istics of a component as used in CBSE.

†Councill, W. T., and G. T. Heineman. 2001. “Definition of a Software Component and Its Elements.”
In Component-Based Software Engineering, edited by G T Heineman and W T Councill, 5–20. Boston:
Addison Wesley.
‡Szyperski, C. 2002. Component Software: Beyond Object-Oriented Programming, 2nd Ed. Harlow,
UK: Addison Wesley.

468   Chapter 16  ■  Component-based software engineering

A useful way of thinking about a component is as a provider of one or more
services, even if the component is embedded rather than implemented as a service.
When a system needs something to be done, it calls on a component to provide that
service without caring about where that component is executing or the programming
language used to develop the component. For example, a component in a system
used in a public library might provide a search service that allows users to search the
library catalog. A component that converts from one graphical format to another
(e.g., TIFF to JPEG) provides a data conversion service and so on.

Viewing a component as a service provider emphasizes two critical characteris-
tics of a reusable component:

1.	 The component is an independent executable entity that is defined by its inter-
faces. You don’t need any knowledge of its source code to use it. It can either be
referenced as an external service or included directly in a program.

2.	 The services offered by a component are made available through an interface, and
all interactions are through that interface. The component interface is expressed
in terms of parameterized operations, and its internal state is never exposed.

In principle, all components have two related interfaces, as shown in Figure 16.2.
These interfaces reflect the services that the component provides and the services
that the component requires to operate correctly:

1.	 The “provides” interface defines the services provided by the component. This
interface is the component API. It defines the methods that can be called by a user

Figure 16.1  Component
characteristics

Component
characteristic Description

Composable For a component to be composable, all external interactions must take place through
publicly defined interfaces. In addition, it must provide external access to information
about itself, such as its methods and attributes.

Deployable To be deployable, a component has to be self-contained. It must be able to operate
as a stand-alone entity on a component platform that provides an implementation of
the component model. This usually means that the component is binary and does
not have to be compiled before it is deployed. If a component is implemented as a
service, it does not have to be deployed by a user of that component. Rather, it is
deployed by the service provider.

Documented Components have to be fully documented so that potential users can decide
whether or not the components meet their needs. The syntax and, ideally, the
semantics of all component interfaces should be specified.

Independent A component should be independent—it should be possible to compose and deploy
it without having to use other specific components. In situations where the
component needs externally provided services, these should be explicitly set out in a
“requires” interface specification.

Standardized Component standardization means that a component used in a CBSE process has to
conform to a standard component model. This model may define component
interfaces, component metadata, documentation, composition, and deployment.

	 16.1  ■  Components and component models   469

of the component. In a UML component diagram, the “provides” interface for a
component is indicated by a circle at the end of a line from the component icon.

2.	 The “requires” interface specifies the services that other components in the system
must provide if a component is to operate correctly. If these services are not availa-
ble, then the component will not work. This does not compromise the independence
or deployability of a component because the “requires” interface does not define
how these services should be provided. In the UML, the symbol for a “requires”
interface is a semicircle at the end of a line from the component icon. Notice that
“provides” and “requires” interface icons can fit together like a ball and socket.

To illustrate these interfaces, Figure 16.3 shows a model of a component that has
been designed to collect and collate information from an array of sensors. It runs
autonomously to collect data over a period of time and, on request, provides collated
data to a calling component. The “provides” interface includes methods to add,
remove, start, stop, and test sensors. The report method returns the sensor data that
has been collected, and the listAll method provides information about the attached
sensors. Although I have not shown them here, these methods have associated
parameters specifying the sensor identifiers, locations, and so on.

The “requires” interface is used to connect the component to the sensors. It
assumes that sensors have a data interface, accessed through sensorData, and a man-
agement interface, accessed through sensorManagement. This interface has been
designed to connect to different types of sensors so that it does not include specific
sensor operations such as Test and provideReading. Instead, the commands used by a
specific type of sensor are embedded in a string, which is a parameter to the opera-
tions in the “requires” interface. Adaptor components parse this parameter string and
translate the embedded commands into the specific control interface of each type of
sensor. I discuss the use of adaptors later in this chapter, where I show how the data
collector component may be connected to a sensor (Figure 16.12).

Provides interfaceRequires interface

Component

Defines the services
that are needed and
should be provided
by other components

Defines the services
that are provided
by the component
to other componentsFigure 16.2  Component

interfaces

Provides interfaceRequires interface

Data collector

addSensor
removeSensor
startSensor

stopSensor
testSensor

listAll
report
initialize

sensorManagement

sensorData

Figure 16.3  A model
of a data collector
component

470   Chapter 16  ■  Component-based software engineering

Components are accessed using remote procedure calls (RPCs). Each component
has a unique identifier and, using this name, may be called from another computer.
The called component uses the same mechanism to access the “required” compo-
nents that are defined in its interface.

An important difference between a component as an external service and a com-
ponent as a program element accessed using a remote procedure call is that services
are completely independent entities. They do not have an explicit “requires” inter-
face. Of course, they do require other components to support their operation, but
these are provided internally. Other programs can use services without the need to
implement any additional support required by the service.

	 16.1.1 	 Component models

A component model is a definition of standards for component implementation, doc-
umentation, and deployment. These standards are for component developers to
ensure that components can interoperate. They are also for providers of component
execution infrastructures who provide middleware to support component operation.
For service components, the most important component model is the Web Service
models, and for embedded components, widely used models include the Enterprise
Java Beans (EJB) model and Microsoft’s .NET model (Lau and Wang 2007).

The basic elements of an ideal component model are discussed by Weinreich and
Sametinger (Weinreich and Sametinger 2001). I summarize these model elements in
Figure 16.4. This diagram shows that the elements of a component model define the
component interfaces, the information that you need to use the component in a pro-
gram, and how a component should be deployed:

1.	 Interfaces Components are defined by specifying their interfaces. The compo-
nent model specifies how the interfaces should be defined and the elements,
such as operation names, parameters, and exceptions, which should be included
in the interface definition. The model should also specify the language used to
define the component interfaces.

	 For web services, interface specification uses XML-based languages as
discussed in Chapter 18; EJB is Java-specific, so Java is used as the interface
definition language; in .NET, interfaces are defined using Microsoft’s Common

Components and objects

Components are often implemented in object-oriented languages, and, in some cases, accessing the “provides”
interface of a component is done through method calls. However, components and object classes are not the
same thing. Unlike object classes, components are independently deployable, do not define types, are language-
independent, and are based on a standard component model.

http://software-engineering-book.com/web/components-and-objects/

http://software-engineering-book.com/web/components-and-objects

	 16.1  ■  Components and component models   471

Intermediate Language (CIL). Some component models require specific inter-
faces that must be defined by a component. These are used to compose the com-
ponent with the component model infrastructure, which provides standardized
services such as security and transaction management.

2.	 Usage In order for components to be distributed and accessed remotely via
RPCs, they need to have a unique name or handle associated with them. This
has to be globally unique. For example, in EJB, a hierarchical name is generated
with the root based on an Internet domain name. Services have a unique URI
(Uniform Resource Identifier).

	 Component meta-data is data about the component itself, such as information
about its interfaces and attributes. The meta-data is important because it allows
users of the component to find out what services are provided and required.
Component model implementations normally include specific ways (such as the
use of a reflection interface in Java) to access this component meta-data.

	 Components are generic entities, and, when deployed, they have to be config-
ured to fit into an application system. For example, you could configure the
Data collector component (Figure 16.3) by defining the maximum number of
sensors in a sensor array. The component model may therefore specify how the
binary components can be customized for a particular deployment environment.

3.	 Deployment The component model includes a specification of how components
should be packaged for deployment as independent, executable routines.
Because components are independent entities, they have to be packaged with all
supporting software that is not provided by the component infrastructure, or is
not defined in a “requires” interface. Deployment information includes informa-
tion about the contents of a package and its binary organization.

	 Inevitably, as new requirements emerge, components will have to be changed or
replaced. The component model may therefore include rules governing when
and how component replacement is allowed. Finally, the component model may
define the component documentation that should be produced. This is used to
find the component and to decide whether it is appropriate.

Component model

Interfaces
Usage

information
Deployment

and use

Interface
definition

Specific
interfaces

Composition

Naming
convention

Meta-data
access

Customization

Packaging

Documentation

Evolution
support

Figure 16.4  Basic
elements of a
component model

472   Chapter 16  ■  Component-based software engineering

For components that are executable routines rather than external services, the
component model defines the services to be provided by the middleware that
supports the executing components. Weinreich and Sametinger use the analogy of an
operating system to explain component models. An operating system provides a set
of generic services that can be used by applications. A component model implemen-
tation provides comparable shared services for components. Figure 16.5 shows some
of the services that may be provided by an implementation of a component model.

The services provided by a component model implementation fall into two
categories:

1.	 Platform services, which enable components to communicate and interoperate
in a distributed environment. These are the fundamental services that must be
available in all component-based systems.

2.	 Support services, which are common services that many different components
are likely to require. For example, many components require authentication to
ensure that the user of component services is authorized. It makes sense to
provide a standard set of middleware services for use by all components. This
reduces the costs of component development, and potential component incom-
patibilities can be avoided.

Middleware implements the common component services and provides interfaces to
them. To make use of the services provided by a component model infrastructure, you
can think of the components as being deployed in a “container.” A container is an imple-
mentation of the support services plus a definition of the interfaces that a component
must provide to integrate it with the container. Conceptually, when you add a com
ponent to the container, the component can access the support services and the container
can access the component interfaces. When in use, the component interfaces themselves
are not accessed directly by other components. They are accessed through a container
interface that invokes code to access the interface of the embedded component.

Containers are large and complex and, when you deploy a component in a con-
tainer, you get access to all middleware services. However, simple components may

Platform services

Addressing
Interface
definition

Component
communications

Exception
management

Support services

Security

Transaction
management

Concurrency

Component
management

Persistence

Resource
management

Figure 16.5  Middleware
services defined in a
component model

	 16.2  ■  CBSE processes   473

not need all of the facilities offered by the supporting middleware. The approach
taken in web services to common service provision is therefore rather different. For
web services, standards have been defined for common services such as transaction
management and security, and these standards have been implemented as program
libraries. If you are implementing a service component, you only use the common
services that you need.

The services associated with a component model have much in common with
the facilities provided by object-oriented frameworks, which I discussed in
Chapter 15. Although the services provided may not be as comprehensive, frame-
work services are often more efficient than container-based services. As a conse-
quence, some people think that it is best to use frameworks such as SPRING
(Wheeler and White 2013) for Java development rather than the fully-featured
component model in EJB.

	 16.2 	 CBSE processes

CBSE processes are software processes that support component-based software
engineering. They take into account the possibilities of reuse and the different pro-
cess activities involved in developing and using reusable components. Figure 16.6
(Kotonya 2003) presents an overview of the processes in CBSE. At the highest level,
there are two types of CBSE processes:

1.	 Development for reuse This process is concerned with developing components
or services that will be reused in other applications. It usually involves general-
izing existing components.

2.	 Development with reuse This process is the process of developing new applica-
tions using existing components and services.

These processes have different objectives and therefore include different activi-
ties. In the development for reuse process, the objective is to produce one or more
reusable components. You know the components that you will be working with, and
you have access to their source code to generalize them. In development with reuse,
you don’t know what components are available, so you need to discover these com-
ponents and design your system to make the most effective use of them. You may
not have access to the component source code.

You can see from Figure 16.6 that the basic processes of CBSE with and for reuse
have supporting processes that are concerned with component acquisition, compo-
nent management, and component certification:

1.	 Component acquisition is the process of acquiring components for reuse or devel-
opment into a reusable component. It may involve accessing locally developed
components or services or finding these components from an external source.

474   Chapter 16  ■  Component-based software engineering

2.	 Component management is concerned with managing a company’s reusable
components, ensuring that they are properly catalogued, stored, and made avail-
able for reuse.

3.	 Component certification is the process of checking a component and certifying
that it meets its specification.

Components maintained by an organization may be stored in a component repos-
itory that includes both the components and information about their use.

	 16.2.1 	 CBSE for reuse

CBSE for reuse is the process of developing reusable components and making them
available for reuse through a component management system. The vision of early
supporters of CBSE (Szyperski 2002) was that a thriving component marketplace
would develop. There would be specialist component providers and component ven-
dors who would organize the sale of components from different developers. Software
developers would buy components to include in a system or pay for services as they
were used. However, this vision has not been realized. There are relatively few com-
ponent suppliers, and buying off-the-shelf components is uncommon.

Consequently, CBSE for reuse is mostly used within organizations that have
made a commitment to reuse-driven software engineering. These companies have a
base of internally developed components that can be reused. However, these inter-
nally developed components may not be reusable without change. They often include
application-specific features and interfaces that are unlikely to be required in other
programs where the component is reused.

CBSE for
reuse

CBSE with
reuse

Component
acquisition

Component
certification

Component
repository

CBSE processes

Specifier,
Designer,
Integrator,
Maintainer

Librarian,
Vendor,
Broker

Component
management

Librarian

Local or
external
certifier

External
source

Domain analyst,
Designer,
Implementor,
Maintainer,
Market analyst

Figure 16.6  CBSE
processes

	 16.2  ■  CBSE processes   475

To make components reusable, you have to adapt and extend the application-
specific components to create more generic and therefore more reusable versions.
Obviously, this adaptation has an associated cost. You have to decide first, whether
a component is likely to be reused and second, whether the cost savings from future
reuse justify the costs of making the component reusable.

To answer the first of these questions, you have to decide whether or not the com-
ponent implements one or more stable domain abstractions. Stable domain abstrac-
tions are fundamental elements of the application domain that change slowly. For
example, in a banking system, domain abstractions might include accounts, account
holders, and statements. In a hospital management system, domain abstractions might
include patients, treatments, and nurses. These domain abstractions are sometimes
called business objects. If the component is an implementation of a commonly used
domain abstraction or group of related business objects, it can probably be reused.

To answer the question about cost-effectiveness, you have to assess the costs of
changes that are required to make the component reusable. These costs are the costs of
component documentation and component validation, and of making the component more
generic. Changes that you may make to a component to make it more reusable include:

■	 removing application-specific methods;

■	 changing names to make them more general;

■	 adding methods to provide more complete functional coverage;

■	 making exception handling consistent for all methods;

■	 adding a “configuration” interface to allow the component to be adapted to
different situations of use;

■	 integrating required components to increase independence.

The problem of exception handling is a difficult one. In principle, components
should not handle exceptions themselves because each application will have its own
requirements for exception management. Rather, the component should define what
exceptions can arise and should publish these exceptions as part of the interface. For
example, a simple component implementing a stack data structure should detect and
publish stack overflow and stack underflow exceptions. In practice, however, there
are two problems with this process:

1.	 Publishing all exceptions leads to bloated interfaces that are harder to under-
stand. This may put off potential users of the component.

2.	 The operation of the component may depend on local exception handling, and
changing this may have serious implications for the functionality of the component.

You therefore have to take a pragmatic approach to component exception handling.
Common technical exceptions, where recovery is important for the functioning of the
component, should be handled locally. These exceptions and how they are handled

476   Chapter 16  ■  Component-based software engineering

should be documented with the component. Other exceptions that are related to the busi-
ness function of the component should be passed to the calling component for handling.

Mili et al. (Mili et al. 2002) discuss ways of estimating the costs of making a compo-
nent reusable and the returns from that investment. The benefits of reusing rather than
redeveloping a component are not simply productivity gains. There are also quality gains,
because a reused component should be more dependable, and time-to-market gains.
These are the increased returns that accrue from deploying the software more quickly.

Mili et al. present various formulas for estimating these gains, as does the COCOMO
model, discussed in Chapter 23. However, the parameters of these formulas are diffi-
cult to estimate accurately, and the formulas must be adapted to local circumstances,
making them difficult to use. I suspect that few software project managers use these
models to estimate the return on investment from component reusability.

Whether or not a component is reusable depends on its application domain,
functionality, and generality. If the domain is a general one and the component
implements standard functionality in that domain, then it is more likely to be reusa-
ble. As you add generality to a component, you increase its reusability because it can
be applied in a wider range of environments. Unfortunately, this normally means
that the component has more operations and is more complex, which makes the
component harder to understand and use.

There is, therefore, a trade-off between the reusability and understandability of a
component. To make a component reusable you have to provide a set of generic
interfaces with operations that cater to all of the ways in which the component could
be used. Reusability adds complexity and hence reduces component understandabil-
ity. This makes it more difficult and time consuming to decide whether a component
is suitable for reuse. Because of the time involved in understanding a reusable com-
ponent, it is sometimes more cost-effective to reimplement a simpler component
with the specific functionality that is required.

A potential source of components is legacy systems. As I discussed in Chapter 9,
legacy systems are systems that fulfill an important business function but are written
using obsolete software technologies. As a result, it may be difficult to use them with
new systems. However, if you convert these old systems to components, their func-
tionality can be reused in new applications.

Of course, these legacy systems do not normally have clearly defined “requires” and
“provides” interfaces. To make these components reusable, you have to create a wrapper
that defines the component interfaces. The wrapper hides the complexity of the underly-
ing code and provides an interface for external components to access services that are
provided. Although this wrapper is a fairly complex piece of software, the cost of wrapper
development may be significantly less than the cost of reimplementing the legacy system.

Once you have developed and tested a reusable component or service, it then has
to be managed for future reuse. Management involves deciding how to classify the
component so that it can be discovered, making the component available either in a
repository or as a service, maintaining information about the use of the component,
and keeping track of different component versions. If the component is open-source,
you may make it available in a public repository such as GitHub or Sourceforge. If it
is intended for use in a company, then you may use an internal repository system.

	 16.2  ■  CBSE processes   477

A company with a reuse program may carry out some form of component certifi-
cation before the component is made available for reuse. Certification means that
someone apart from the developer checks the quality of the component. They test the
component and certify that it has reached an acceptable quality standard, before it is
made available for reuse. However, this process can be expensive, and so many
companies simply leave testing and quality checking to the component developers.

	 16.2.2 	 CBSE with reuse

The successful reuse of components requires a development process tailored to
including reusable components in the software being developed. The CBSE with
reuse process has to include activities that find and integrate reusable components.
The structure of such a process was discussed in Chapter 2, and Figure 16.7 shows
the principal activities within that process. Some of these activities, such as the
initial discovery of user requirements, are carried out in the same way as in other
software processes. However, the essential differences between CBSE with reuse
and software processes for original software development are as follows:

1.	 The user requirements are initially developed in outline rather than in detail, and
stakeholders are encouraged to be as flexible as possible in defining their
requirements. Requirements that are too specific limit the number of compo-
nents that could meet these requirements. However, unlike incremental devel-
opment, you need a complete description of the requirements so that you can
identify as many components as possible for reuse.

2.	 Requirements are refined and modified early in the process depending on the
components available. If the user requirements cannot be satisfied from available
components, you should discuss the related requirements that can be supported
by the reusable components. Users may be willing to change their minds if this
means cheaper or quicker system delivery.

3.	 There is a further component search and design refinement activity after the sys-
tem architecture has been designed. Apparently, usable components may turn out

Identify candidate
components

Outline
system

requirements

Modify
requirements

according to discovered
components

Architectural
design

Compose
components to
create system

Identify candidate
componentsFigure 16.7  CBSE with

reuse

478   Chapter 16  ■  Component-based software engineering

to be unsuitable or may not work properly with other chosen components. You
may have to find alternatives to these components. Further requirements changes
may therefore be necessary, depending on the functionality of these components.

4.	 Development is a composition process where the discovered components are
integrated. This involves integrating the components with the component model
infrastructure and, often, developing adaptors that reconcile the interfaces of
incompatible components. Of course, additional functionality may also be
required over and above that provided by reused components.

The architectural design stage is particularly important. Jacobsen et al. (Jacobsen,
Griss, and Jonsson 1997) found that defining a robust architecture is critical for suc-
cessful reuse. During the architectural design activity, you may choose a component
model and implementation platform. However, many companies have a standard
development platform (e.g., .NET), so the component model is predetermined. As I
discussed in Chapter 6, you also establish the high-level architecture of the system at
this stage and make decisions about system distribution and control.

An activity that is unique to the CBSE process is identifying candidate compo-
nents or services for reuse. This involves a number of subactivities, as shown in
Figure 16.8. Initially, your focus should be on search and selection. You need to
convince yourself that components are available to meet your requirements.
Obviously, you should do some initial checking that the component is suitable, but
detailed testing may not be required. In the later stage, after the system architecture
has been designed, you should spend more time on component validation. You need
to be confident that the identified components are really suited to your application; if
not, then you have to repeat the search and selection processes.

The first step in identifying components is to look for components that are available
within your company or from trusted suppliers. There are few component vendors, so
you are most likely to be looking for components that have been developed in your own
organization or in the repositories of open-source software that are available. Software
development companies can build their own database of reusable components without
the risks inherent in using components from external suppliers. Alternatively, you may
decide to search code libraries available on the web, such as Sourceforge, GitHub, or
Google Code, to see if source code for the component that you need is available.

Once the component search process has identified possible components, you have to
select candidate components for assessment. In some cases, this will be a straightforward
task. Components on the list will directly implement the user requirements, and there will
not be competing components that match these requirements. In other cases, however,
the selection process is more complex. There will not be a clear mapping of requirements
onto components. You may find that several components have to be integrated to meet a

Component
selection

Component
search

Component
validation

Figure 16.8  The
component
identification process

	 16.2  ■  CBSE processes   479

specific requirement or group of requirements. You therefore have to decide which of
these component compositions provide the best coverage of the requirements.

Once you have selected components for possible inclusion in a system, you should
then validate them to check that they behave as advertised. The extent of the validation
required depends on the source of the components. If you are using a component that
has been developed by a known and trusted source, you may decide that component
testing is unnecessary. You simply test the component when it is integrated with other
components. On the other hand, if you are using a component from an unknown source,
you should always check and test that component before including it in your system.

Component validation involves developing a set of test cases for a component
(or, possibly, extending test cases supplied with that component) and developing a
test harness to run component tests. The major problem with component validation
is that the component specification may not be sufficiently detailed to allow you to
develop a complete set of component tests. Components are usually specified infor-
mally, with the only formal documentation being their interface specification. This
may not include enough information for you to develop a complete set of tests that
would convince you that the component’s advertised interface is what you require.

As well as testing that a component for reuse does what you require, you may also
have to check that the component does not include malicious code or functionality
that you don’t need. Professional developers rarely use components from untrusted
sources, especially if these sources do not provide source code. Therefore, the mali-
cious code problem does not usually arise. However, reused components may often
contain functionality that you don’t need, and you have to check that this functional-
ity will not interfere with your use of the component.

The problem with unnecessary functionality is that it may be activated by the
component itself. While this may have no effect on the application reusing the com-
ponent, it can slow down the component, cause it to produce surprising results or, in
exceptional cases, cause serious system failures. Figure 16.9 summarizes a situation
where the failure of a reused software system, which had unnecessary functionality,
led to catastrophic system failure.

The Ariane 5 launcher failure

While developing the Ariane 5 space launcher, the designers decided to reuse the inertial reference software
that had performed successfully in the Ariane 4 launcher. The inertial reference software maintains the stability
of the rocket. The designers decided to reuse this without change (as you would do with components),
although it included additional functionality that was not required in Ariane 5.

In the first launch of Ariane 5, the inertial navigation software failed, and the rocket could not be controlled.
The rocket and its payload were destroyed. The cause of the problem was an unhandled exception when a con-
version of a fixed-point number to an integer resulted in a numeric overflow. This caused the runtime system to
shut down the inertial reference system, and launcher stability could not be maintained. The fault had never
occurred in Ariane 4 because it had less powerful engines and the value that was converted could not be large
enough for the conversion to overflow.

This illustrates an important problem with software reuse. Software may be based on assumptions about the
context where the system will be used, and these assumptions may not be valid in a different situation.

More information about this failure is available at: http://software-engineering-book.com/case-studies/ariane5/

Figure 16.9  An
example of validation
failure with reused
software

http://software-engineering-book.com/case-studies/ariane5

480   Chapter 16  ■  Component-based software engineering

The problem in the Ariane 5 launcher arose because the assumptions made about
the software for Ariane 4 were invalid for Ariane 5. This is a general problem with
reusable components. They are originally implemented for a specific application
environment and, naturally, embed assumptions about that environment. These
assumptions are rarely documented, so when the component is reused, it is impossi-
ble to develop tests to check if the assumptions are still valid. If you are reusing a
component in a new environment, you may not discover the embedded environmen-
tal assumptions until you use the component in an operational system.

	 16.3 	 Component composition

Component composition is the process of integrating components with each other,
and with specially written “glue code” to create a system or another component. You
can compose components in several different ways, as shown in Figure 16.10. From
left to right these diagrams illustrate sequential composition, hierarchical composi-
tion, and additive composition. In the discussion below, I assume that you are com-
posing two components (A and B) to create a new component:

1.	 Sequential composition In a sequential composition, you create a new compo-
nent from two existing components by calling the existing components in
sequence. You can think of the composition as a composition of the “provides
interfaces.” That is, the services offered by component A are called, and the
results returned by A are then used in the call to the services offered by compo-
nent B. The components do not call each other in sequential composition but are
called by the external application. This type of composition may be used with
embedded or service components.

	 Some extra glue code may be required to call the component services in the right
order and to ensure that the results delivered by component A are compatible
with the inputs expected by component B. The “glue code” transforms these
outputs to be of the form expected by component B.

2.	 Hierarchical composition This type of composition occurs when one component
calls directly on the services provided by another component. That is, component
A calls component B. The called component provides the services that are required
by the calling component. Therefore, the “provides” interface of the called com-
ponent must be compatible with the “requires” interface of the calling component.

	 Component A calls on component B directly, and, if their interfaces match,
there may be no need for additional code. However, if there is a mismatch
between the “requires” interface of A and the “provides” interface of B, then
some conversion code may be required. As services do not have a “requires”
interface, this mode of composition is not used when components are imple-
mented as services accessed over the web.

	 16.3  ■  Component composition   481

3.	 Additive composition This occurs when two or more components are put together
(added) to create a new component, which combines their functionality. The “pro-
vides” interface and “requires” interface of the new component are a combination
of the corresponding interfaces in components A and B. The components are
called separately through the external interface of the composed component and
may be called in any order. A and B are not dependent and do not call each other.
This type of composition may be used with embedded or service components.

You might use all the forms of component composition when creating a system.
In all cases, you may have to write “glue code” that links the components. For exam-
ple, for sequential composition, the output of component A typically becomes the
input to component B. You need intermediate statements that call component A,
collect the result, and then call component B, with that result as a parameter. When
one component calls another, you may need to introduce an intermediate component
that ensures that the “provides” interface and the “requires” interface are compatible.

When you write new components especially for composition, you should design the
interfaces of these components so that they are compatible with other components in
the system. You can therefore easily compose these components into a single unit.
However, when components are developed independently for reuse, you will often be
faced with interface incompatibilities. This means that the interfaces of the components
that you wish to compose are not the same. Three types of incompatibility can occur:

1.	 Parameter incompatibility The operations on each side of the interface have the
same name, but their parameter types or the number of parameters are different. In
Figure 16.11, the location parameter returned by addressFinder is incompatible
with the parameters required by the displayMap and printMap methods in mapDB.

2.	 Operation incompatibility The names of the operations in the provides and
“requires” interfaces are different. This is a further incompatibility between the
components shown in Figure 16.11.

3.	 Operation incompleteness The “provides” interface of a component is a subset
of the “requires” interface of another component, or vice versa.

(1)

A A

B B

A B

(2) (3)
Figure 16.10  Types of
component composition

482   Chapter 16  ■  Component-based software engineering

In all cases, you tackle the problem of incompatibility by writing an adaptor that
reconciles the interfaces of the two components being reused. An adaptor compo-
nent converts one interface to another.

The precise form of the adaptor depends on the type of composition. Sometimes, as
in the next example, the adaptor takes a result from one component and converts it into
a form where it can be used as an input to another. In other cases, the adaptor may be
called by component A as a proxy for component B. This situation occurs if A wishes
to call B, but the details of the “requires” interface of A do not match the details of the
“provides” interface of B. The adaptor reconciles these differences by converting its
input parameters from A into the required input parameters for B. It then calls B to
deliver the services required by A.

To illustrate adaptors, consider the two simple components shown in Figure 16.11,
whose interfaces are incompatible. These might be part of a system used by the emer-
gency services. When the emergency operator takes a call, the phone number is input
to the addressFinder component to locate the address. Then, using the mapper compo-
nent, the operator prints a map to be sent to the vehicle dispatched to the emergency.

The first component, addressFinder, finds the address that matches a phone num-
ber. It can also return the owner of the property associated with the phone number and
the type of property. The mapper component takes a post code (in the United States,
a standard ZIP code with the additional four digits identifying property location) and
displays or prints a street map of the area around that code at a specified scale.

These components are composable in principle because the property location
includes the post or ZIP code. However, you have to write an adaptor component
called postCodeStripper that takes the location data from addressFinder and strips out
the post code. This post code is then used as an input to mapper, and the street map is
displayed at a scale of 1:10,000. The following code, which is an example of sequential
composition, illustrates the sequence of calls that is required to implement this process:

address = addressFinder.location (phonenumber) ;
postCode = postCodeStripper.getPostCode (address) ;
mapper.displayMap(postCode, 10000) ;

Another case in which an adaptor component may be used is in hierarchical composi-
tion, where one component wishes to make use of another but there is an incompatibility

addressFinder

phoneDatabase (string command)
string location (string pn)

string owner (string pn)

string propertyType (string pn)

mapper

mapDB (string command)
displayMap (string postCode, scale)

printMap (string postCode, scale)
Figure 16.11 
Components with
incompatible interfaces

	 16.3  ■  Component composition   483

between the “provides” interface and “requires” interface of the components in the
composition. I have illustrated the use of an adaptor in Figure 16.12 where an adaptor
is used to link a data collector and a sensor component. These could be used in the
implementation of a wilderness weather station system, as discussed in Chapter 7.

The sensor and data collector components are composed using an adaptor that
reconciles the “requires” interface of the data collection component with the “pro-
vides” interface of the sensor component. The data collector component has been
designed with a generic “requires” interface that supports sensor data collection and
sensor management. For each of these operations, the parameter is a text string rep-
resenting the specific sensor commands. For example, to issue a collect command,
you would say sensorData(“collect”). As I have shown in Figure 16.12, the sensor
itself has separate operations such as start, stop, and getdata.

The adaptor parses the input string, identifies the command (e.g., collect), and then calls
Sensor.getdata to collect the sensor value. It then returns the result (as a character string)
to the data collector component. This interface style means that the data collector can interact
with different types of sensor. A separate adaptor, which converts the sensor commands
from Data collector to the sensor interface, is implemented for each type of sensor.

The above discussion of component composition assumes you can tell from the
component documentation whether or not interfaces are compatible. Of course, the
interface definition includes the operation name and parameter types, so you can make
some assessment of the compatibility from this. However, you depend on the compo-
nent documentation to decide whether the interfaces are semantically compatible.

To illustrate this problem, consider the composition shown in Figure 16.13. These
components are used to implement a system that downloads images from a camera and
stores them in a photograph library. The system user can provide additional information
to describe and catalog the photograph. To avoid clutter, I have not shown all interface

Data collector

addSensor
removeSensor
startSensor

stopSensor
testSensor

listAll
report
initialize

sensorManagement

sensorData

Adaptorsensor

start

getdata

stop

Figure 16.12  An
adaptor linking a data
collector and a sensor

Photo
Library

adaptor
Image

Manager

getImage

User
Interface

getCatalogEntry

addItem

retrieve

catEntry

Figure 16.13  Photo
library composition

484   Chapter 16  ■  Component-based software engineering

methods here. Rather, I simply show the methods that are needed to illustrate the com-
ponent documentation problem. The methods in the interface of Photo Library are:

public void addItem (Identifier pid ; Photograph p; CatalogEntry photodesc) ;
public Photograph retrieve (Identifier pid) ;
public CatalogEntry catEntry (Identifier pid) ;

Assume that the documentation for the addItem method in Photo Library is:

This method adds a photograph to the library and associates the photograph
identifier and catalog descriptor with the photograph.

This description appears to explain what the component does, but consider the
following questions:

■	 What happens if the photograph identifier is already associated with a photograph
in the library?

■	 Is the photograph descriptor associated with the catalog entry as well as the
photograph? That is, if you delete the photograph, do you also delete the catalog
information?

There is not enough information in the informal description of addItem to answer
these questions. Of course, it is possible to add more information to the natural lan-
guage description of the method, but in general, the best way to resolve ambiguities
is to use a formal language to describe the interface. The specification shown in
Figure 16.14 is part of the description of the interface of Photo Library that adds
information to the informal description.

— The context keyword names the component to which the conditions apply

context addItem

— The preconditions specify what must be true before execution of addItem
pre:      PhotoLibrary.libSize() > 0
            PhotoLibrary.retrieve(pid) = null

— The postconditions specify what is true after execution
post:    libSize () = libSize()@pre + 1
          PhotoLibrary.retrieve(pid) = p
          PhotoLibrary.catEntry(pid) = photodesc

context delete

pre:      PhotoLibrary.retrieve(pid) <> null ;

post:    PhotoLibrary.retrieve(pid) = null
          PhotoLibrary.catEntry(pid) = PhotoLibrary.catEntry(pid)@pre
          PhotoLibrary.libSize() = libSize()@pre—1

Figure 16.14  The
OCL description of
the Photo Library
interface

mailto:pid)@prePhotoLibrary.libSize
mailto:pid)@prePhotoLibrary.libSize

	 16.3  ■  Component composition   485

Figure 16.14 shows pre- and postconditions that are defined in a notation based on
the object constraint language (OCL), which is part of the UML (Warmer and Kleppe
2003). OCL is designed to describe constraints in UML object models; it allows you
to express predicates that must always be true, that must be true before a method has
executed; and that must be true after a method has executed. These are invariants,
preconditions, and postconditions. To access the value of a variable before an opera-
tion, you add @pre after its name. Therefore, using age as an example:

age = age@pre + 1

This statement means that the value of age after an operation is one more than it
was before that operation.

OCL-based approaches are primarily used in model-based software engineering
to add semantic information to UML models. The OCL descriptions may be used to
drive code generators in model-driven engineering. The general approach has been
derived from Meyer’s Design by Contract approach (Meyer 1992), in which the
interfaces and obligations of communicating objects are formally specified and
enforced by the runtime system. Meyer suggests that using Design by Contract is
essential if we are to develop trusted components (Meyer 2003).

Figure 16.14 shows the specification for the addItem and delete methods in Photo
Library. The method being specified is indicated by the keyword context and the pre- and
postconditions by the keywords pre and post. The preconditions for addItem state that:

1.	 There must not be a photograph in the library with the same identifier as the
photograph to be entered.

2.	 The library must exist—assume that creating a library adds a single item to it so
that the size of a library is always greater than zero.

3.	 The postconditions for addItem state that:

	 The size of the library has increased by 1 (so only a single entry has been made).

	 If you retrieve using the same identifier, then you get back the photograph that
you added.

	 If you look up the catalog using that identifier, you get back the catalog entry
that you made.

The specification of delete provides further information. The precondition states
that to delete an item, it must be in the library, and, after deletion, the photo can no
longer be retrieved and the size of the library is reduced by 1. However, delete does
not delete the catalog entry—you can still retrieve it after the photo has been deleted.
The reason for this is that you may wish to maintain information in the catalog about
why a photo was deleted, its new location, and so on.

When you create a system by composing components, you may find that there
are potential conflicts between functional and non-functional requirements, the
need to deliver a system as quickly as possible, and the need to create a system that

486   Chapter 16  ■  Component-based software engineering

can evolve as requirements change. You may have to take trade-offs into account
for component decisions:

1.	 What composition of components is most effective for delivering the functional
requirements for the system?

2.	 What composition of the components will make it easier to adapt the composite
component when its requirements change?

3.	 What will be the emergent properties of the composed system? These properties
include performance and dependability. You can only assess these properties
once the complete system is implemented.

Unfortunately, in many situations the solutions to the composition problems may
conflict. For example, consider a situation such as that illustrated in Figure 16.15,
where a system can be created through two alternative compositions. The system is
a data collection and reporting system where data is collected from different sources,
stored in a database, and then different reports summarizing that data are produced.

Here, there is a potential conflict between adaptability and performance.
Composition (a) is more adaptable, but composition (b) is likely to be faster and more
reliable. The advantages of composition (a) are that reporting and data management
are separate, so there is more flexibility for future change. The data management
system could be replaced, and, if reports are required that the current reporting com-
ponent cannot produce, that component can also be replaced without having to
change the data management component.

In composition (b), a database component with built-in reporting facilities (e.g.,
Microsoft Access) is used. The key advantage of composition (b) is that there are fewer
components, so this will be a faster implementation because there are no component
communication overheads. Furthermore, data integrity rules that apply to the database
will also apply to reports. These reports will not be able to combine data in incorrect
ways. In composition (a), there are no such constraints, so errors in reports could occur.

In general, a good composition principle to follow is the principle of separation of
concerns. That is, you should try to design your system so that each component has
a clearly defined role. Ideally, component roles should not overlap. However, it may
be cheaper to buy one multifunctional component rather than two or three separate
components. Furthermore, dependability or performance penalties may be incurred
when multiple components are used.

(a) Data
collection

(b)

Data
management

Report
generator

Data
collection Database

Report

Report

Figure 16.15  Data
collection and report
generation components

	 16.3  ■  Component composition   487

K e y P o i n t s

■	 Component-based software engineering is a reuse-based approach to defining, implementing,
and composing loosely coupled independent components into systems.

■	 A component is a software unit whose functionality and dependencies are completely defined
by a set of public interfaces. Components can be composed with other components without
knowledge of their implementation and can be deployed as an executable unit.

■	 Components may be implemented as executable routines that are included in a system or as
external services that are referenced from within a system.

■	 A component model defines a set of standards for components, including interface standards,
usage standards, and deployment standards. The implementation of the component model pro-
vides a set of common services that may be used by all components.

■	 During the CBSE process, you have to interleave the processes of requirements engineering and
system design. You have to trade off desirable requirements against the services that are avail-
able from existing reusable components.

■	 Component composition is the process of “wiring” components together to create a system.
Types of composition include sequential composition, hierarchical composition, and additive
composition.

■	 When composing reusable components that have not been written for your application, you may
need to write adaptors or “glue code” to reconcile the different component interfaces.

■	 When choosing compositions, you have to consider the required functionality of the system, the
non-functional requirements, and the ease with which one component can be replaced when the
system is changed.

F u r t h e r Re a d i n g

Component Software: Beyond Object-Oriented Programming, 2nd ed. This updated edition of the
first book on CBSE covers technical and nontechnical issues in CBSE. It has more detail on specific
technologies than Heineman and Councill’s book and includes a thorough discussion of market
issues. (C. Szyperski, Addison-Wesley, 2002).

“Specification, Implementation and Deployment of Components.” A good introduction to the funda-
mentals of CBSE. The same issue of the CACM includes articles on components and component-
based development. (I. Crnkovic, B. Hnich, T. Jonsson, and Z. Kiziltan, Comm. ACM, 45(10), October
2002) http://dx.doi.org/10.1145/570907.570928

“Software Component Models.” This comprehensive discussion of commercial and research compo-
nent models classifies these models and explains the differences between them. (K-K. Lau and Z.
Wang, IEEE Transactions on Software Engineering, 33 (10), October 2007) http://dx.doi.
org/10.1109/TSE.2007.70726

	 Chapter 16  ■  Further reading   487

http://dx.doi.org/10.1145/570907.570928
http://dx.doi.org/10.1109/TSE.2007.70726
http://dx.doi.org/10.1109/TSE.2007.70726

488   Chapter 16  ■  Component-based software engineering

“Software Components Beyond Programming: From Routines to Services.” This is the opening arti-
cle in a special issue of the magazine that includes several articles on software components. This
article discusses the evolution of components and how service-oriented components are replacing
executable program routines. (I. Crnkovic, J. Stafford, and C. Szyperski, IEEE Software, 28 (3), May/
June 2011) http://dx.doi.org/10.1109/MS.2011.62

Object Constraint Language (OCL) Tutorial. A good introduction to the use of the object-constraint
language. (J. Cabot, 2012) http://modeling-languages.com/ocl-tutorial/

W ebs i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-reuse/

A more detailed discussion of the Ariane5 accident:

http://software-engineering-book.com/case-studies/ariane5/

E x e r c i ses

16.1.	 What are the design principles underlying the CBSE that support the construction of under-
standable and maintainable software?

16.2.	 The principle of component independence means that it ought to be possible to replace one
component with another that is implemented in a completely different way. Using an example,
explain how such component replacement could have undesired consequences and may lead
to system failure.

16.3.	 In a reusable component, what are the critical characteristics that are emphasized when the
component is viewed as a service?

16.4.	 Why is it important that components should be based on a standard component model?

16.5.	 Using an example of a component that implements an abstract data type such as a stack or a
list, show why it is usually necessary to extend and adapt components for reuse.

16.6.	 What are the essential differences between CBSE with reuse and software processes for original
software development?

16.7.	 Design the “provides” interface and the “requires” interface of a reusable component that
may be used to represent a patient in the Mentcare system that I introduced in Chapter 1.

488   Chapter 16  ■  Component-based software engineering

http://dx.doi.org/10.1109/MS.2011.62
http://modeling-languages.com/ocl-tutorial
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-reuse
http://software-engineering-book.com/case-studies/ariane5

	 16.3  ■  Component composition   489

  16.8.	 �Using examples, illustrate the different types of adaptor needed to support sequential com-
position, hierarchical composition, and additive composition.

  16.9.	 �Design the interfaces of components that might be used in a system for an emergency con-
trol room. You should design interfaces for a call-logging component that records calls
made, and a vehicle discovery component that, given a post code (zip code) and an incident
type, finds the nearest suitable vehicle to be dispatched to the incident.

16.10.	 �It has been suggested that an independent certification authority should be established. Vendors
would submit their components to this authority, which would validate that the component was
trustworthy. What would be the advantages and disadvantages of such a certification authority?

Refe r e n ces

Councill, W. T., and G. T. Heineman. 2001. “Definition of a Software Component and Its Elements.”
In Component-Based Software Engineering, edited by G. T. Heineman and W. T. Councill, 5–20.
Boston: Addison-Wesley.

Jacobsen, I., M. Griss, and P. Jonsson. 1997. Software Reuse. Reading, MA: Addison-Wesley.

Kotonya, G. 2003. “The CBSE Process: Issues and Future Visions.” In 2nd CBSEnet Workshop. Budapest,
Hungary. http://miro.sztaki.hu/projects/cbsenet/budapest/presentations/Gerald-CBSEProcess.ppt

Lau, K-K., and Z. Wang. 2007. “Software Component Models.” IEEE Trans. on Software Eng. 33 (10):
709–724. doi:10.1109/TSE.2007.70726.

Meyer, B. 1992. “Applying Design by Contract.” IEEE Computer 25 (10): 40–51. doi:10.1109/2.161279.

	   . 2003. “The Grand Challenge of Trusted Components.” In Proc. 25th Int. Conf. on Software
Engineering. Portland, OR: IEEE Press. doi:10.1109/ICSE.2003.1201252.

Mili, H., A. Mili, S. Yacoub, and E. Addy. 2002. Reuse-Based Software Engineering. New York: John
Wiley & Sons.

Pope, A. 1997. The CORBA Reference Guide: Understanding the Common Object Request Broker
Architecture. Harlow, UK: Addison-Wesley.

Szyperski, C. 2002. Component Software: Beyond Object-Oriented Programming, 2nd ed. Harlow,
UK: Addison-Wesley.

Warmer, J., and A. Kleppe. 2003. The Object Constraint Language: Getting Your Models Ready for
MDA. Boston: Addison-Wesley.

Weinreich, R., and J. Sametinger. 2001. “Component Models and Component Services: Concepts and
Principles.” In Component-Based Software Engineering, edited by G. T. Heineman and W. T. Councill,
33–48. Boston: Addison-Wesley.

Wheeler, W., and J. White. 2013. Spring in Practice. Greenwich, CT: Manning Publications.

	 Chapter 16  ■  References   489

http://miro.sztaki.hu/projects/cbsenet/budapest/presentations/Gerald-CBSEProcess.ppt

Distributed software
17

Objectives
The objective of this chapter is to introduce distributed systems
engineering and distributed systems architectures. When you have
read this chapter, you will:

■	 know the key issues that have to be considered when designing
and implementing distributed software systems;

■	 understand the client–server computing model and the layered
architecture of client–server systems;

■	 have been introduced to commonly used patterns for distributed
systems architectures and know the types of system for which
each architectural pattern is applicable;

■	 understand the notion of software as a service, providing web-
based access to remotely deployed application systems.

Contents
17.1	 Distributed systems

17.2	 Client–server computing

17.3	 Architectural patterns for distributed systems

17.4	 Software as a service

engineering

	 ﻿Chapter 17  ■  Distributed software engineering   491

Most computer-based systems are now distributed systems. A distributed system is one
involving several computers rather than a single application running on a single machine.
Even apparently self-contained applications on a PC or laptop, such as image editors, are
distributed systems. They execute on a single computer system but often rely on remote
cloud systems for update, storage, and other services. Tanenbaum and Van Steen
(Tanenbaum and Van Steen 2007) define a distributed system to be “a collection of
independent computers that appears to the user as a single coherent system.”†

When you are designing a distributed system, there are specific issues that have to
be taken into account simply because the system is distributed. These issues arise
because different parts of the system are running on independently managed com-
puters and because the characteristics of the network, such as latency and reliability,
may have to be considered in your design.

Coulouris et al. (Coulouris et al. 2011) identify the five benefits of developing
systems as distributed systems:

1.	 Resource sharing A distributed system allows the sharing of hardware and soft-
ware resources—such as disks, printers, files, and compilers—that are associated
with computers on a network.

2.	 Openness Distributed systems are normally open systems—systems designed
around standard Internet protocols so that equipment and software from different
vendors can be combined.

3.	 Concurrency In a distributed system, several processes may operate at the same
time on separate computers on the network. These processes may (but need not)
communicate with each other during their normal operation.

4.	 Scalability In principle at least, distributed systems are scalable in that the capa-
bilities of the system can be increased by adding new resources to cope with
new demands on the system. In practice, the network linking the individual
computers in the system may limit the system scalability.

5.	 Fault tolerance The availability of several computers and the potential for replicat-
ing information means that distributed systems can be tolerant of some hardware
and software failures (see Chapter 11). In most distributed systems, a degraded
service can be provided when failures occur; complete loss of service only occurs
when there is a network failure.‡

Distributed systems are inherently more complex than centralized systems. This
makes them more difficult to design, implement, and test. It is harder to understand
the emergent properties of distributed systems because of the complexity of the inter-
actions between system components and system infrastructure. For example, rather
than being dependent on the execution speed of one processor, system performance

†Tanenbaum, A. S., and M. Van Steen. 2007. Distributed Systems: Principles and Paradigms, 2nd Ed.
Upper Saddle River, NJ: Prentice-Hall.
‡Coulouris, G., J. Dollimore, T. Kindberg, and G. Blair. 2011. Distributed Systems: Concepts and
Design, 5th Edition. Harlow, UK.: Addison Wesley.

492   Chapter 17  ■  Distributed software engineering

depends on network bandwidth, network load, and the speed of other computers that
are part of the system. Moving resources from one part of the system to another can
significantly affect the system’s performance.

Furthermore, as all users of the WWW know, distributed systems are unpredictable in
their response. Response time depends on the overall load on the system, its architecture,
and the network load. As all of these factors may change over a short time, the time taken
to respond to a user request may change significantly from one request to another.

The most important developments that have affected distributed software systems in
the past few years are service-oriented systems and the advent of cloud computing,
delivering infrastructure, platforms, and software as a service. In this chapter, I focus on
general issues of distributed systems, and in Section 17.4 I cover the idea of software as
a service. In Chapter 18, I discuss other aspects of service-oriented software engineering.

	 17.1 	 Distributed systems

As I discussed in the introduction to this chapter, distributed systems are more complex
than systems that run on a single processor. This complexity arises because it is practi-
cally impossible to have a top-down model of control of these systems. The nodes in the
system that deliver functionality are often independent systems that are managed and
controlled by their owners. There is no single authority in charge of the entire distributed
system. The network connecting these nodes is also a separately managed system. It is a
complex system in its own right and cannot be controlled by the owners of systems
using the network. There is, therefore, an inherent unpredictability in the operation of
distributed systems that has to be taken into account when you are designing a system.

Some of the most important design issues that have to be considered in distrib-
uted systems engineering are:

1.	 Transparency To what extent should the distributed system appear to the user as a
single system? When is it useful for users to understand that the system is distributed?

2.	 Openness Should a system be designed using standard protocols that support
interoperability, or should more specialized protocols be used? Although stand-
ard network protocols are now universally used, this is not the case for higher
levels of interaction, such as service communication.

3.	 Scalability How can the system be constructed so that it is scalable? That is,
how can the overall system be designed so that its capacity can be increased in
response to increasing demands made on the system?

4.	 Security How can usable security policies be defined and implemented that
apply across a set of independently managed systems?

5.	 Quality of service How should the quality of service that is delivered to system
users be specified, and how should the system be implemented to deliver an
acceptable quality of service to all users.

6.	 Failure management How can system failures be detected, contained (so that
they have minimal effects on other components in the system), and repaired?

	 17.1  ■  Distributed systems   493

In an ideal world, the fact that a system is distributed would be transparent to users.
Users would see the system as a single system whose behavior is not affected by the
way that the system is distributed. In practice, this is impossible to achieve because
there is no central control over the system as a whole. As a result, individual comput-
ers in a system may behave differently at different times. Furthermore, because it
always takes a finite length of time for signals to travel across a network, network
delays are unavoidable. The length of these delays depends on the location of resources
in the system, the quality of the user’s network connection, and the network load.

To make a distributed system transparent (i.e., conceal its distributed nature), you
have to hide the underlying distribution. You create abstractions that hide the system
resources so that the location and implementation of these resources can be changed
without having to change the distributed application. Middleware (discussed in
Section 17.1.2) is used to map the logical resources referenced by a program onto the
actual physical resources and to manage resource interactions.

In practice, it is impossible to make a system completely transparent, and users, gener-
ally, are aware that they are dealing with a distributed system. You may therefore decide
that it is best to expose the distribution to users. They can then be prepared for some of
the consequences of distribution such as network delays and remote node failures.

Open distributed systems are built according to generally accepted standards.
Components from any supplier can therefore be integrated into the system and can
interoperate with the other system components. At the networking level, openness is
now taken for granted, with systems conforming to Internet protocols, but at the
component level, openness is still not universal. Openness implies that system com-
ponents can be independently developed in any programming language and, if these
conform to standards, they will work with other components.

The CORBA standard (Pope 1997), developed in the 1990s, was intended to be
the universal standard for open distributed systems, However, the CORBA standard
never achieved a critical mass of adopters. Rather, many companies preferred to
develop systems using proprietary standards for components from companies such as
Sun (now Oracle) and Microsoft. These provided better implementations and support
software and better long-term support for industrial protocols.

Web service standards (discussed in Chapter 18) for service-oriented architec-
tures were developed to be open standards. However, these standards have met with
significant resistance because of their perceived inefficiency. Many developers of
service-based systems have opted instead for so-called RESTful protocols because

CORBA—Common Object Request Broker Architecture

CORBA was proposed as a specification for a middleware system in the 1990s by the Object Management
Group. It was intended as an open standard that would allow the development of middleware to support dis-
tributed component communications and execution, as well as provide a set of standard services that could be
used by these components.

Several implementations of CORBA were produced, but the system was not widely adopted. Users preferred
proprietary systems such as those from Microsoft or Oracle, or they moved to service-oriented architectures.

http://software-engineering-book.com/web/corba/

http://software-engineering-book.com/web/corba

494   Chapter 17  ■  Distributed software engineering

these have an inherently lower overhead than web service protocols. The use of
RESTful protocols is not standardized.

The scalability of a system reflects its ability to deliver high-quality service as
demands on the system increase. The three dimensions of scalability are size, distri-
bution, and manageability.

1.	 Size It should be possible to add more resources to a system to cope with increas-
ing numbers of users. Ideally, then, as the number of users increases, the system
should increase in size automatically to handle the increased number of users.

2.	 Distribution It should be possible to geographically disperse the components of
a system without degrading its performance. As new components are added, it
should not matter where these are located. Large companies can often make use
of computing resources in their different facilities around the world.

3.	 Manageability It should be possible to manage a system as it increases in size,
even if parts of the system are located in independent organizations. This is one
of the most difficult challenges of scale as it involves managers communicating
and agreeing on management policies. In practice, the manageability of a sys-
tem is often the factor that limits the extent to which it can be scaled.

Changing the size of a system may involve either scaling up or scaling out. Scaling
up means replacing resources in the system with more powerful resources. For exam-
ple, you may increase the memory in a server from 16 Gb to 64 Gb. Scaling out means
adding more resources to the system (e.g., an extra web server to work alongside an
existing server). Scaling out is often more cost-effective than scaling up, especially
now that cloud computing makes it easy to add or remove servers from a system.
However, this only provides performance improvements when concurrent processing
is possible.

I have discussed general security issues and issues of security engineering in Part 2 of
this book. When a system is distributed, attackers may target any of the individual system
components or the network itself. If a part of the system is successfully attacked, then the
attacker may be able to use this as a “back door” into other parts of the system.

A distributed system must defend itself against the following types of attack:

1.	 Interception, where an attacker intercepts communications between parts of the
system so that there is a loss of confidentiality.

2.	 Interruption, where system services are attacked and cannot be delivered as
expected. Denial-of-service attacks involve bombarding a node with illegitimate
service requests so that it cannot deal with valid requests.

3.	 Modification, where an attacker gains access to the system and changes data or
system services.

4.	 Fabrication, where an attacker generates information that should not exist and
then uses this information to gain some privileges. For example, an attacker
may generate a false password entry and use this to gain access to a system.

	 17.1  ■  Distributed systems   495

The major difficulty in distributed systems is establishing a security policy that
can be reliably applied to all of the components in a system. As I discussed in Chapter
13, a security policy sets out the level of security to be achieved by a system. Security
mechanisms, such as encryption and authentication, are used to enforce the security
policy. The difficulties in a distributed system arise because different organizations
may own parts of the system. These organizations may have mutually incompatible
security policies and security mechanisms. Security compromises may have to be
made in order to allow the systems to work together.

The quality of service (QoS) offered by a distributed system reflects the system’s
ability to deliver its services dependably and with a response time and throughput
that are acceptable to its users. Ideally, the QoS requirements should be specified in
advance and the system designed and configured to deliver that QoS. Unfortunately,
this is not always practicable for two reasons:

1.	 It may not be cost-effective to design and configure the system to deliver a high
quality of service under peak load. The peak demands may mean that you need
many extra servers than normal to ensure that response times are maintained.
This problem has been lessened by the advent of cloud computing where cloud
servers may be rented from a cloud provider for as long as they are required. As
demand increases, extra servers can be automatically added.

2.	 The quality-of-service parameters may be mutually contradictory. For example,
increased reliability may mean reduced throughput, as checking procedures are
introduced to ensure that all system inputs are valid.

Quality of service is particularly important when the system is dealing with time-
critical data such as sound or video streams. In these circumstances, if the quality of
service falls below a threshold value then the sound or video may become so
degraded that it is impossible to understand. Systems dealing with sound and video
should include quality of service negotiation and management components. These
should evaluate the QoS requirements against the available resources and, if these
are insufficient, negotiate for more resources or for a reduced QoS target.

In a distributed system, it is inevitable that failures will occur, so the system has to
be designed to be resilient to these failures. Failure is so ubiquitous that one flippant
definition of a distributed system suggested by Leslie Lamport, a prominent distrib-
uted systems researcher, is:

You know that you have a distributed system when the crash of a system that
you’ve never heard of stops you getting any work done.†

This is even truer now that more and more systems are executing in the cloud.
Failure management involves applying the fault-tolerance techniques discussed in
Chapter 11. Distributed systems should therefore include mechanisms for discover-
ing whether a component of the system has failed, should continue to deliver as many
services as possible in spite of that failure, and, as far as possible, should automatically

†Leslie Lamport, in Ross J. Anderson, Security Engineering: A Guide to Building Dependable Distributed
Systems (2nd ed.), Wiley (April 14, 2008).

496   Chapter 17  ■  Distributed software engineering

recover from the failure. One important benefit of cloud computing is that it has
dramatically reduced the cost of providing redundant system components.

	 17.1.1 	 Models of interaction

Two fundamental types of interaction may take place between the computers in a dis-
tributed computing system: procedural interaction and message-based interaction.
Procedural interaction involves one computer calling on a known service offered by
some other computer and waiting for that service to be delivered. Message-based
interaction involves the “sending” computer defining information about what is
required in a message, which is then sent to another computer. Messages usually trans-
mit more information in a single interaction than a procedure call to another machine.

To illustrate the difference between procedural and message-based interaction,
consider a situation where you are ordering a meal in a restaurant. When you have a
conversation with the waiter, you are involved in a series of synchronous, procedural
interactions that define your order. You make a request, the waiter acknowledges
that request, you make another request, which is acknowledged, and so on. This is
comparable to components interacting in a software system where one component
calls methods from other components. The waiter writes down your order along with
the order of other people with you. He or she then passes this order, which includes
details of everything that has been ordered, to the kitchen to prepare the food.
Essentially, the waiter is passing a message to the kitchen staff, defining the food to
be prepared. This is message-based interaction.

I have illustrated this kind of interaction in Figure 17.1, which shows the synchronous
ordering process as a series of calls, and in Figure 17.2, which shows a hypothetical XML
message that defines an order made by the table of three people. The difference between
these forms of information exchange is clear. The waiter takes the order as a series of

Tomato soup please

Waiter Diner

What would you like?

And to follow?

Fillet steak

How would you like it cooked?

Rare please

With salad or french fries?

Salad please

etc.

Figure 17.1  Procedural
interaction between a
diner and a waiter

	 17.1  ■  Distributed systems   497

interactions, with each interaction defining part of the order. However, the waiter has a
single interaction with the kitchen where the message defines the complete order.

Procedural communication in a distributed system is usually implemented using
remote procedure calls (RPCs). In an RPC, components have globally unique names
(such as a URL). Using that name, a component can call on the services offered by
another component as if it was a local procedure or method. System middleware
intercepts this call and passes it on to a remote component. This carries out the
required computation and, via the middleware, returns the result to the calling
component. In Java, remote method invocations (RMIs) are remote procedure calls.

Remote procedure calls require a “stub” for the called procedure to be accessible on
the computer that is initiating the call. This stub defines the interface of the remote
procedure. The stub is called, and it translates the procedure parameters into a standard
representation for transmission to the remote procedure. Through the middleware, it
then sends the request for execution to the remote procedure. The remote procedure
uses library functions to convert the parameters into the required format, carries out the
computation, and then returns the results via the “stub” that is representing the caller.

Message-based interaction normally involves one component creating a message that
details the services required from another component. This message is sent to the receiv-
ing component via the system middleware. The receiver parses the message, carries out
the computations, and creates a message for the sending component with the required
results. This is then passed to the middleware for transmission to the sending component.

A problem with the RPC approach to interaction is that both the caller and the
callee need to be available at the time of the communication, and they must know
how to refer to each other. In essence, an RPC has the same requirements as a local
procedure or method call. By contrast, in a message-based approach, unavailability
can be tolerated. If the system component that is processing the message is unavail-
able, the message simply stays in a queue until the receiver comes back online.
Furthermore, it is not necessary for the sender to know the name of the message
receiver and vice versa. They simply communicate with the middleware, which is
responsible for ensuring that messages are passed to the appropriate system.

Figure 17.2 
Message-based
interaction between a
waiter and the kitchen
staff

<starter>
<dish name = “soup” type = “tomato” />
<dish name = “soup” type = “fish” />
<dish name = “pigeon salad” />

</starter>
<main course>

<dish name = “steak” type = “sirloin” cooking = “medium” />
<dish name = “steak” type = “fillet” cooking = “rare” />
<dish name = “sea bass”>

</main>
<accompaniment>

<dish name = “french fries” portions = “2” />
<dish name = “salad” portions = “1” />

</accompaniment>

498   Chapter 17  ■  Distributed software engineering

	 17.1.2 	 Middleware

The components in a distributed system may be implemented in different program-
ming languages and may execute on different types of processors. Models of data,
information representation, and protocols for communication may all be different. A
distributed system therefore requires software that can manage these diverse parts
and ensure that they can communicate and exchange data.

The term middleware is used to refer to this software—it sits in the middle between
the distributed components of the system. This concept is illustrated in Figure 17.3,
which shows that middleware is a layer between the operating system and application
programs. Middleware is normally implemented as a set of libraries, which are installed
on each distributed computer, plus a runtime system to manage communications.

Bernstein (Bernstein 1996) describes types of middleware that are available to
support distributed computing. Middleware is general-purpose software that is usu-
ally bought off-the-shelf rather than written specially by application developers.
Examples of middleware include software for managing communications with data-
bases, transaction managers, data converters, and communication controllers.

In a distributed system, middleware provides two distinct types of support:

1.	 Interaction support, where the middleware coordinates interactions between differ-
ent components in the system. The middleware provides location transparency in
that it isn’t necessary for components to know the physical locations of other compo-
nents. It may also support parameter conversion if different programming languages
are used to implement components, event detection, communication, and so on.

2.	 The provision of common services, where the middleware provides reusable
implementations of services that may be required by several components in the
distributed system. By using these common services, components can easily
interoperate and provide user services in a consistent way.

I have already given examples of the interaction support that middleware can pro-
vide in Section 17.1.1. You use middleware to support remote procedure and remote
method calls, message exchange, and so forth.

Application components

Operating system

Middleware

Networking

Application components

Operating system

Middleware

Networking

Logical
interaction

Information
exchange and

common services

Coordinated
operation

Physical
connectivity

System 1 System 2

Figure 17.3 
Middleware in a
distributed system

	 17.2  ■  Client–server computing   499

Common services are those services that may be required by different compo-
nents irrespective of the functionality of these components. As I discussed in Chapter
16, these may include security services (authentication and authorization), notifica-
tion and naming services, and transaction management services. For distributed
components, you can think of these common services as being provided by a mid-
dleware container; for services, they are provided through shared libraries. You then
deploy your component, and it can access and use these common services.

	 17.2 	 Client–server computing

Distributed systems that are accessed over the Internet are organized as client–server
systems. In a client–server system, the user interacts with a program running on their
local computer, such as a web browser or app on a mobile device. This interacts with
another program running on a remote computer, such as a web server. The remote
computer provides services, such as access to web pages, which are available to
external clients. This client–server model, as I discussed in Chapter 6, is a general
architectural model of an application. It is not restricted to applications distributed
across several machines. You can also use it as a logical interaction model where the
client and the server run on the same computer.

In a client–server architecture, an application is modeled as a set of services that are
provided by servers. Clients may access these services and present results to end-users.
Clients need to be aware of the servers that are available but don’t have to know any-
thing about other clients. Clients and servers are separate processes, as shown in Figure
17.4. This figure illustrates a situation in which there are four servers (s1–s4) that
deliver different services. Each service has a set of associated clients that access these
services.

Figure 17.4 shows client and server processes rather than processors. It is normal
for several client processes to run on a single processor. For example, on your PC,
you may run a mail client that downloads mail from a remote mail server. You may
also run a web browser that interacts with a remote web server and a print client that
sends documents to a remote printer. Figure 17.5 shows a possible arrangement
where the 12 logical clients shown in Figure 17.4 are running on six computers. The
four server processes are mapped onto two physical server computers.

Several different server processes may run on the same processor, but, often,
servers are implemented as multiprocessor systems in which a separate instance of
the server process runs on each machine. Load-balancing software distributes
requests for service from clients to different servers so that each server does the
same amount of work. This allows a higher volume of transactions with clients to be
handled, without degrading the response to individual clients.

Client–server systems depend on there being a clear separation between the pres-
entation of information and the computations that create and process that informa-
tion. Consequently, you should design the architecture of distributed client–server
systems so that they are structured into several logical layers, with clear interfaces

500   Chapter 17  ■  Distributed software engineering

between these layers. This allows each layer to be distributed to a different computer.
Figure 17.6 illustrates this model, showing an application structured into four layers:

1.	 A presentation layer that is concerned with presenting information to the user
and managing all user interaction.

2.	 A data-handling layer that manages the data that is passed to and from the client.
This layer may implement checks on the data, generate web pages, and so on.

3.	 An application processing layer that is concerned with implementing the logic
of the application and so providing the required functionality to end-users.

4.	 A database layer that stores the data and provides transaction management and
query services.

The following section explains how different client–server architectures distrib-
ute these logical layers in different ways. The client–server model also underlies the
notion of software as a service (SaaS), an important way of deploying software and
accessing it over the Internet. I cover this topic in Section 17.4.

s1

s2 s3

s4c1

c2 c3 c4

c5

c6
c7 c8

c9

c10

c11

c12

Client process

Server process

Figure 17.4  Client–
server interaction

Network

SC1

SC2CC1 CC2 CC3

CC5 CC6CC4

Server
computer

Client
computer

s1, s2

s3, s4

c5, c6, c7

c1 c2 c3, c4

c8, c9 c10, c11, c12

Figure 17.5  Mapping
of clients and servers
to networked computers

	 17.3   ■  Architectural patterns for distributed systems   501

	 17.3 	 Architectural patterns for distributed systems

As I explained in the introduction to this chapter, designers of distributed systems
have to organize their system designs to find a balance between performance, depend-
ability, security, and manageability of the system. Because no universal model of
system organization is appropriate for all circumstances, various distributed architec-
tural styles have emerged. When designing a distributed application, you should
choose an architectural style that supports the critical non-functional requirements of
your system.

In this section, I discuss five architectural styles:

1.	 Master-slave architecture, which is used in real-time systems in which guaran-
teed interaction response times are required.

2.	 Two-tier client–server architecture, which is used for simple client–server systems
and in situations where it is important to centralize the system for security reasons.

3.	 Multi-tier client–server architecture, which is used when the server has to pro-
cess a high volume of transactions.

4.	 Distributed component architecture, which is used when resources from differ-
ent systems and databases need to be combined, or as an implementation model
for multi-tier client–server systems.

5.	 Peer-to-peer architecture, which is used when clients exchange locally stored
information and the role of the server is to introduce clients to each other. It
may also be used when a large number of independent computations may have
to be made.

	 17.3.1 	 Master–slave architectures

Master–slave architectures for distributed systems are commonly used in real-
time systems. In those systems, there may be separate processors associated with
data acquisition from the system’s environment, data processing and computation,

Presentation

Application processing

Data handling

Database
Figure 17.6  Layered
architectural model for
client–server application

502   Chapter 17  ■  Distributed software engineering

and actuator management. Actuators, as I discuss in Chapter 21, are devices con-
trolled by the software system that act to change the system’s environment. For
example, an actuator may control a valve and change its state from “open” to
“closed.” The “master” process is usually responsible for computation, coordina-
tion, and communications, and it controls the “slave” processes. “Slave” pro-
cesses are dedicated to specific actions, such as the acquisition of data from an
array of sensors.

 Figure 17.7 shows an example of this architectural model. A traffic control sys-
tem in a city has three logical processes that run on separate processors. The master
process is the control room process, which communicates with separate slave pro-
cesses that are responsible for collecting traffic data and managing the operation of
traffic lights.

A set of distributed sensors collects information on the traffic flow. The sensor
control process polls the sensors periodically to capture the traffic flow informa-
tion and collates this information for further processing. The sensor processor is
itself polled periodically for information by the master process that is concerned
with displaying traffic status to operators, computing traffic light sequences, and
accepting operator commands to modify these sequences. The control room sys-
tem sends commands to a traffic light control process that converts these into sig-
nals to control the traffic light hardware. The master control room system is itself
organized as a client–server system, with the client processes running on the oper-
ator’s consoles.

You use this master–slave model of a distributed system in situations where you
can predict the distributed processing that is required and where processing can be
easily localized to slave processors. This situation is common in real-time systems,
where it is important to meet processing deadlines. Slave processors can be used for
computationally intensive operations, such as signal processing and the management
of equipment controlled by the system.

Traffic lights

Light
control
process

Traffic light control
processor

Control room
processor

Operator consoles

Traffic flow sensors and
cameras

Sensor
processor

Sensor
control
process

Coordination
and display

process

Slave Slave

Master

Figure 17.7  A traffic
management system
with a master–
slave architecture

	 17.3   ■  Architectural patterns for distributed systems   503

	 17.3.2 	 Two-tier client–server architectures

In Section 17.2, I explained the general organization of client–server systems in which
part of the application system runs on the user’s computer (the client), and part runs
on a remote computer (the server). I also presented a layered application model
(Figure 17.6) where the different layers in the system may execute on different
computers.

A two-tier client–server architecture is the simplest form of client–server archi-
tecture. The system is implemented as a single logical server plus an indefinite num-
ber of clients that use that server. This is illustrated in Figure 17.8, which shows two
forms of this architectural model:

1.	 A thin-client model, where the presentation layer is implemented on the client
and all other layers (data handling, application processing, and database) are
implemented on a server. The client presentation software is usually a web
browser, but apps for mobile devices may also be available.

2.	 A fat-client model, where some or all of the application processing is carried out
on the client. Data management and database functions are implemented on the
server. In this case, the client software may be a specially written program that
is tightly integrated with the server application.

The advantage of the thin-client model is that it is simple to manage the clients.
This becomes a major issue when there are a large number of clients, as it may be
difficult and expensive to install new software on all of them. If a web browser is
used as the client, there is no need to install any software.

The disadvantage of the thin-client approach, however, is that it places a heavy
processing load on both the server and the network. The server is responsible for all
computation, which may lead to the generation of significant network traffic between
the client and the server. Implementing a system using this model may therefore
require additional investment in network and server capacity.

The fat-client model makes use of available processing power on the computer
running the client software, and distributes some or all of the application processing

Thin-client
model

Fat-client
model Client

Client

Server

Database
Data management

Application processing

Presentation

Server

Database
Data management

Presentation
Application processing

Figure 17.8  Thin- and
fat-client architectural
models

504   Chapter 17  ■  Distributed software engineering

and the presentation to the client. The server is essentially a transaction server that
manages all database transactions. Data handling is straightforward as there is no
need to manage the interaction between the client and the application processing
system. The fat-client model requires system management to deploy and maintain
the software on the client computer.

An example of a situation in which a fat-client architecture is used is in a bank
ATM system, which delivers cash and other banking services to users. The ATM is the
client computer, and the server is, typically, a mainframe running the customer account
database. A mainframe computer is a powerful machine that is designed for transac-
tion processing. It can therefore handle the large volume of transactions generated by
ATMs, other teller systems, and online banking. The software in the teller machine
carries out a lot of the customer-related processing associated with a transaction.

 Figure 17.9 shows a simplified version of the ATM system organization. The ATMs
do not connect directly to the customer database, but rather to a teleprocessing (TP) mon-
itor. A TP monitor is a middleware system that organizes communications with remote
clients and serializes client transactions for processing by the database. This ensures that
transactions are independent and do not interfere with one other. Using serial transactions
means that the system can recover from faults without corrupting the system data.

While a fat-client model distributes processing more effectively than a thin-client
model, system management is more complex if a special-purpose client, rather than
a browser, is used. Application functionality is spread across many computers. When
the application software has to be changed, this involves software reinstallation on
every client computer. This can be a major cost if there are hundreds of clients in the
system. Auto-update of the client software can reduce these costs but introduces its
own problems if the client functionality is changed. The new functionality may mean
that businesses have to change the ways they use the system.

The extensive use of mobile devices means that it is important to mimimize net-
work traffic wherever possible. These devices now include powerful computers that
can carry out local processing. As a consequence, the distinction between thin-client
and fat-client architectures has become blurred. Apps can have inbuilt functionality
that carries out local processing, and web pages may include Javascript components

Account server

Customer
account
database

Tele-
processing

monitor

ATM

ATM

ATM

ATM
Figure 17.9  A fat-client
architecture for an
ATM system

	 17.3   ■  Architectural patterns for distributed systems   505

that execute on the user’s local computer. The update problem for apps remains an
issue, but it has been addressed, to some extent, by automatically updating apps with-
out explicit user intervention. Consequently, while it is sometimes helpful to use
these models as a general basis for the architecture of a distributed system, in practice
few web-based applications implement all processing on the remote server.

	 17.3.3 	 Multi-tier client–server architectures

The fundamental problem with a two-tier client–server approach is that the logical layers
in the system—presentation, application processing, data management, and database—
must be mapped onto two computer systems: the client and the server. This may lead to
problems with scalability and performance if the thin-client model is chosen, or problems
of system management if the fat-client model is used. To avoid some of these problems,
a “multi-tier client–server” architecture can be used. In this architecture, the different lay-
ers of the system, namely presentation, data management, application processing, and
database, are separate processes that may execute on different processors.

An Internet banking system (Figure 17.10) is an example of a multi-tier client–
server architecture, where there are three tiers in the system. The bank’s customer
database (usually hosted on a mainframe computer as discussed above) provides
database services. A web server provides data management services such as web
page generation and some application services. Application services such as facili-
ties to transfer cash, generate statements, pay bills, and so on are implemented in the
web server and as scripts that are executed by the client. The user’s own computer
with an Internet browser is the client. This system is scalable because it is relatively
easy to add servers (scale out) as the number of customers increase.

In this case, the use of a three-tier architecture allows the information transfer
between the web server and the database server to be optimized. Efficient middle-
ware that supports database queries in SQL (Structured Query Language) is used to
handle information retrieval from the database.

Database server

Customer
account
database

Web serverClient

Client

Account service
provision

SQL
SQL query

HTTPS interaction

Client

Client

Tier 1. Presentation

Tier 2. Application
processing and data

handling

Tier 3. Database
processingFigure 17.10  Three-tier

architecture for an
Internet banking
system

506   Chapter 17  ■  Distributed software engineering

The three-tier client–server model can be extended to a multi-tier variant, where
additional servers are added to the system. This may involve using a web server for
data management and separate servers for application processing and database ser-
vices. Multi-tier systems may also be used when applications need to access and use
data from different databases. In this case, you may need to add an integration server
to the system. The integration server collects the distributed data and presents it to
the application server as if it were from a single database. As I discuss in the follow-
ing section, distributed component architectures may be used to implement multi-
tier client–server systems.

Multi-tier client–server systems that distribute application processing across sev-
eral servers are more scalable than two-tier architectures. The tiers in the system can
be independently managed, with additional servers added as the load increases.
Processing may be distributed between the application logic and the data-handling
servers, thus leading to more rapid response to client requests.

Designers of client–server architectures must take a number of factors into account
when choosing the most appropriate distribution architecture. Situations in which the
client–server architectures discussed here may be used are described in Figure 17.11.

	 17.3.4 	 Distributed component architectures

By organizing processing into layers, as shown in Figure 17.6, each layer of a system
can be implemented as a separate logical server. This model works well for many
types of application. However, it limits the flexibility of system designers in that they

Figure 17.11  Use of
client–server
architectural patterns

Architecture Applications

Two-tier client–server
architecture with thin clients

Legacy system applications that are used when separating application
processing and data handling is impractical. Clients may access these as
services, as discussed in Section 17.4.

Computationally intensive applications such as compilers with little or no
requirements for data handling.

Data-intensive applications (browsing and querying) with non-intensive
application processing. Simple web browsing is the most common
example of a situation where this architecture is used.

Two-tier client–server
architecture with fat clients

Applications where application processing is provided by off-the-shelf
software (e.g., Microsoft Excel) on the client.

Applications where computationally intensive processing of data (e.g.,
data visualization) is required.

Mobile applications where internet connectivity cannot be guaranteed.
Local processing using cached information from the database is therefore
possible.

Multi-tier client–server
architecture

Large-scale applications with hundreds or thousands of clients.

Applications where both the data and the application are volatile.

Applications where data from multiple sources are integrated.

	 17.3   ■  Architectural patterns for distributed systems   507

have to decide what services should be included in each layer. In practice, however, it
is not always clear whether a service is a data management service, an application
service, or a database service. Designers must also plan for scalability and so provide
some means for servers to be replicated as more clients are added to the system.

A more general approach to distributed system design is to design the system as a
set of services, without attempting to allocate these services to layers in the system.
Each service, or group of related services, can be implemented using a separate object
or component. In a distributed component architecture (Figure 17.12), the system is
organized as a set of interacting components as I discussed in Chapter 16. These com-
ponents provide an interface to a set of services that they provide. Other components
call on these services through middleware, using remote procedure or method calls.

Distributed component systems are reliant on middleware. This manages component
interactions, reconciles differences between types of the parameters passed between
components, and provides a set of common services that application components can
use. The CORBA standard (Orfali, Harkey, and Edwards 1997) defined middleware
for distributed component systems, but CORBA implementations have never been
widely adopted. Enterprises preferred to use proprietary software such as Enterprise
Java Beans (EJB) or .NET.

Using a distributed component model for implementing distributed systems has a
number of benefits:

1.	 It allows the system designer to delay decisions on where and how services
should be provided. Service-providing components may execute on any node of
the network. There is no need to decide in advance whether a service is part of a
data management layer, an application layer, or a user interface layer.

2.	 It is a very open-system architecture that allows new resources to be added as
required. New system services can be added easily without major disruption to
the existing system.

3.	 The system is flexible and scalable. New objects or replicated objects can be added
as the load on the system increases, without disrupting other parts of the system.

Communication middleware

Client Client Client Client Client

Comp 1

Common
services

Comp 2

Common
services

Comp 3

Common
services

Comp 4

Common
services

Figure 17.12  A
distributed component
architecture

508   Chapter 17  ■  Distributed software engineering

4.	 It is possible to reconfigure the system dynamically with components migrating across
the network as required. This may be important where there are fluctuating patterns
of demand on services. A service-providing component can migrate to the same
processor as service-requesting objects, thus improving the performance of the system.

A distributed component architecture can be used as a logical model that allows
you to structure and organize the system. In this case, you think about how to pro-
vide application functionality solely in terms of services and combinations of ser-
vices. You then work out how to implement these services. For example, a retail
application may have application components concerned with stock control, cus-
tomer communications, goods ordering, and so on.

Data-mining systems are a good example of a type of system that can be imple-
mented using a distributed component architecture. Data-mining systems look for
relationships between the data that may be distributed across databases (Figure 17.13).
These systems pull in information from several separate databases, carry out compu-
tationally intensive processing, and present easy-to-understand visualizations of the
relationships that have been discovered.

An example of such a data-mining application might be a system for a retail busi-
ness that sells food and books. Retail businesses maintain separate databases with
detailed information about food products and books. They use a loyalty card system
to keep track of customers’ purchases, so there is a large database linking bar codes
of products with customer information. The marketing department wants to find
relationships between a customer’s food and book purchases. For instance, a rela-
tively high proportion of people who buy pizzas might also buy crime novels. With
this knowledge, the business can specifically target customers who make specific
food purchases with information about new novels when they are published.

Database 1

Database 2

Database 3

Integrator 1

Integrator 2

Visualizer

Display

Report gen.

Clients

Figure 17.13  A
distributed component
architecture for a
data-mining system

	 17.3   ■  Architectural patterns for distributed systems   509

In this example, each sales database can be encapsulated as a distributed compo-
nent with an interface that provides read-only access to its data. Integrator components
are each concerned with specific types of relationships, and they collect information
from all of the databases to try to deduce the relationships. There might be an integra-
tor component that is concerned with seasonal variations in goods sold, and another
integrator that is concerned with relationships between different types of goods.

Visualizer components interact with integrator components to create a visualization
or a report on the relationships that have been discovered. Because of the large vol-
umes of data that are handled, visualizer components normally present their results
graphically. Finally, a display component may be responsible for delivering the
graphical models to clients for final presentation in their web browser.

A distributed component architecture rather than a layered architecture is appro-
priate for this type of application because you can add new databases to the system
without major disruption. Each new database is simply accessed by adding another
distributed component. The database access components provide a simplified inter-
face that controls access to the data. The databases that are accessed may reside on
different machines. The architecture also makes it easy to mine new types of rela-
tionships by adding new integrator objects.

Distributed component architectures suffer from two major disadvantages:

1.	 They are more complex to design than client–server systems. Multilayer client–
server systems appear to be a fairly intuitive way to think about systems. They
reflect many human transactions where people request and receive services
from other people who specialize in providing these services. The complexity of
distributed component architectures increases the costs of implementation.

2.	 There are no universal standards for distributed component models or middle-
ware. Rather, different vendors, such as Microsoft and Sun, developed different,
incompatible middleware. This middleware is complex, and reliance on it sig-
nificantly increases the complexity of distributed component systems.

As a result of these problems, distributed component architectures are being replaced
by service-oriented systems (discussed in Chapter 18). However, distributed compo-
nent systems have performance benefits over service-oriented systems. RPC communi-
cations are usually faster than the message-based interaction used in service-oriented
systems. Distributed component architectures are therefore still used for high-throughput
systems in which large numbers of transactions have to be processed quickly.

	 17.3.5 	 Peer-to-peer architectures

The client–server model of computing that I have discussed in previous sections of the
chapter makes a clear distinction between servers, which are providers of services, and
clients, which are receivers of services. This model usually leads to an uneven distribution
of load on the system, where servers do more work than clients. This may lead to organi-
zations spending a lot on server capacity while there is unused processing capacity on the
hundreds or thousands of PCs and mobile devices used to access the system servers.

510   Chapter 17  ■  Distributed software engineering

Peer-to-peer (p2p) systems (Oram 2001) are decentralized systems in which com-
putations may be carried out by any node on the network. In principle at least, no
distinctions are made between clients and servers. In peer-to-peer applications, the
overall system is designed to take advantage of the computational power and storage
available across a potentially huge network of computers. The standards and proto-
cols that enable communications across the nodes are embedded in the application
itself, and each node must run a copy of that application.

Peer-to-peer technologies have mostly been used for personal rather than busi-
ness systems. The fact that there are no central servers means that these systems are
harder to monitor; therefore, a higher level of communication privacy is possible.

For example, file-sharing systems based on the BitTorrent protocol are widely used
to exchange files on users’ PCs. Private instant messaging systems, such as ICQ and
Jabber, provide direct communications between users without an intermediate server.
Bitcoin is a peer-to-peer payments system using the Bitcoin electronic currency. Freenet
is a decentralized database that has been designed to make it easier to publish informa-
tion anonymously and to make it difficult for authorities to suppress this information.

Other p2p systems have been developed where privacy is not the principal
requirement. Voice over IP (VoIP) phone services, such as Viber, rely on peer-to-
peer communication between the parties involved in the phone call or conference.
SETI@home is a long-running project that processes data from radio telescopes on
home PCs in order to search for indications of extraterrestrial life. In these systems,
the advantage of the p2p model is that a central server is not a processing bottleneck.

Peer-to-peer systems have also been used by businesses to harness the power in
their PC networks (McDougall 2000). Intel and Boeing have both implemented p2p
systems for computationally intensive applications. Such systems take advantage of
unused processing capacity on local computers. Instead of buying expensive high-
performance hardware, engineering computations can be run overnight when desk-
top computers are unused. Businesses also make extensive use of commercial p2p
systems, such as messaging and VoIP systems.

In principle, every node in a p2p network could be aware of every other node.
Nodes could connect to and exchange data directly with any other node in the network.
In practice, this is impossible unless the network has only a few members. Consequently,
nodes are usually organized into “localities,” with some nodes acting as bridges to
other node localities. Figure 17.14 shows this decentralized p2p architecture.

In a decentralized architecture, the nodes in the network are not simply functional
elements but are also communications switches that can route data and control sig-
nals from one node to another. For example, assume that Figure 17.14 represents a
decentralized, document-management system. A consortium of researchers uses this
system to share documents. Each member of the consortium maintains his or her
own document store. However, when a document is retrieved, the node retrieving
that document also makes it available to other nodes.

If someone needs a document that is stored somewhere on the network, they issue
a search command, which is sent to nodes in their “locality.” These nodes check
whether they have the document and, if so, return it to the requestor. If they do not
have it, they route the search to other nodes. Therefore if n1 issues a search for a

	 17.3   ■  Architectural patterns for distributed systems   511

document that is stored at n10, this search is routed through nodes n3, n6, and n9 to
n10. When the document is finally discovered, the node holding the document then
sends it to the requesting node directly by making a peer-to-peer connection.

This decentralized architecture has the advantage of being highly redundant and
hence both fault-tolerant and tolerant of nodes disconnecting from the network.
However, the disadvantages are that many different nodes may process the same
search, and there is also significant overhead in replicated peer communications.

An alternative p2p architectural model, which departs from a pure p2p architec-
ture, is a semicentralized architecture where, within the network, one or more nodes
act as servers to facilitate node communications. This reduces the amount of traffic
between nodes. Figure 17.15 illustrates how this semicentralized architectural model
differs from the completely decentralized model shown in Figure 17.14.

In a semicentralized architecture, the role of the server (sometimes called a super-
peer) is to help establish contact between peers in the network or to coordinate the
results of a computation. For example, if Figure 17.15 represents an instant messaging
system, then network nodes communicate with the server (indicated by dashed lines)
to find out what other nodes are available. Once these nodes are discovered, direct
communications can be established and the connection to the server becomes unnec-
essary. Therefore, nodes n2, n3, n5, and n6 are in direct communication.

In a computational p2p system, where a processor-intensive computation is distributed
across a large number of nodes, it is normal for some nodes to be superpeers. Their role is
to distribute work to other nodes and to collate and check the results of the computation.

The peer-to-peer architectural model may be the best model for a distributed sys-
tem in two circumstances:

1.	 Where the system is computationally-intensive and it is possible to separate the
processing required into a large number of independent computations. For exam-
ple, a peer-to-peer system that supports computational drug discovery distributes
computations that look for potential cancer treatments by analyzing a huge num-
ber of molecules to see if they have the characteristics required to suppress the
growth of cancers. Each molecule can be considered separately, so there is no
need for the peers in the system to communicate.

n4

n2 n3

n6

n7

n10

n8

n12

n11
n14

n13

n9

n1 n5

Figure 17.14 
A decentralized
p2p architecture

512   Chapter 17  ■  Distributed software engineering

2.	 Where the system primarily involves the exchange of information between indi-
vidual computers on a network and there is no need for this information to be
centrally stored or managed. Examples of such applications include file-sharing
systems that allow peers to exchange local files such as music and video files, and
phone systems that support voice and video communications between computers.

Peer-to-peer architectures allow for the efficient use of capacity across a network.
However, security concerns are the principal reason why these systems have not become
more widely used, especially in business (Wallach 2003). The lack of centralized man-
agement means that attackers can set up malicious nodes that deliver spam and malware
to legitimate p2p system users. Peer-to-peer communications involve opening your
computer to direct interactions with other peers and this means that these systems could
potentially access any of your resources. To counter this possibility, you need to
organize your system so that these resources are protected. If this is done incorrectly,
then your system is insecure and vulnerable to external corruption.

	 17.4 	 Software as a service

In the previous sections, I discussed client–server models and how functionality may
be distributed between the client and the server. To implement a client–server system,
you may have to install a program or an app on the client computer, which commu-
nicates with the server, implements client-side functionality, and manages the user
interface. For example, a mail client, such as Outlook or Mac Mail, provides mail
management features on your own computer. This avoids the problem of server over-
load in thin-client systems, where all of the processing is carried out at the server.

The problems of server overload can be significantly reduced by using web tech-
nologies such as AJAX (Holdener, 2008) and HTML5 (Sarris 2013). These technologies
support efficient management of web page presentation and local computation by exe-
cuting scripts that are part of the web page. This means that a browser can be configured
and used as client, with significant local processing. The application software can be

n1

n6

n2

n3

n5

n4

Discovery server
(Super peer)

Figure 17.15  A
semicentralized p2p
architecture

	 17.4  ■  Software as a service   513

thought of as a remote service, which can be accessed from any device that can run a
standard browser. Widely used examples of SaaS include web-based mail systems,
such as Yahoo and Gmail, and office applications, such as Google Docs and Office 365.

This idea of software as a service (SaaS) involves hosting the software remotely and
providing access to it over the Internet. The key elements of SaaS are as follows:

1.	 Software is deployed on a server (or more commonly in the cloud) and is
accessed through a web browser. It is not deployed on a local PC.

2.	 The software is owned and managed by a software provider rather than the
organizations using the software.

3.	 Users may pay for the software according to how much use they make of it or
through an annual or monthly subscription. Sometimes the software is free for
anyone to use, but users must then agree to accept advertisements, which fund
the software service.

The development of SaaS has accelerated over the past few years as cloud com-
puting has become widely used. When a service is deployed in the cloud, the number
of servers can quickly change to match the user demands for that service. There is no
need for service providers to provision for peak loads; as a result, the costs for these
providers have been dramatically reduced.

For software purchasers, the benefit of SaaS is that the costs of management of
software are transferred to the provider. The provider is responsible for fixing
bugs and installing software upgrades, dealing with changes to the operating sys-
tem platform, and ensuring that hardware capacity can meet demand. Software
license management costs are zero. If someone has several computers, there is no
need to license software for all of these. If a software application is only used
occasionally, the pay-per-use model may be cheaper than buying an application.
The software may be accessed from mobile devices, such as smartphones, from
anywhere in the world.

The main problem that inhibits the use of SaaS is data transfer with the remote
service. Data transfer takes place at network speeds, and so transferring a large
amount of data, such as video or high-quality images takes a lot of time. You may
also have to pay the service provider according to the amount transferred. Other
problems are lack of control over software evolution (the provider may change the
software when it wishes) and problems with laws and regulations. Many countries
have laws governing the storage, management, preservation, and accessibility of
data, and moving data to a remote service may breach these laws.

The notion of software as a service and service-oriented architectures (SOA),
discussed in Chapter 18, are related, but they are not the same:

1.	 Software as a service is a way of providing functionality on a remote server with
client access through a web browser. The server maintains the user’s data and
state during an interaction session. Transactions are usually long transactions,
for example, editing a document.

514   Chapter 17  ■  Distributed software engineering

2.	 Service-oriented architecture is an approach to structuring a software system as
a set of separate, stateless services. These services may be provided by multiple
providers and may be distributed. Typically, transactions are short transactions
where a service is called, does something, and then returns a result.

SaaS is a way of delivering application functionality to users, whereas SOA is an
implementation technology for application systems. Systems that are implemented
using SOA do not have to be accessed by users as web services. SaaS applications
for business may be implemented using components rather than services. However,
if SaaS is implemented using SOA, it becomes possible for applications to use
service APIs to access the functionality of other applications. They can then be
integrated into more complex systems. These systems are called mashups and are
another approach to software reuse and rapid software development.

From a software development perspective, the process of service development
has much in common with other types of software development. However, service
construction is not usually driven by user requirements, but by the service provider’s
assumptions about what users need. Accordingly, the software needs to be able to
evolve quickly after the provider gets feedback from users on their requirements.
Agile development with incremental delivery is therefore an effective approach for
software that is to be deployed as a service.

Some software that is implemented as a service, such as Google Docs for web users,
offers a generic experience to all users. However, businesses may wish to have specific
services that are tailored to their own requirements. If you are implementing SaaS for
business, you may base your software service on a generic service that is tailored to the
needs of each business customer. Three important factors have to be considered:

1.	 Configurability How do you configure the software for the specific require-
ments of each organization?

2.	 Multi-tenancy How do you present each user of the software with the impres-
sion that they are working with their own copy of the system while, at the same
time, making efficient use of system resources?

3.	 Scalability How do you design the system so that it can be scaled to accommo-
date an unpredictably large number of users?

The notion of product-line architectures, discussed in Chapter 16, is one way of config-
uring software for users who have overlapping but not identical requirements. You start
with a generic system and adapt it according to the specific requirements of each user.

This does not work for SaaS, however, for it would mean deploying a different copy
of the service for each organization that uses the software. Rather, you need to design
configurability into the system and provide a configuration interface that allows users
to specify their preferences. You then use these preferences to adjust the behavior of
the software dynamically as it is used. Configuration facilities may allow for:

1.	 Branding, where users from each organization are presented with an interface
that reflects their own organization.

	 17.4  ■  Software as a service   515

2.	 Business rules and workflows, where each organization defines its own rules
that govern the use of the service and its data.

3.	 Database extensions, where each organization defines how the generic service
data model is extended to meet its specific needs.

4.	 Access control, where service customers create individual accounts for their staff
and define the resources and functions that are accessible to each of their users.

 Figure 17.16 illustrates this situation. This diagram shows five users of the appli-
cation service, who work for three different customers of the service provider. Users
interact with the service through a customer profile that defines the service configu-
ration for their employer.

Multi-tenancy is a situation in which many different users access the same system
and the system architecture is defined to allow the efficient sharing of system resources.
However, it must appear to users that they each have sole use of the system. Multi-
tenancy involves designing the system so that there is an absolute separation between
system functionality and system data. All operations must therefore be stateless so that
they can be shared. Data must either be provided by the client or should be available in
a storage system or database that can be accessed from any system instance.

A particular problem in multi-tenant systems is data management. The simplest
way to provide data management is for all customers to have their own database,
which they may use and configure as they wish. However, this requires the service
provider to maintain many different database instances (one per customer) and to
make these databases available on demand.

As an alternative, the service provider can use a single database, with different
users being virtually isolated within that database. This is illustrated in Figure 17.17,
where you can see that database entries also have a “tenant identifier” that links
these entries to specific users. By using database views, you can extract the entries
for each service customer and so present users from that customer with a virtual,
personal database. This process can be extended to meet specific customer needs
using the configuration features discussed above.

Scalability is the ability of the system to cope with increasing numbers of users
without reducing the overall quality of service that is delivered to any user. Generally,

User 1 User 1User 2 User 3 User 4 User 5

Application service

Profile C1 Profile C2 Profile C3

Figure 17.16 
Configuration of a
software system
offered as a service

516   Chapter 17  ■  Distributed software engineering

when considering scalability in the context of SaaS, you are considering “scaling
out” rather than “scaling up.” Recall that scaling out means adding additional servers
and so also increasing the number of transactions that can be processed in parallel.
Scalability is a complex topic that I cannot cover in detail here, but following are
some general guidelines for implementing scalable software:

1.	 Develop applications where each component is implemented as a simple state-
less service that may be run on any server. In the course of a single transaction,
a user may therefore interact with instances of the same service that are running
on several different servers.

2.	 Design the system using asynchronous interaction so that the application does
not have to wait for the result of an interaction (such as a read request). This
allows the application to carry on doing useful work while it is waiting for the
interaction to finish.

3.	 Manage resources, such as network and database connections, as a pool so that
no single server is likely to run out of resources.

4.	 Design your database to allow fine-grain locking. That is, do not lock out whole
records in the database when only part of a record is in use.

5.	 Use a cloud PaaS platform, such as Google App Engine (Sanderson 2012) or
other PaaS platform for system implementation. These include mechanisms that
will automatically scale out your system as the load increases.

The notion of software as a service is a major paradigm shift for distributed com-
puting. We have already seen consumer software and professional applications, such
as Photoshop, move to this model of delivery. Increasingly, businesses are replacing
their own systems, such as CRM and inventory systems, with cloud-based SaaS sys-
tems from external providers such as Salesforce. Specialized software companies
that implement business applications prefer to provide SaaS because it simplifies
software update and management.

SaaS represents a new way to think about the engineering of enterprise systems.
It has always been helpful to think of systems delivering services to users, but, until
SaaS, this function has involved using different abstractions, such as objects, when
implementing the system. Where there is a closer match between user and system
abstractions, the resultant systems are easier to understand, maintain, and evolve.

Tenant Key Name Address

 234 C100 XYZ Corp 43, Anystreet, Sometown

 234 C110 BigCorp 2, Main St, Motown

 435 X234 J. Bowie 56, Mill St, Starville

 592 PP37 R. Burns Alloway, AyrshireFigure 17.17  A
multi-tenant database

	 17.4  ■  Further Reading   517

K e y P o i n t s

■	 The benefits of distributed systems are that they can be scaled to cope with increasing demand,
can continue to provide user services (even if some parts of the system fail), and they enable
resources to be shared.

■	 Issues to be considered in the design of distributed systems include transparency, openness,
scalability, security, quality of service, and failure management.

■	 Client–server systems are distributed systems in which the system is structured into layers, with
the presentation layer implemented on a client computer. Servers provide data management,
application, and database services.

■	 Client–server systems may have several tiers, with different layers of the system distributed to
different computers.

■	 Architectural patterns for distributed systems include master–slave architectures, two-tier and multi-
tier client–server architectures, distributed component architectures, and peer-to-peer architectures.

■	 Distributed component systems require middleware to handle component communications and to
allow objects to be added to and removed from the system.

■	 Peer-to-peer architectures are decentralized architectures in which there are no distinguished clients
and servers. Computations can be distributed over many systems in different organizations.

■	 Software as a service is a way of deploying applications as thin client–server systems, where the
client is a web browser.

F u r t h e r R e ad i n g

Peer-to-Peer: Harnessing the Power of Disruptive Technologies. Although this book does not have a
lot of information on p2p architectures, it is an excellent introduction to p2p computing and
discusses the organization and approach used in a number of p2p systems. (A. Oram (ed.), O’Reilly
and Associates Inc., 2001).

“Turning Software into a Service.” A good overview paper that discusses the principles of service-
oriented computing. Unlike many papers on this topic, it does not conceal these principles behind a
discussion of the standards involved. (M. Turner, D. Budgen, and P. Brereton, IEEE Computer, 36 (10),
October 2003) http://dx.doi.org/10.1109/MC.2003.1236470

Distributed Systems, 5th ed. A comprehensive textbook that discusses all aspects of distributed sys-
tems design and implementation. It includes coverage of peer-to-peer systems and mobile systems.
(G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Addison-Wesley, 2011).

Engineering Software as a Service: An Agile Approach Using Cloud Computing. This book accompanies
the authors’ online course on the topic. A good practical book that is aimed at people new to this type
of development. (A. Fox and D. Patterson, Strawberry Canyon LLC, 2014) http://www.saasbook.info

	 Chapter 17  ■  Further reading   517

http://dx.doi.org/10.1109/MC.2003.1236470
http://www.�saasbook.info

518   Chapter 17  ■  Distributed software engineering

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/requirements-and-design/

E x e r c i s e s

17.1. 	What do you understand by “scalability”? Discuss the differences between scaling up and
scaling out and explain when these different approaches to scalability may be used.

17.2. 	Explain why distributed software systems are more complex than centralized software sys-
tems, where all of the system functionality is implemented on a single computer.

17.3. 	Using an example of a remote procedure call, explain how middleware coordinates the inter-
action of computers in a distributed system.

17.4. 	What are the different logical layers in an application with a distributed client–server
architecture?

17.5. 	You have been asked to design a secure system that requires strong authentication and
authorization. The system must be designed so that communications between parts of the
system cannot be intercepted and read by an attacker. Suggest the most appropriate client–
server architecture for this system and, giving the reasons for your answer, propose how func-
tionality should be distributed between the client and the server systems.

17.6. 	Your customer wants to develop a system for stock information where dealers can access infor-
mation about companies and evaluate various investment scenarios using a simulation system.
Each dealer uses this simulation in a different way, according to his or her experience and the
type of stocks in question. Suggest a client–server architecture for this system that shows
where functionality is located. Justify the client–server system model that you have chosen.

17.7. 	Using a distributed component approach, propose an architecture for a national theater book-
ing system. Users can check seat availability and book seats at a group of theaters. The sys-
tem should support ticket returns so that people may return their tickets for last-minute
resale to other customers.

17.8. 	What is the fundamental problem with a two-tier client–server approach? Define how a multi-
tier client–server approach overcomes this.

17.9. 	List the benefits that a distributed component model has when used for implementing distrib-
uted systems.

17.10. 	Your company wishes to move from using desktop applications to accessing the same func-
tionality remotely as services. Identify three risks that might arise and suggest how these
risks may be reduced.

518   Chapter 17  ■  Distributed software engineering

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/requirements-and-design

	 17.4  ■  References   519

R e f e r e n c e s

Bernstein, P. A. 1996. “Middleware: A Model for Distributed System Services.” Comm. ACM 39 (2):
86–97. doi:10.1145/230798.230809.

Coulouris, G., J. Dollimore, T. Kindberg, and G. Blair. 2011. Distributed Systems: Concepts and
Design, 5th ed. Harlow, UK: Addison-Wesley.

Holdener, A. T. (2008). Ajax: The Definitive Guide. Sebastopol, CA.: O’Reilly & Associates.

McDougall, P. 2000. “The Power of Peer-to-Peer.” Information Week (August 28, 2000). http://www
.informationweek.com/801/peer.htm

Oram, A. 2001. “Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology.” Sebastopol, CA:
O’Reilly & Associates.

Orfali, R., D. Harkey, and J. Edwards. 1997. Instant CORBA. Chichester, UK: John Wiley & Sons.

Pope, A. 1997. The CORBA Reference Guide: Understanding the Common Object Request Broker
Architecture. Harlow, UK: Addison-Wesley.

Sanderson, D. 2012. Programming with Google App Engine. Sebastopol, CA: O’Reilly Media Inc.

Sarris, S. 2013. HTML5 Unleashed. Indianapolis, IN: Sams Publishing.

Tanenbaum, A. S., and M. Van Steen. 2007. Distributed Systems: Principles and Paradigms, 2nd ed.
Upper Saddle River, NJ: Prentice-Hall.

Wallach, D. S. 2003. “A Survey of Peer-to-Peer Security Issues.” In Software Security: Theories and
Systems, edited by M. Okada, B. C. Pierce, A. Scedrov, H. Tokuda, and A. Yonezawa, 42–57.
Heidelberg: Springer-Verlag. doi:10.1007/3-540-36532-X_4.

	 Chapter 17  ■  References   519

http://www..informationweek.com/801/peer.htm
http://www..informationweek.com/801/peer.htm

Service-oriented
software engineering

18

Objectives
The objective of this chapter is to introduce service-oriented software
engineering as a way of building distributed applications using web
services. When you have read this chapter, you will:

■	 understand the basic notions of a web service, web service
standards, and service-oriented architecture;

■	 understand the idea of RESTful services and the important
differences between RESTful and SOAP-based services;

■	 understand the service engineering process that is intended to
produce reusable web services;

■	 understand how workflow-based service composition can be used
to create service-oriented software that supports business processes.

Contents
18.1 Service-oriented architecture

18.2 RESTful services

18.3	 Service engineering

18.4	 Service composition

The development of the Web in the 1990s revolutionized organizational information
exchange. Client computers could gain access to information on remote servers out-
side their own organizations. However, access was solely through a web browser,
and direct access to the information by other programs was not practical. This meant
that opportunistic connections between servers, where, for example, a program could
query a number of catalogs from different suppliers, were not possible.

To get around this problem, web services were developed that allowed programs
to access and update resources available on the web. Using a web service, organiza-
tions that wish to make their information accessible to other programs can do so by
defining and publishing a programmatic web service interface. This interface defines
the data available and how it can be accessed and used.

More generally, a web service is a standard representation for some computational or
information resource that can be used by other programs. These may be information
resources, such as a parts catalog, computer resources, such as a specialized processor, or
storage resources. For example, an archive service could be implemented that permanently
and reliably stores organizational data that, by law, has to be maintained for many years.

A web service is an instance of a more general notion of a service, which Lovelock
et al. (Lovelock et al., 1996) defined as:

an act or performance offered by one party to another. Although the process
may be tied to a physical product, the performance is essentially intangible
and does not normally result in ownership of any of the factors of production.†

Services are a natural development of software components where the component
model is, in essence, a set of standards associated with web services. A web service
can therefore be defined as:

A loosely coupled, reusable software component that encapsulates discrete func-
tionality, which may be distributed and programmatically accessed. A web service
is a service that is accessed using standard Internet and XML-based protocols.

A critical distinction between a service and a software component, as defined in
component-based software engineering, is that services should be independent and
loosely coupled. That is, they should always operate in the same way, irrespective of
their execution environment. They should not rely on external components that may
have different functional and non-functional behavior. Therefore, web services do
not have a “requires” interface that, in CBSE, defines the other system components
that must be present. A web service interface is simply a “provides” interface that
defines the service functionality and parameters.

Service-oriented systems are a way of developing distributed systems where the
system components are stand-alone services, executing on geographically distributed
computers. Services are platform and implementation-language independent. Software
systems can be constructed by composing local services and external services from
different providers, with seamless interaction between the services in the system.

	 Chapter 18  ■  Service-oriented software engineering   521

†Lovelock, C., Vandermerwe, S. and Lewis, B. (1996). Services Marketing. Englewood Cliffs, NJ: Prentice Hall.

522   Chapter 18  ■  Service-oriented software engineering

As I discussed in Chapter 17, the ideas of “software as a service” and “service-
oriented systems” are not the same thing. Software as a service means offering
software functionality to users remotely over the web, rather than through applica-
tions installed on a user’s computer. Service-oriented systems are systems that are
implemented using reusable service components and that are accessed by other pro-
grams, rather than directly by users. Software that is offered as a service may be
implemented using a service-oriented system. However, you don’t have to imple-
ment software in this way to offer it as a user service.

Adopting a service-oriented approach to software engineering has a number of
important benefits:

1.	 Services can be offered by any service provider inside or outside of an organization.
Assuming these services conform to certain standards, organizations can create
applications by integrating services from a range of providers. For example, a
manufacturing company can link directly to services provided by its suppliers.

2.	 The service provider makes information about the service public so that any
authorized user can use the service. The service provider and the service user do
not need to negotiate about what the service does before it can be incorporated
in an application program.

3.	 Applications can delay the binding of services until they are deployed or until
execution. Therefore, an application using a stock price service (say) could, in
principle, dynamically change service providers while the system was execut-
ing. This means that applications can be reactive and adapt their operation to
cope with changes to their execution environment.

4.	 Opportunistic construction of new services is possible. A service provider may
recognize new services that can be created by linking existing services in
innovative ways.

5.	 Service users can pay for services according to their use rather than their provision.
Therefore, instead of buying an expensive component that is rarely used, the appli-
cation writer can use an external service that will be paid for only when required.

6.	 Applications can be made smaller, which is particularly important for mobile
devices with limited processing and memory capabilities. Some computationally
intensive processing and exception handling can be offloaded to external services.

Service-oriented systems have loosely coupled architectures where service bindings
may change during system execution. A different, but equivalent, version of the ser-
vice may therefore be executed at different times. Some systems will be solely built
using web services, and others will mix web services with locally developed compo-
nents. To illustrate how applications that use a mixture of services and components
may be organized, consider the following scenario:

An in-car information system provides drivers with information on weather,
road traffic conditions, local information and so forth. This is linked to the car

radio so that information is delivered as a signal on a specific radio channel.
The car is equipped with GPS receiver to discover its position, and, based on
that position, the system accesses a range of information services. Information
may then be delivered in the driver’s specified language.

Figure 18.1 illustrates a possible organization for such a system. The in-car soft-
ware includes five modules. These handle communications with the driver, with a
GPS receiver that reports the car’s position, and with the car radio. The Transmitter
and Receiver modules handle all communications with external services.

The car communicates with an external mobile information service that aggre-
gates information from a range of other services, providing information on weather,
traffic, and local facilities. Different providers in different places offer these services,
and the in-car system accesses an external discovery service to find the services
available in the local area. The mobile information service also uses the discovery
service to bind to the appropriate weather, traffic, and facilities services. The aggre-
gated information is then sent to the car through a service that translates that infor-
mation into the driver’s preferred language.

This example illustrates one of the key advantages of the service-oriented approach.
When the system is programmed or deployed, you don’t have to decide what service

User interface

Locator

Discovers car
position

Weather
info

Receives request
from user

Receiver

Receives
information stream

from services

Transmitter

Sends position and
information request

to services

Radio

Translates digital
info stream to
radio signal

In-car software system

Mobile Info Service

Facilities
info

Translator

Road
locator

Traffic
info

Collates information

Road traffic info

command
gps coord

gps
coord gps coordgps coord

Language
infoInfo

stream

Service discovery

Finds available
services

Figure 18.1  A service-
based, in-car
information system

	 Chapter 18  ■  Service-oriented software engineering   523

524   Chapter 18  ■  Service-oriented software engineering

provider should be used or what specific services should be accessed. As the car moves
around, the in-car software uses the service discovery service to find the most useful local
information service. Because of the use of a translation service, it can move across bor-
ders and make local information available to people who don’t speak the local language.

I think that the service-oriented approach to software engineering is as important
a development as object-oriented software engineering. Service-oriented systems are
essential to the cloud and mobile systems. Newcomer and Lomow (Newcomer and
Lomow 2005), in their book on SOA, summarize the potential of service-oriented
approaches, which is now being realized:

Driven by the convergence of key technologies and the universal adoption of
Web services, the service-oriented enterprise promises to significantly improve
corporate agility, speed time-to-market for new products and services, reduce
IT costs and improve operational efficiency.†

Building applications based on services allows companies and other organiza-
tions to cooperate and make use of each other’s business functions. Thus, systems
that involve extensive information exchange across company boundaries, such as
supply chain systems where one company orders goods from another, can easily be
automated. Service-based applications may be constructed by linking services from
various providers using either a standard programming language or a specialized
workflow language, as discussed in Section 18.4.

Initial work on service provision and implementation was heavily influenced by
the failure of the software industry to agree on component standards. It was therefore
standards-driven, with all of the main industrial companies involved in standards
development. This led to a whole range of standards (WS* standards) and the notion
of service-oriented architectures. These were proposed as architectures for service-
based systems, with all service communication being standards-based. However, the
standards proposed were complex and had a significant execution overhead. This
problem has led many companies to adopt an alternative architectural approach,
based on so-called RESTful services. A RESTful approach is a simpler approach
than a service-oriented architecture, but it is less suited to services that offer complex
functionality. I discuss both of these architectural approaches in this chapter.

	 18.1 	 Service-oriented architecture

Service-oriented architecture (SOA) is an architectural style based on the idea that execut-
able services can be included in applications. Services have well-defined, published inter-
faces, and applications can choose whether or not these are appropriate. An important
idea underlying SOA is that the same service may be available from different providers
and that applications could make a runtime decision of which service provider to use.

†Newcomer, E. and Lomow, G. (2005). Understanding SOA with Web Services. Boston: Addison-Wesley.

Figure 18.2 illustrates the structure of a service-oriented architecture. Service provid-
ers design and implement services and specify the interface to these services. They also
publish information about these services in an accessible registry. Service requestors
(sometimes called service clients) who wish to make use of a service discover the speci-
fication of that service and locate the service provider. They can then bind their applica-
tion to that specific service and communicate with it, using standard service protocols.

The development and use of internationally agreed standards is fundamental to
SOA. As a result, service-oriented architectures have not suffered from the incompat-
ibilities that normally arise with technical innovations, where different suppliers
maintain their proprietary version of the technology. Figure 18.3 shows the stack of
key standards that have been established to support web services.

Web service protocols cover all aspects of service-oriented architectures, from the
basic mechanisms for service information exchange (SOAP) to programming language
standards (WS-BPEL). These standards are all based on XML, a human and machine-
readable notation that allows the definition of structured data where text is tagged with
a meaningful identifier. XML has a range of supporting technologies, such as XSD for
schema definition, which are used to extend and manipulate XML descriptions. Erl (Erl
2004) provides a good summary of XML technologies and their role in web services.

Briefly, the fundamental standards for service-oriented architectures are:

1.	 SOAP This is a message interchange standard that supports communication
between services. It defines the essential and optional components of messages

Transport (HTTP, HTTPS, SMTP, ...)

Messaging (SOAP)

Service definition (UDDI, WSDL)

Process (WS-BPEL)

Support (WS-Security, WS-Addressing, ...)

XML technologies (XML, XSD, XSLT,)

Figure 18.3  Web
service standards

Service
registry

Service
requestor

Service
provider

Service

Find Publish

Bind (SOAP)
(WSDL)

Figure 18.2  Service-
oriented architecture

	 18.1  ■  Service-oriented architecture   525

526   Chapter 18  ■  Service-oriented software engineering

passed between services. Services in a service-oriented architecture are some-
times called SOAP-based services.

2.	 WSDL The Web Service Description Language (WSDL) is a standard for ser-
vice interface definition. It sets out how the service operations (operation names,
parameters, and their types) and service bindings should be defined.

3.	 WS-BPEL This is a standard for a workflow language that is used to define pro-
cess programs involving several different services. I explain what process pro-
grams are in Section 18.3.

The UDDI (Universal Description, Discovery, and Integration) discovery standard
defines the components of a service specification intended to help potential users
discover the existence of a service. This standard was meant to allow companies to set
up registries, with UDDI descriptions defining the services they offered. Some com-
panies set up UDDI registries in the early years of the 21st century, but users preferred
standard search engines to find services. All public UDDI registries have now closed.

The principal SOA standards are supported by a range of supporting standards
that focus on more specialized aspects of SOA. There are many supporting standards
because they are intended to support SOA in different types of enterprise applica-
tion. Some examples of these standards include:

1.	 WS-Reliable Messaging, a standard for message exchange that ensures mes-
sages will be delivered once and once only.

2.	 WS-Security, a set of standards supporting web service security, including stand-
ards that specify the definition of security policies and standards that cover the
use of digital signatures.

3.	 WS-Addressing, which defines how address information should be represented
in a SOAP message.

4.	 WS-Transactions, which defines how transactions across distributed services
should be coordinated.

Web service standards are a huge topic, and I don’t have space to discuss them in
detail here. I recommend Erl’s books (Erl 2004, 2005) for an overview of these
standards. Their detailed descriptions are also available as public documents on the
Web (W3C 2013).

	 18.1.1 	 Service components in an SOA

Message exchange, as I explained in Section 17.1, is an important mechanism for
coordinating actions in a distributed computing system. Services in a SOA commu-
nicate by exchanging messages, expressed in XML, and these messages are distrib-
uted using standard Internet transport protocols such as HTTP and TCP/IP.

A service defines what it needs from another service by setting out its require-
ments in a message, which is sent to that service. The receiving service parses the

message, carries out the computation, and, upon completion, sends a reply, as a mes-
sage, to the requesting service. This service then parses the reply to extract the
required information. Unlike software components, services do not use remote
procedure or method calls to access functionality associated with other services.

When you intend to use a web service, you need to know where the service is located
(its Uniform Resource Identifier—URI) and the details of its interface. These details are
provided in a service description that is written in an XML-based language called WSDL
(Web Service Description Language). The WSDL specification defines three aspects of
a Web service: what the service does, how it communicates, and where to find it:

1.	 The “what” part of a WSDL document, called an interface, specifies what oper-
ations the service supports and defines the format of the messages sent and
received by the service.

2.	 The “how” part of a WSDL document, called a binding, maps the abstract inter-
face to a concrete set of protocols. The binding specifies the technical details of
how to communicate with a Web service.

3.	 The “where” part of a WSDL document describes the location of a specific Web
service implementation (its endpoint).

The WSDL conceptual model (Figure 18.4) shows the elements of a service
description. Each element is expressed in XML and may be provided in separate
files. These elements are:

1.	 An introductory part that usually defines the XML namespaces used and that
may include a documentation section providing additional information about
the service.

2.	 An optional description of the types used in the messages exchanged by the service.

3.	 A description of the service interface, that is, the operations that the service
provides for other services or users.

4.	 A description of the input and output messages processed by the service.

5.	 A description of the binding used by the service, that is, the messaging protocol
that will be used to send and receive messages. The default is SOAP, but other

Intro

Abstract interface

Concrete
implementation

WSDL service definition

XML namespace declarations

Type declarations
Interface declarations
Message declarations

Binding declarations
Endpoint declarations

Figure 18.4 
Organization of a WSDL
specification

	 18.1  ■  Service-oriented architecture   527

528   Chapter 18  ■  Service-oriented software engineering

bindings may also be specified. The binding sets out how the input and output
messages associated with the service should be packaged into a message, and
specifies the communication protocols used. The binding may also specify how
supporting information, such as security credentials or transaction identifiers, is
included in messages to the service.

6.	 An endpoint specification that is the physical location of the service, expressed
as a URI—the address of a resource that can be accessed over the Internet.

Figure 18.5 shows part of the interface for a simple service that, given a date and a
place, specified as a town within a country, returns the maximum and minimum tem-
perature recorded in that place on that date. The input message also specifies whether
these temperatures are to be returned in degrees Celsius or degrees Fahrenheit.

XML-based service descriptions include definitions of XML namespaces. A names-
pace identifier may precede any identifier used in the XML description, making it possible
to distinguish between identifiers with the same name that have been defined in different
parts of an XML description. You don’t have to understand the details of namespaces to

Figure 18.5  Part of a
WSDL description for a
web service

Define some of the types used. Assume that the namespace prefixes ’ws’ refers to
the namespace URI for XML schemas and the namespace prefix associated with this
definition is weathns.
<types>

<xs: schema targetNameSpace = “http://. . ./weathns”
xmlns: weathns = “http://. . ./weathns” >
<xs:element name = “PlaceAndDate” type = “pdrec” />
<xs:element name = “MaxMinTemp” type = “mmtrec” />
<xs:element name = “InDataFault” type = “errmess” />

<xs:complexType name = “pdrec”
<xs:sequence>

<xs:element name = “town” type = “xs:string”/>
<xs:element name = “country” type = “xs:string”/>
<xs:element name = “day” type = “xs:date” />

</xs:complexType>

Definitions of MaxMinType and InDataFault here

</schema>

</types>

Now define the interface and its operations. In this case, there is only a single
operation to return maximum and minimum temperatures

<interface name = “weatherInfo” >
<operation name = “getMaxMinTemps” pattern = “wsdlns: in-out”>
<input messageLabel = “In” element = “weathns: PlaceAndDate” />
<output messageLabel = “Out” element = “weathns:MaxMinTemp” />
<outfault messageLabel = “Out” element = “weathns:InDataFault” />

</operation>
</interface>

understand the examples here. You only need to know that names may be prefixed with a
namespace identifier and that the namespace:name pair should be unique.

In Figure 18.5, the first part of the description shows part of the element and type
definition that is used in the service specification. This defines the elements
PlaceAndDate, MaxMinTemp, and InDataFault. I have only included the specification
of PlaceAndDate, which you can think of as a record with three fields—town, country
and date. A similar approach would be used to define MaxMinTemp and InDataFault.

The second part of the description shows how the service interface is defined. In this
example, the service weatherInfo has a single operation, although there are no restrictions
on the number of operations that may be defined. The weatherInfo operation has an asso-
ciated in-out pattern meaning that it takes one input message and generates one output
message. The WSDL 2.0 specification allows for a number of message exchange patterns
such as in-only, in-out, out-only, in-optional-out, and out-in. The input and output mes-
sages, which refer to the definitions made earlier in the types section, are then defined.

A service interface that is defined in WSDL is simply a description of the service
signature, that is, the operations and their parameters. It does not include any infor-
mation about the semantics of the service or its non-functional characteristics, such
as performance and dependability. If you plan to use the service, you have to work
out what the service actually does and the meaning of the input and output messages.
You have to experiment to discover the service’s performance and dependability.
While meaningful names and documentation help with understanding the service
functionality, it is still possible to misunderstand what the service actually does.

XML-based service descriptions are long, detailed, and tedious to read. WSDL
specifications are not normally written by hand, and most of the information in a
specification is automatically generated.

	 18.2 	 RESTful services

The initial developments of web services and service-oriented software engineering
were standards-based, with XML-based messages exchanged between services. This
is a general approach that allows for the development of complex services, dynamic
service binding, and control over quality of service and service dependability.
However, as services were developed, it emerged that most of these were single-
function services with relatively simple input and output interfaces. Service users
were not really interested in dynamic binding and the use of multiple service provid-
ers. They rarely use web service standards for quality of service, reliability, and so forth.

The problem is that web services standards are “heavyweight” standards that are
sometimes overly general and inefficient. Implementing these standards requires a con-
siderable amount of processing to create, transmit, and interpret the associated XML
messages. This slows down communications between services, and, for high-throughput
systems, additional hardware may be required to deliver the quality of service required.

In response to this situation, an alternative “lightweight” approach to web service
architecture has been developed. This approach is based on the REST architectural

	 18.2  ■  RESTful services   529

530   Chapter 18  ■  Service-oriented software engineering

style, where REST stands for Representational State Transfer (Fielding 2000). REST
is an architectural style based on transferring representations of resources from a
server to a client. It is the style that underlies the web as a whole and has been used as
a much simpler method than SOAP/WSDL for implementing web service interfaces.

The fundamental element in a RESTful architecture is a resource. Essentially, a
resource is simply a data element such as a catalog and a medical record, or a docu-
ment, such as this book chapter. In general, resources may have multiple representa-
tions; that is, they can exist in different formats. For example, this book chapter has
three representations. These are a MS Word representation, which is used for editing,
a PDF representation, which is used for web display, and a InDesign representation,
which is used for publishing. The underlying logical resource made up of text and
images is the same in all of these representations.

In a RESTful architecture, everything is represented as a resource. Resources have
a unique identifier, which is their URL. Resources are a bit like objects, with four fun-
damental polymorphic operations associated with them, as shown in Figure 18.6(a):

1.	 Create—bring the resource into existence.

2.	 Read—return a representation of the resource.

3.	 Update—change the value of the resource.

4.	 Delete—make the resource inaccessible.

The Web is an example of a system that has a RESTful architecture. Web pages
are resources, and the unique identifier of a web page is its URL.

The web protocols http and https are based on four actions, namely, POST, GET,
PUT, and DELETE. These map onto the basic resource operations, as I have shown
in Figure 18.6(b):

1.	 POST is used to create a resource. It has associated data that defines the resource.

2.	 GET is used to read the value of a resource and return that to the requestor in the
specified representation, such as XHTML, that can be rendered in a web browser.

Resource R

CREATE

UPDATE

READDELETE Web-accessible
resource R

POST

PUT

GETDELETE

URL

(a) General resource actions (b) Web resources
Figure 18.6  Resources
and actions

3.	 PUT is used to update the value of a resource.

4.	 DELETE is used to delete the resource.

All services, in some way, operate on data. For example, the service described in
Section 18.2 that returns the maximum and minimum temperatures for a location on
a given data uses a weather information database. SOAP-based services execute
actions on this database to return particular values from it. RESTful services
(Richardson and Ruby 2007) access the data directly.

When a RESTful approach is used, the data is exposed and is accessed using its
URL. RESTful services use http or https protocols, with the only allowed actions
being POST, GET, PUT, and DELETE. Therefore, the weather data for each place in
the database might be accessed using URLs such as:

http://weather-info-example.net/temperatures/boston
http://weather-info-example.net/temperatures/edinburgh

This would invoke the GET operation and return a list of maximum and minimum
temperatures. To request the temperatures for a specific date, a URL query can be used:

http://weather-info-example.net/temperatures/edinburgh?date=20140226

URL queries can also be used to disambiguate the request, given that there may
be several places in the world with the same name:

http://weather-info-example.net/temperatures/boston?date=20140226&country=
USA&state=“Mass”

An important difference between RESTful services and SOAP-based services is
that RESTful services are not exclusively XML-based. So, when a resource is
requested, created, or changed, the representation may be specified. This is impor-
tant for RESTful services because representations such as JSON (Javascript Object
Notation), as well as XML, may be used. These can be processed more efficiently
than XML-based notations, thus reducing the overhead involved in a service call.
Therefore, the above request for maximum and minimum temperatures for Boston
may return the following information:

{
“place”: “Boston”,
“country “USA”,
“state”: “Mass”,
“date”: “26 Feb 2014”,
“units”: “Fahrenheit”,
“max temp”: 41,
“min temp”: 29
}

The response to a GET request in a RESTful service may include URLs.
Therefore, if the response to a request is a set of resources, then the URL of each of

	 18.2  ■  RESTful services   531

http://weather-info-example.net/temperatures/boston
http://weather-info-example.net/temperatures/edinburgh
http://weather-info-example.net/temperatures/edinburgh?date=20140226
http://weather-info-example.net/temperatures/boston?date=20140226&country=USA&state=%E2%80%9CMass%E2%80%9D

532   Chapter 18  ■  Service-oriented software engineering

these services may be included. The requesting service may then process the
requests in its own way. Therefore, a request for weather information given a place
name that is not unique may return the URLs of all of the places that match the request.
For example:

http://weather-info-example.net/temperatures/edinburgh-scotland
http://weather-info-example.net/temperatures/edinburgh-australia
http://weather-info-example.net/temperatures/edinburgh-maryland

A fundamental design principle for RESTful services is that they should be state-
less. That is, in an interaction session, the resource itself should not include any state
information, such as the time of the last request. Instead, all necessary state informa-
tion should be returned to the requestor. If state information is required in later
requests, it should be returned to the server by the requestor.

RESTful services have become more widely used over the past few years because
of the widespread use of mobile devices. These devices have limited processing
capabilities, so the lower overhead of RESTful services allows better system perfor-
mance. They are also easy to use with existing websites—implementing a RESTful
API for a website is usually fairly straightforward.

However, there are problems with the RESTful approach:

1.	 When a service has a complex interface and is not a simple resource, it can be
difficult to design a set of RESTful services to represent this interface.

2.	 There are no standards for RESTful interface description, so service users must
rely on informal documentation to understand the interface.

3.	 When you use RESTful services, you have to implement your own infrastruc-
ture for monitoring and managing the quality of service and the service reliabil-
ity. SOAP-based services have additional infrastructure support standards such
as WS-Reliability and WS-Transactions.

Pautasso et al. (Pautasso, Zimmermann, and Leymann 2008) discuss when
RESTful and SOAP-based should be used. However, it is often possible to provide
both SOAP-based and RESTful interfaces to the same service or resource (Figure
18.7). This dual approach is now common for cloud services from providers such as
Microsoft, Google, and Amazon. Service clients can then choose the service access
method that is best suited to their applications.

Resource
R

Restful API

SOAP-based
API

Service
requestor 1

Service
requestor 2Figure 18.7  RESTful

and SOAP-based APIs

http://weather-info-example.net/temperatures/edinburgh-scotland
http://weather-info-example.net/temperatures/edinburgh-australia
http://weather-info-example.net/temperatures/edinburgh-maryland

	 18.3 	 Service engineering

Service engineering is the process of developing services for reuse in service-oriented
applications. It has much in common with component engineering. Service engi-
neers have to ensure that the service represents a reusable abstraction that could
be useful in different systems. They must design and develop generally useful
functionality associated with that abstraction and ensure that the service is robust
and reliable. They have to document the service so that it can be discovered and
understood by potential users.

As shown in Figure 18.8, there are three logical stages in the service engineering
process:

1.	 Service candidate identification, where you identify possible services that might
be implemented and define the service requirements.

2.	 Service design, where you design the logical service interface and its implemen-
tation interfaces (SOAP-based and/or RESTful).

3.	 Service implementation and deployment, where you implement and test the ser-
vice and make it available for use.

As I discussed in Chapter 16, the development of a reusable component may
start with an existing component that has already been implemented and used in
an application. The same is true for services—the starting point for this process
will often be an existing service or a component that is to be converted to a ser-
vice. In this situation, the design process involves generalizing the existing com-
ponent so that application-specific features are removed. Implementation means
adapting the component by adding service interfaces and implementing the
required generalizations.

	 18.3.1 	 Service candidate identification

The basic idea of service-oriented computing is that services should support business
processes. As every organization has a wide range of processes, many possible
services may be implemented. Service candidate identification therefore involves

Service design
Service

candidate
identification

Service
implementation
and deployment

Service
requirements

Service interface
specification

Validated and
deployed service

Figure 18.8  The service
engineering process

	 18.3  ■  Service engineering   533

534   Chapter 18  ■  Service-oriented software engineering

understanding and analyzing the organization’s business processes to decide which
reusable services could be implemented to support these processes.

Erl (Erl 2005) suggests that there are three fundamental types of service:

1.	 Utility services. These services implement some general functionality that may
be used by different business processes. An example of a utility service is a cur-
rency conversion service that can be accessed to compute the conversion of one
currency (e.g., dollars) to another (e.g., euros).

2.	 Business services. These services are associated with a specific business func-
tion. An example of a business function in a university would be the registration
of students for a course.

3.	 Coordination or process services. These services support a more general busi-
ness process that usually involves different actors and activities. An example of
a coordination service in a company is an ordering service that allows orders to
be placed with suppliers, goods accepted, and payments made.

Erl also suggests that services can be thought of as task-oriented or entity-
oriented. Task-oriented services are associated with some activity, whereas entity-
oriented services are associated with a system resource. The resource is a business
entity such as a job application form. Figure 18.9 shows examples of services that
are task-oriented or entity-oriented. Utility or business services may be entity-
oriented or task-oriented. Coordination services are always task-oriented.

Your goal in service candidate identification should be to identify services that
are logically coherent, independent, and reusable. Erl’s classification is helpful in
this respect, as it suggests how to discover reusable services by looking at business
entities as resources and business activities. However, identifying service candidates
is sometimes difficult because you have to envisage how the services could be used.
You have to think of possible candidates and then ask a series of questions about
them to see if they are likely to be useful services. Possible questions that you might
ask to identify potentially reusable services are:

1.	 For an entity-oriented service, is the service associated with a single logical
resource that is used in different business processes? What operations are nor-
mally performed on that entity that must be supported? Do these fit with the
RESTful service operations PUT, CREATE, POST, and DELETE?

2.	 For a task-oriented service, is the task one that is carried out by different people
in the organization? Will they be willing to accept the inevitable standardization

Figure 18.9  Service
classification

Utility Business Coordination

Task Currency converter
Employee locator

Validate claim form
Check credit rating

Process expense claim
Pay external supplier

Entity Document translator
Web form to XML converter

Expenses form
Student application form

that occurs when a single support service is provided? Can this fit into the
RESTful model, or should it be redesigned as an entity-oriented service.

3.	 Is the service independent? That is, to what extent does it rely on the availability
of other services?

4.	 Does the service have to maintain state? If state information is required, this
must either be maintained in a database or passed as a parameter to the service.
Using a database affects service reusability as there is a dependency between the
service and the required database. In general, services where the state is passed
to the service are easier to reuse, as no database binding is required.

5.	 Might this service be used by external clients? For example, an entity-oriented
service associated with a catalog could be made available to both internal and
external users.

6.	 Are different users of the service likely to have different non-functional require-
ments? If they do, then more than one version of a service should perhaps be
implemented.

The answers to these questions help you select and refine abstractions that can be
implemented as services. However, there is no formulaic way of deciding which are
the best services. You need to use your experience and business knowledge to decide
on what are the most appropriate services.

The output of the service selection process is a set of identified services and asso-
ciated requirements for these services. The functional service requirements should
define what the service should do. The non-functional requirements should define
the security, performance, and availability requirements of the service.

To help you understand the process of service candidate identification and
implementation, consider the following example:

A company, which sells computer equipment, has arranged special prices for
approved configurations for some large customers. To facilitate automated
ordering, the company wishes to produce a catalog service that will allow
customers to select the equipment that they need. Unlike a consumer catalog,
orders are not placed directly through a catalog interface. Instead, goods are
ordered through the web-based procurement system of each company that
accesses the catalog as a web service. The reason for this is that large compa-
nies usually have their own budgeting and approval procedures for orders that
must be followed when an order is placed.

The catalog service is an example of an entity-oriented service, where the underlying
resource is the catalog. The functional catalog service requirements are as follows:

1.	 A specific version of the catalog shall be provided for each user company. This
shall include the approved configurations and equipment that may be ordered by

	 18.3  ■  Service engineering   535

536   Chapter 18  ■  Service-oriented software engineering

employees of the customer company and the equipment prices that have been
agreed to with that company.

2.	 The catalog shall allow a customer employee to download a version of the catalog
for offline browsing.

3.	 The catalog shall allow users to compare the specifications and prices of up to
six catalog items.

4.	 The catalog shall provide browsing and search facilities for users.

5.	 Users of the catalog shall be able to discover the predicted delivery date for a
given number of specific catalog items.

6.	 Users of the catalog shall be able to place “virtual orders” where the items
required will be reserved for them for 48 hours. Virtual orders must be con-
firmed by a real order placed by a procurement system. The real order must be
received within 48 hours of the virtual order.

In addition to these functional requirements, the catalog has a number of non-
functional requirements:

1.	 Access to the catalog service shall be restricted to employees of accredited
organizations.

2.	 The prices and configurations offered to each customer shall be confidential,
and access to these shall only be provided to employees of that customer.

3.	 The catalog shall be available without disruption of service from 0700 GMT to
1100 GMT.

4.	 The catalog service shall be able to process up to 100 requests per second peak load.

There is no non-functional requirement related to the response time of the catalog
service. This depends on the size of the catalog and the expected number of simulta-
neous users. As this is not a time-critical service, there is no need to specify the
required performance at this stage.

	 18.3.2 	 Service interface design

Once you have identified candidate services, the next stage in the service engineer-
ing process is to design the service interfaces. This involves defining the operations
associated with the service and their parameters. If SOAP-based services are used,
you have to design the input and output messages. If RESTful services are used, you
have to think about the resources required and how the standard operations should be
used to implement the service operations.

The starting point for service interface design is abstract interface design. where
you identify the entities and the operations associated with the service, their inputs and

outputs, and the exceptions associated with these operations. You then need to think
about how this abstract interface is realized as SOAP-based or RESTful services.

If you choose a SOAP-based approach, you have to design the structure of the XML
messages that are sent and received by the service. The operations and messages are the
basis of an interface description written in WSDL. If you choose a RESTful approach,
you have to design how the service operations map onto the RESTful operations.

Abstract interface design starts with the service requirements and defines the
operation names and parameters. At this stage, you should also define the exceptions
that may arise when a service operation is invoked. Figure 18.10 shows the catalog
operations that implement the requirements. There is no need for these to be speci-
fied in detail; you add detail at the next stage of the design process.

Once you have established an informal description of what the service should do,
the next stage is to add more detail of the service inputs and outputs. I have shown
this for the catalog service in Figure 18.11, which extends the functional description
in Figure 18.10.

Defining exceptions and how these exceptions can be communicated to service
users is particularly important. Service engineers do not know how their services
will be used. It is usually unwise to make assumptions that service users will have
completely understood the service specification. Input messages may be incorrect,
so you should define exceptions that report incorrect inputs to the service client. It is
generally good practice in reusable component development to leave all exception
handling to the user of the component. Service developers should not impose their
views on how exceptions should be handled.

In some cases, a textual description of the operations and their inputs and outputs
is all that is required. The detailed realization of the service is left as an implementa-
tion decision. Sometimes, however, you need to have a more detailed design, and a
detailed interface description can be specified in a graphical notation such as the
UML or in a readable description format such as JSON. Figure 18.12, which
describes the inputs and outputs for the getDelivery operation, shows how you can
use the UML to describe the interface in detail.

Figure 18.10  Catalog
operations

Operation Description

MakeCatalog Creates a version of the catalog tailored for a specific customer. Includes an
optional parameter to create a downloadable PDF version of the catalog.

Lookup Displays all of the data associated with a specified catalog item.

Search Takes a logical expression and searches the catalog according to that
expression. It displays a list of all items that match the search expression.

Compare Provides a comparison of up to six characteristics (e.g., price, dimensions,
processor speed, etc.) of up to four catalog items.

CheckDelivery Returns the predicted delivery date for an item if ordered that day.

MakeVirtualOrder Reserves the number of items to be ordered by a customer and provides item
information for the customer’s own procurement system.

	 18.3  ■  Service engineering   537

538   Chapter 18  ■  Service-oriented software engineering

Figure 18.11  Catalog
interface design

Operation Inputs Outputs Exceptions

MakeCatalog mcIn
Company id
PDF-flag

mcOut
URL of the catalog for
that company

mcFault
Invalid company id

Lookup lookIn
Catalog URL
Catalog number

lookOut
URL of page with the
item information

lookFault
Invalid catalog
number

Search searchIn
Catalog URL
Search string

searchOut
URL of web page with
search results

searchFault
Badly formed search
string

Compare compIn
Catalog URL
Entry attribute (up to 6)
Catalog number (up to 4)

compOut
URL of page showing
comparison table

compFault
Invalid company id
Invalid catalog number
Unknown attribute

CheckDelivery cdIn
Company id
Catalog number
Number of items required

cdOut
Expected delivery
date

cdFault
Invalid company id
No availability
Zero items requested

MakeVirtualOrder voIn
Company id
Catalog number
Number of items required

voOut
Catalog number
Number of items
required

Predicted delivery date
Unit price estimate
Total price estimate

voFault
Invalid company id
Invalid catalog
number
Zero items requested

cdIn

cID: string
catNum: string
numItems: integer

size (cID) = 6
size (catNum) = 10
numItems > 0

cdOut

catNum: string
delivDate: date

size (catNum) = 10
delivDate > Today

cdFault

errCode: integer

Invalid company id
errCode=1

Invalid catalog number
errCode = 2

No availability
errCode = 3

Zero items requested
errCode = 4

Figure 18.12  UML
definition of input and
output messages

Notice how I have added detail to the description by annotating the UML diagram
with constraints. These details define the length of the strings representing the com-
pany and the catalog item, and specify that the number of items must be greater than
zero and that delivery must be after the current date. The annotations also show
which error codes are associated with each possible fault.

The catalog service is an example of a practical service, which illustrates that it is
not always straightforward whether to choose a RESTful or a SOAP-based approach
to service implementation. As an entity-based service, the catalog can be represented
as a resource, which suggests that a RESTful model is the right one to use. However,
operations on the catalog are not simple GET operations, and you need to maintain
some state in an interaction session with the catalog. This suggests the use of a SOAP-
based approach. Such dilemmas are common in service engineering, and usually
local circumstances (e.g., availability of expertise) are a major factor in the decision
of which approach to use.

To implement a set of RESTful services, you have to decide on the set of resources
that will be used to represent the catalog and how the fundamental GET, POST, and
PUT operations will operate on these resources. Some of these design decisions are
straightforward:

1.	 There should be a resource representing a company-specific catalog. This should
have a URL of the form <base catalog>/<company name> and should be cre-
ated using a POST operation.

2.	 Each catalog item should have its own URL of the form <base catalog>/<company
name>/<item identifier>.

3.	 You use the GET operation to retrieve items. Lookup is implemented by using the
URL of an item in a catalog as the GET parameter. Search is implemented by using
GET with the company catalog as the URL and the search string as a query parameter.
This GET operation returns a list of URLs of the items matching the search.

However, the Compare, CheckDelivery, and MakeVirtualOrder operations are
more complex:

1.	 The Compare operation can be implemented as a sequence of GET operations to
retrieve the individual items, followed by a POST operation to create the com-
parison table and a final GET operation to return this to the user.

2.	 The CheckDelivery and MakeVirtualOrder operations require an additional
resource, representing a virtual order. A POST operation is used to create this
resource with the number of items required. The company id is used to auto-
matically fill in the order form, and the delivery date is calculated. The resource
can then be retrieved using a GET operation.

You need to think carefully about how exceptions are mapped onto the standard
http response codes such as a 404 code, meaning that a URL cannot be retrieved.
I don’t have space to go into this issue here, but it adds a further level of complexity
to the service interface design.

	 18.3  ■  Service engineering   539

540   Chapter 18  ■  Service-oriented software engineering

For SOAP-based services, the realization process, in this case, is simpler as the
logical interface design can be translated automatically into WSDL. Most program-
ming environments that support service-oriented development (e.g., the ECLIPSE
environment) include tools that can translate a logical interface description into its
corresponding WSDL representation.

	 18.3.3 	 Service implementation and deployment

Once you have identified candidate services and designed their interfaces, the final
stage of the service engineering process is service implementation. This implemen-
tation may involve programming the service using a language such as Java or C#.
Both of these languages include libraries with extensive support for developing
SOAP-based and RESTful services.

Alternatively, you can implement services by creating service interfaces to existing
components or legacy systems. Software assets that have already proved to be useful
can therefore be made available for reuse. In the case of legacy systems, it may mean
that the system functionality can be accessed by new applications. You can also develop
new services by defining compositions of existing services, as I explain in Section 18.4.

Once a service has been implemented, it then has to be tested before it is deployed.
This involves examining and partitioning the service inputs (as explained in Chapter 8),
creating input messages that reflect these input combinations, and then checking that
the outputs are expected. You should always try to generate exceptions during the test
to check that the service can cope with invalid inputs. For SOAP-based services, testing
tools are available that allow services to be examined and tested, and that generate tests
from a WSDL specification. However, these tools can only test the conformity of the
service interface to the WSDL. They cannot test the service’s functional behavior.

Service deployment, the final stage of the process, involves making the service
available for use on a web server. Most server software makes this operation straight-
forward. You install the file containing the executable service in a specific directory.
It then automatically becomes available for use.

If the service is intended to be available within a large organization or as a pub-
licly available service, you then have to provide documentation for external service
users. Potential users can then decide if the service is likely to meet their needs and

Legacy system services

Legacy systems are old software systems that are used by an organization. It may not be cost-effective to rewrite
or replace these systems, and many organizations would like to use them in conjunction with more modern
systems. One of the most important uses of services is to implement “wrappers” for legacy systems that provide
access to a system’s functions and data. These systems can then be accessed over the web and integrated with
other applications.

http://software-engineering-book.com/web/legacy-services

http://software-engineering-book.com/web/legacy-services

if they can trust you, as a service provider, to deliver the service reliably and securely.
Information that you may include in a service description might be:

1.	 Information about your business, contact details, and so on. This is important
for trust reasons. External users of a service have to be confident that it will not
behave maliciously. Information about the service provider allows users to
check their credentials with business information agencies.

2.	 An informal description of the functionality provided by the service. This helps
potential users to decide if the service is what they want.

3.	 A description of how to use the service. For simple services, this can be an
informal textual description that explains the input and output parameters. For
more complex SOAP-based services, the WSDL description may be published.

4.	 Subscription information that allows users to register for information about
updates to the service.

A general difficulty with service specifications is that the functional behavior of
the service is usually specified informally, as a natural language description. Natural
language descriptions are easy to read, but they are subject to misinterpretation. To
address this problem, there has been extensive research on using ontologies and
ontology languages for specifying service semantics by marking up the service with
ontology information (W3C 2012). However, ontology-based specification is com-
plex and not widely understood. Consequently, it has not been widely used.

	 18.4 	 Service composition

The underlying principle of service-oriented software engineering is that you compose
and configure services to create new, composite services. These may be integrated
with a user interface implemented in a browser to create a web application, or they
may be used as components in some other service composition. The services involved
in the composition may be specially developed for the application, business services
developed within a company, or services from an external provider. Both RESTful and
SOAP-based services can be composed to create services with extended functionality.

Many companies have converted their enterprise applications into service-oriented
systems, where the basic application building block is a service rather than a compo-
nent. This allows for widespread reuse within the company. We are now seeing the
emergence of interorganizational applications between trusted suppliers, who use
each other’s services. The final realization of the long-term vision of service-oriented
systems will rely on the development of a “services market,” where services are
bought from trusted external suppliers.

Service composition may be used to integrate separate business processes to pro-
vide an integrated process offering more extensive functionality. Say an airline wishes
to develop a travel aggregation service that provides a complete vacation package for

	 18.4  ■  Service composition   541

542   Chapter 18  ■  Service-oriented software engineering

travelers. In addition to booking their flights, travelers can also book hotels in their pre-
ferred location, arrange car rental or book a taxi from the airport, browse a travel guide,
and make reservations to visit local attractions. To create this application, the airline
composes its own booking service with services offered by a hotel booking agency, rental
car and taxi companies, and reservation services offered by owners of local attractions.
The end result is a single service that integrates the services from different providers.

You can think of this process as a sequence of separate steps, as shown in Figure
18.13. Information is passed from one step to the next. For example, the rental car
company is informed of the time that the flight is scheduled to arrive. The sequence of
steps is called a workflow—a set of activities ordered in time, with each activity carry-
ing out some part of the work. A workflow is a model of a business process; that is, it
sets out the steps involved in reaching a particular goal that is important for a business.
In this case, the business process is the vacation booking service, offered by the airline.

Workflow is a simple idea, and the above scenario of booking a vacation seems to
be straightforward. In practice, service composition is usually more complex than
this simple model implies. You have to consider the possibility of service failure and
include exception management to handle these failures. You also have to take into
account nonstandard demands made by users of the application. For example, say a
traveler was disabled and required a wheelchair to be rented and delivered to the
airport. This would require extra services to be implemented and composed, with
additional steps added to the workflow.

When designing a travel aggregation service, you must be able to cope with situ-
ations where the normal execution of one of the services results in an incompatibility
with some other service execution. For example, say a flight is booked to leave on
June 1 and to return on June 7. The workflow then proceeds to the hotel booking
stage. However, the resort is hosting a major convention until June 2, so no hotel
rooms are available. The hotel booking service reports this lack of availability. This
is not a failure; lack of availability is a common situation.

You therefore have to “undo” the flight booking and pass the information about
lack of availability back to the user. He or she then has to decide whether to change
the dates or the resort. In workflow terminology, this is called a compensation action.
Compensation actions are used to undo actions that have already been completed but
that must be changed as a result of later workflow activities.

The process of designing new services by reusing existing services is a process of
software design with reuse (Figure 18.13). Design with reuse inevitably involves
requirements compromises. The “ideal” requirements for the system have to be mod-
ified to reflect the services that are actually available, whose costs fall within budget
and whose quality of service is acceptable.

Book
flights

Book
hotel

Arrange
car or taxi

Browse
attractions

Book
attractions

Arrival/departure
dates/times Hotel location

Dates/preferences
Figure 18.13  Vacation
package workflow

I have shown the six key stages in the process of system construction by composi-
tion in Figure 18.14:

1.	 Formulate outline workflow In this initial stage of service design, you use the
requirements for the composite service as a basis for creating an “ideal” service
design. You should create a fairly abstract design at this stage, with the intention
of adding details once you know more about available services.

2.	 Discover services During this stage of the process, you look for existing ser-
vices to include in the composition. Most service reuse is within enterprises, so
this may involve searching local service catalogs. Alternatively, you may search
the services offered by trusted service providers, such as Oracle and Microsoft.

3.	 Select possible services From the set of possible service candidates that you
have discovered, you then select possible services that can implement workflow
activities. Your selection criteria will obviously include the functionality of the
services offered. They may also include the cost of the services and the quality
of service (responsiveness, availability, etc.) offered.

4.	 Refine workflow On the basis of information about the services that you have selected,
you then refine the workflow. This involves adding detail to the abstract description
and perhaps adding or removing workflow activities. You may then repeat the ser-
vice discovery and selection stages. Once a stable set of services has been chosen and
the final workflow design established, you move on to the next stage in the process.

5.	 Create workflow program During this stage, the abstract workflow design is
transformed to an executable program and the service interface is defined. You
can implement workflow programs using a programming language, such as Java
or C#, or by using a workflow language, such as BPMN (explained below). This
stage may also involve the creation of web-based user interfaces to allow the
new service to be accessed from a web browser.

6.	 Test completed service or application The process of testing the completed,
composite service is more complex than component testing in situations where
external services are used. I discuss testing issues in Section 18.4.2.

This process assumes that existing services are available for composition. If you
rely on external information that is not available through a service interface, you
may have to implement these services yourself. This usually involves a “screen

Formulate
outline

workflow

Discover
services

Workflow
design

Service list Service
specifications

Workflow
design

Select
services

Refine
workflow

Create
workflow
program

Executable
workflow

Test
service

Deployable
service

Figure 18.14  Service
construction by
composition

	 18.4  ■  Service composition   543

544   Chapter 18  ■  Service-oriented software engineering

scraping” process where your program extracts information from the HTML text of
web pages that are sent to a browser for rendering.

	 18.4.1 	 Workflow design and implementation

Workflow design involves analyzing existing or planned business processes to
understand the tasks involved and how these tasks exchange information. You then
define the new business process in a workflow design notation. This sets out the
stages involved in enacting the process and the information that is passed between
the different process stages. However, existing processes may be informal and
dependent on the skills and ability of the people involved. There may be no “normal”
way of working or process definition. In such cases, you have to use your knowledge
of the current process to design a workflow that achieves the same goals.

Workflows represent business process models. They are graphical models that are
written using UML activity diagrams or BPMN, the Business Process Modeling Notation
(White and Miers 2008; OMG 2011). I use BPMN for the examples in this chapter. If
you use SOAP-based services, it is possible to convert BPMN workflows automatically
into WS-BPEL, an XML-based workflow language. This is conformant with other web
service standards such as SOAP and WSDL. RESTful services may be composed within
a program in a standard programming language such as Java. Alternatively, a composi-
tion language used for service mashups may be used (Rosenberg et al. 2008).

Figure 18.15 is an example of a simple BPMN model of part of the vacation pack-
age scenario, shown in Figure 18.14. The model shows a simplified workflow for
hotel booking and assumes the existence of a Hotels service with associated opera-
tions called GetRequirements, CheckAvailability, ReserveRooms, NoAvailability,
ConfirmReservation, and CancelReservation. The process involves getting require-
ments from the customer, checking room availability, and then, if rooms are availa-
ble, making a booking for the required dates.

This model introduces some of the core concepts of BPMN that are used to create
workflow models:

1.	 Rectangles with rounded corners represent activities. An activity can be exe-
cuted by a human or by an automated service.

2.	 Circles represent discrete events. An event is something that happens during a
business process. A simple circle is used to represent a starting event and a
darker circle to represent an end event. A double circle (not shown) is used to
represent an intermediate event. Events can be clock events, thus allowing work-
flows to be executed periodically or timed out.

3.	 A diamond is used to represent a gateway. A gateway is a stage in the process
where some choice is made. For example, in Figure 18.15, a choice is made on
the basis of whether or not rooms are available.

4.	 A solid arrow shows the sequence of activities; a dashed arrow represents mes-
sage flow between activities. In Figure 18.15, these messages are passed
between the hotel booking service and the customer.

These key features are enough to describe most workflows. However, BPMN
includes many additional features that I don’t have space to describe here. These add
information to a business process description that allows it to be automatically trans-
lated into an executable service.

Figure 18.15 shows a process that is enacted in a single organization, the com-
pany that provides a booking service. However, the key benefit of a service-oriented
approach is that it supports interorganizational computing. This means that a compu-
tation involves processes and services in different companies. This process is repre-
sented in BPMN by developing separate workflows for each of the organizations
involved with interactions between them.

To illustrate multiple workflow processes, I use a different example, drawn
from high-performance computing, where hardware is offered as a service.
Services are created to provide access to high-performance computers to a geo-
graphically distributed user community. In this example, a vector-processing com-
puter (a machine that can carry out parallel computations on arrays of values) is
offered as a service (VectorProcService) by a research laboratory. This is accessed
through another service called SetupComputation. These services and their
interactions are shown in Figure 18.16.

In this example, the workflow for the SetupComputation service asks for access
to a vector processor and, if a processor is available, establishes the computation
required and downloads data to the processing service. Once the computation is
complete, the results are stored on the local computer. The workflow for
VectorProcService includes the following steps:

Check if a processor is available

Allocate resources for the computation

Initialize the system

Hotels.
GetRequirements

Customer

Hotels.
CheckAvailability

Hotels.
NoAvailability

Hotels.
ReserveRooms

Hotels.
ConfirmReservation

Retry

Cancel

Rooms OK

No rooms

Figure 18.15  A
fragment of a hotel
booking workflow

	 18.4  ■  Service composition   545

546   Chapter 18  ■  Service-oriented software engineering

Carry out the computation

Return the results to the client service

In BPMN terms, the workflow for each organization is represented in a separate
pool. It is shown graphically by enclosing the workflow for each participant in the
process in a rectangle, with the name written vertically on the left edge. The work-
flows in each pool are coordinated by exchanging messages. In situations where
different parts of an organization are involved in a workflow, pools are divided into
named “lanes.” Each lane shows the activities in that part of the organization.

Once a business process model has been designed, it has to be refined depending
on the services that have been discovered. As I suggested in the discussion of Figure
18.14, the model may go through a number of iterations until a design that allows the
maximum possible reuse of available services has been created.

Once the final design is available, you can then develop the final service-oriented
system. This involves implementing services that are not available for reuse and con-
verting the workflow model into an executable program. As services are implementa-
tion-language independent, new services can be written in any language. The workflow
model may be automatically processed to create an executable WS-BPEL model if
SOAP-based services are used. Alternatively, if RESTful services are used, the work-
flow may be manually programmed, with the model acting as a program specification.

	 18.4.2 	 Testing service compositions

Testing is important in all system development processes as it demonstrates that a
system meets its functional and non-functional requirements and detects defects that

Request
processor

Set up job
parameters

Download
data

Start
computation

Store
results

Report
completion

Restart

Fail

Se
tu

pC
om

pu
ta

tio
n

Check
Availability

Allocate
resources

Initialize Compute

Return
results

OK

No processor

OK
Ve

ct
or

Pr
oc

Se
rv

ic
e

Figure 18.16  Interacting
workflows

have been introduced during the development process. Many testing techniques,
such as program inspections and coverage testing, rely on analysis of the software
source code. However, if you use services from an external provider, you will not
have access to the source code of the service implementations. You cannot therefore
use “white box” testing techniques that rely on the source code of the system.

As well as problems of understanding the implementation of the service, testers
may also face further difficulties when testing service compositions:

1.	 External services are under the control of the service provider rather than the
user of the service. The service provider may withdraw these services at any time
or may make changes to them, which invalidates any previous application test-
ing. These problems are handled in software components by maintaining differ-
ent versions of the component, but service versions are not normally supported.

2.	 If services are dynamically bound, an application may not always use the same
service each time that it is executed. Therefore, tests may be successful when an
application is bound to a particular service, but it cannot be guaranteed that that
service will be used during an actual execution of the system. This problem has
been one reason why dynamic binding has not been widely used.

3.	 The non-functional behavior of a service is not simply dependent on how it is used
by the application that is being tested. A service may perform well during testing
because it is not operating under a heavy load. In practice, the observed service
behavior may be different because of the demands made by other service users.

4.	 The payment model for services could make service testing very expensive.
There are different possible payment models: Some services may be freely
available, some may be paid for by subscription, and others may be paid for on
a per-use basis. If services are free, then the service provider will not wish them
to be loaded by applications being tested; if a subscription is required, then a
service user may be reluctant to enter into a subscription agreement before test-
ing the service. Similarly, if the usage is based on payment for each use, service
users may find the cost of testing to be prohibitive.

5.	 I have discussed the notion of compensation actions that are invoked when an
exception occurs and previous commitments that have been made (such as a
flight reservation) have to be revoked. There is a problem in testing such actions
as they may depend on the failure of other services. Simulating the failure of
these services during the testing process is usually difficult.

These problems are particularly acute when external services are used. They are
less serious when services are used within the same company or where cooperating
companies trust services offered by their partners. In such cases, source code may
be available to guide the testing process, and payment for services is unlikely to
be a problem. Resolving these testing problems and producing guidelines, tools,
and techniques for testing service-oriented applications remains an important
research issue.

	 18.4  ■  Service composition   547

548   Chapter 18  ■  Service-oriented software engineering

K e y P o i n ts

■	 Service-oriented architecture is an approach to software engineering where reusable, standard-
ized services are the basic building blocks for application systems.

■	 Services may be implemented within a service-oriented architecture using a set of XML-based
web service standards. These include standards for service communication, interface definition,
and service enactment in workflows.

■	 Alternatively, a RESTful architecture may be used, which is based on resources and standard
operations on these resources. A RESTful approach uses the http and https protocols for service
communication and maps operations on the standard http verbs POST, GET, PUT, and DELETE.

■	 Services may be classified as utility services that provide a general-purpose functionality,
business services that implement part of a business process, or coordination services that
coordinate the execution of other services.

■	 The service engineering process involves identifying candidate services for implementation,
defining the service interface, and implementing, testing, and deploying the service.

■	 The development of software using services is based on the idea that programs are created by
composing and configuring services to create new composite services and systems.

■	 Graphical workflow languages, such as BPMN, may be used to describe a business process and
the services used in that process. These languages can describe interactions between the
organizations that are involved.

F u rt h er R e a d i n g

There is an immense amount of tutorial material on the web covering all aspects of web services.
However, I found the book by Thomas Erl to be the best overview and description of services and ser-
vice standards. Erl includes some discussion of software engineering issues in service-oriented com-
puting. He has also written more recent books on RESTful services.

Service-Oriented Architecture: Concepts, Technology and Design. Erl has written a number of books
on service-oriented systems covering both SOA and RESTful architectures. In this book, Erl discusses
SOA and web service standards but mostly concentrates on discussing how a service-oriented
approach may be used at all stages of the software process. (T. Erl, Prentice-Hall, 2005).

“Service-oriented architecture.” This is a good, readable introduction to SOA. (Various authors, 2008)
http://msdn.microsoft.com/en-us/library/bb833022.aspx

“RESTful Web Services: The Basics.” A good introductory tutorial on the RESTful approach and RESTful
services. (A. Rodriguez, 2008). https://www.ibm.com/developerworks/webservices/library/ws-restful/

Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL, and RESTful Web Services.
This is a more advanced text for developers who wish to use web services in enterprise applications.
It describes a number of common problems and abstract web service solutions to these problems.
(R. Daigneau, Addison-Wesley, 2012).

548   Chapter 18  ■  Service-oriented software engineering

http://msdn.microsoft.com/en-us/library/bb833022.aspx
https://www.ibm.com/developerworks/webservices/library/ws-restful

	 1.1  ■  Professional software development   549

“Web Services Tutorial.” This is an extensive tutorial on all aspects of service-oriented architecture,
web services, and web service standards, written by people involved in the development of these
standards. Very useful if you need a detailed understanding of the standards. (W3C schools, 1999–2014)
http://www.w3schools.com/webservices/default.asp

W e b s i te

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-reuse/

E x erc i ses

  18.1.       Why is it important to define exceptions in service engineering?

  18.2.       �Standards are fundamental to service-oriented architectures, and it was believed that stand-
ards conformance was essential for successful adoption of a service-based approach. How-
ever, RESTful services, which are increasingly widely used, are not standards-based. Discuss
why you think this change has occurred and whether or not you think that the lack of stand-
ards will inhibit the development and takeup of RESTful services.

  18.3.      �Extend Figure 18.5 to include WSDL definitions for MaxMinType and InDataFault. The
temperatures should be represented as integers, with an additional field indicating whether
the temperature is in degrees Fahrenheit or degrees Celsius. InDataFault should be a
simple type consisting of an error code.

  18.4.       �Suggest how the SimpleInterestCalculator service could be implemented as a RESTful
service.

  18.5.        �What is a workflow? List out the key stages in the process of system construction by
composition.

  18.6.       �Design possible input and output messages for the services shown in Figure 18.13. You may
specify these in the UML or in XML.

  18.7.        �Giving reasons for your answer, suggest two important types of application where you would
not recommend the use of service-oriented architecture. 

  18.8.      �Explain what is meant by a “compensation action” and, using an example, show why these
actions may have to be included in workflows.

	 Chapter 18  ■  Exercises   549

http://www.w3schools.com/webservices/default.asp
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-reuse

550   Chapter 18  ■  Service-oriented software engineering

  18.9.       �For the example of the vacation package reservation service, design a workflow that will
book ground transportation for a group of passengers arriving at an airport. They should be
given the option of booking either a taxi or a hire car. You may assume that the taxi and
rental car companies offer web services to make a reservation.

18.10.      �Using an example, explain in detail why the thorough testing of services that include com-
pensation actions is difficult.

R efere n ces

Erl, T. 2004. Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services.
Upper Saddle River, NJ: Prentice-Hall.

	   . 2005. Service-Oriented Architecture: Concepts, Technology and Design. Upper Saddle River,
NJ: Prentice-Hall.

Fielding, R. 2000. “Representational State Transfer.” Architectural Styles and the Design of Network-
Based Software Architecture. https://www.ics.uci.edu/~fielding/pubs/. . ./fielding_dissertation.pdf

Lovelock, C, S Vandermerwe, and B Lewis. 1996. Services Marketing. Englewood Cliffs, NJ.:
Prentice-Hall.

Newcomer, E., and G. Lomow. 2005. Understanding SOA with Web Services. Boston:
Addison-Wesley.

OMG. 2011. “Documents Associated with Business Process Model and Notation (BPMN) Version
2.0.” http://www.omg.org/spec/BPMN/2.0/

Pautasso, C., O. Zimmermann, and F. Leymann. 2008. “RESTful Web Services vs. ‘Big’ Web Services:
Making the Right Architectural Decision.” In Proc. WWW 2008, 805–14. Beijing, China.
doi:10.1145/1367497.1367606.

Richardson, L., and S. Ruby. 2007. RESTful Web Services. Sebastopol, CA: O’Reilly Media Inc.

Rosenberg, F., F. Curbera, M. Duftler, and R. Khalaf. 2008. “Composing RESTful Services and Collab-
orative Workflows: A Lightweight Approach.” IEEE Internet Computing 12 (5): 24–31. doi:10.1109/
MIC.2008.98.

W3C. 2012. “OWL 2 Web Ontology Language.” http://www.w3.org/TR/owl2-overview/

	   . 2013. “Web of Services.” http://www.w3.org/standards/webofservices/

White, S. A., and D. Miers. 2008. BPMN Modeling and Reference Guide: Understanding and Using
BPMN. Lighthouse Point, FL. USA: Future Strategies Inc.

550   Chapter 18  ■  Service-oriented software engineering

https://www.ics.uci.edu/~fielding/pubs/. . ./fielding_dissertation.pdf
http://www.omg.org/spec/BPMN/2.0
http://www.w3.org/TR/owl2-overview
http://www.w3.org/standards/webofservices

Systems engineering
19

Objectives
The objectives of this chapter are to explain why software engineers
should understand systems engineering and to introduce the most
important systems engineering processes. When you have read this
chapter, you will:

■	 know what is meant by a sociotechnical system and understand why
human, social, and organizational issues affect the requirements and
design of software systems;

■	 understand the idea of conceptual design and why it is an essential
first stage in the systems engineering process;

■	 know what is meant by system procurement and understand why different
system procurement processes are used for different types of system;

■	 know about the key systems engineering development processes and
their relationships.

Contents
19.1	 Sociotechnical systems

19.2	 Conceptual design

19.3	 System procurement

19.4	 System development

19.5	 System operation and evolution

552    Chapter 19  ■  Systems engineering

A computer only becomes useful when it includes both software and hardware.
Without hardware, a software system is an abstraction—simply a representation of
some human knowledge and ideas. Without software, a hardware system is a set of
inert electronic devices. However, if you put them together to form a computer sys-
tem, you create a machine that can carry out complex computations and deliver the
results of these computations to its environment.

This illustrates one of the fundamental characteristics of a system: It is more than the
sum of its parts. Systems have properties that only become apparent when their compo-
nents are integrated and operate together. Furthermore, systems are developed to sup-
port human activities—work, entertainment, communication, protection of people and
the environment, and so on. They interact with people, and their design is influenced by
human and organizational concerns. Hardware, human, social, and organizational fac-
tors have to be taken into account when developing all professional software systems.

Systems that include software fall into two categories:

1.	 Technical computer-based systems are systems that include hardware and soft-
ware components but not procedures and processes. Examples of technical
systems include televisions, mobile phones, and other equipment with embed-
ded software. Applications for PCs, computer games, and mobile devices are
also technical systems. Individuals and organizations use technical systems for a
particular purpose, but knowledge of this purpose is not part of the technical
system. For example, the word processor I am using (Microsoft Word) is not
aware that it is being used to write a book.

2	 Sociotechnical systems: include one or more technical systems but, crucially, also
people, who understand the purpose of the system, within the system itself.
Sociotechnical systems have defined operational processes, and people (the opera-
tors) are inherent parts of the system. They are governed by organizational policies
and rules and may be affected by external constraints such as national laws and regu-
latory policies. For example, this book was created through a sociotechnical publish-
ing system that includes various processes (creation, editing, layout, etc.) and
technical systems (Microsoft Word and Excel, Adobe Illustrator, Indesign, etc.).

Systems engineering (White et al. 1993; Stevens et al. 1998; Thayer 2002) is the
activity of designing entire systems, taking into account the characteristics of hardware,
software, and human elements of these systems. Systems engineering includes every-
thing to do with procuring, specifying, developing, deploying, operating, and maintain-
ing both technical and sociotechnical systems. Systems engineers have to consider the
capabilities of hardware and software as well as the system’s interactions with users
and its environment. They must think about the system’s services, the constraints under
which the system must be built and operated, and the ways in which the system is used.

In this chapter, my focus is on the engineering of large and complex software-
intensive systems. These are “enterprise systems,” that is, systems that are used to
support the goals of a large organization. Enterprise systems are used by govern-
ment and the military services as well as large companies and other public bodies.

	 Chapter 19  ■  Systems engineering    553

They are sociotechnical systems that are influenced by the ways that the organization
works and by national and international rules and regulations. They may be made up
of a number of separate systems and are distributed systems with large-scale data-
bases. They have a long lifetime and are critical for the operation of the enterprise.

I believe that it is important for software engineers to know about systems engi-
neering and to be active participants in systems engineering processes for two reasons:

1.	 Software is now the dominant element in all enterprise systems, yet many senior
decision makers in organizations have a limited understanding of software. Software
engineers have to play a more active part in high-level systems decision making if
the system software is to be dependable and developed on time and to budget.

2.	 As a software engineer, it helps if you have a broader awareness of how software
interacts with other hardware and software systems, and the human, social, and
organizational factors that affect the ways in which software is used. This knowledge
helps you understand the limits of software and to design better software systems.

There are four overlapping stages (Figure 19.1) in the lifetime of large, complex
systems:

1.	 Conceptual design This initial systems engineering activity develops the con-
cept of the type of system that is required. It sets out, in nontechnical language,
the purpose of the system, why it is needed, and the high-level features that
users might expect to see in the system. It may also describe broad constraints,
such as the need for interoperability with other systems. These limit the freedom
of systems engineers in designing and developing the system.

2.	 Procurement or acquisition During this stage, the conceptual design is further devel-
oped so that information is available to make decisions about the contract for the
system development. This may involve making decisions about the distribution of

Procurement

Development

Operation

Deployment

Equipment and
software updates

System
evolution

Conceptual design

User information

Outline
requirements

System vision
and features

Figure 19.1  Stages of
systems engineering

554    Chapter 19  ■  Systems engineering

functionality across hardware, software, and operational processes. You also make
decisions about which hardware and software has to be acquired, which suppliers
should develop the system, and the terms and conditions of the supply contract.

3.	 Development During this stage, the system is developed. Development pro-
cesses include requirements definition, system design, hardware and software
engineering, system integration, and testing. Operational processes are defined,
and the training courses for system users are designed.

4.	 Operation At this stage, the system is deployed, users are trained, and the sys-
tem is brought into use. The planned operational processes usually then have to
change to reflect the real working environment where the system is used. Over
time, the system evolves as new requirements are identified. Eventually, the
system declines in value, and it is decommissioned and replaced.

Figure 19.1 shows the interactions between these stages. The conceptual design
activity is a basis for the system procurement and development but is also used to
provide information to users about the system. Development and procurement over-
lap and further procurement during development, and operation may be needed as
new equipment and software become available. Once the system is operational,
requirements changes are inevitable; implementing these changes requires further
development and, perhaps, software and hardware procurement.

Decisions made at any one of these stages may have a profound influence on the
other stages. Design options may be restricted by procurement decisions on the
scope of the system and on its hardware and software. Human errors made during
the specification, design, and development stages may mean that faults are intro-
duced into the system. A decision to limit testing for budget reasons may mean that
faults are not discovered before a system is put into use. During operation, errors in
configuring the system for deployment may lead to problems in using the system.
Decisions made during the original procurement may be forgotten when system
changes are proposed. This may lead to unforeseen consequences arising from the
implementation of the changes.

An important difference between systems and software engineering is the
involvement of a range of professionals throughout the lifetime of the system.
These include engineers who may be involved in hardware and software design,
system end-users, managers who are concerned with organizational issues, and
experts in the system’s application domain. For example, engineering the insulin
pump system introduced in Chapter 1 requires experts in electronics, mechanical
engineering, software, and medicine.

For very large systems, an even wider range of expertise may be required.
Figure 19.2 illustrates the technical disciplines that may be involved in the procure-
ment and development of a new system for air traffic management. Architects and
civil engineers are involved because new air traffic management systems usually
have to be installed in a new building. Electrical and mechanical engineers are
involved to specify and maintain the power and air conditioning. Electronic engi-
neers are concerned with computers, radars, and other equipment. Ergonomists

design the controller workstations and software engineers, and user interface design-
ers are responsible for the software in the system.

The involvement of a range of professional disciplines is essential because of the
different types of components in complex systems. However, differences and mis
understandings between disciplines can lead to inappropriate design decisions.
These poor decisions can delay the system’s development or make it less suitable for
its intended purpose. There are three reasons why there may be misunderstandings
or other differences between engineers with different backgrounds:

1.	D ifferent professional disciplines often use the same words, but these words
do not always mean the same thing. Consequently, misunderstandings are
common in discussions between engineers from different backgrounds. If
these are not discovered and resolved during system development, they can
lead to errors in delivered systems. For example, an electronic engineer may
know a bit about C programming but may not understand that a method in
Java is like a function in C.

2.	 Each discipline makes assumptions about what other disciplines can or cannot
do. These assumptions are often based on an inadequate understanding of what
is possible. For example, an electronic engineer may decide that all signal pro-
cessing (a computationally intensive task) should be done by software to sim-
plify the hardware design. However, this may mean significantly greater
software effort to ensure that the system processor can cope with the amount of
computation that is resolved.

3.	D isciplines try to protect their professional boundaries and may argue for certain
design decisions because these decisions will call for their professional expertise.
Therefore, a software engineer may argue for a software-based door locking sys-
tem in a building, although a mechanical, key-based system may be more reliable.

My experience is that interdisciplinary working can be successful only if enough
time is available for these issues to be discussed and resolved. This requires regular
face-to-face discussions and a flexible approach from everyone involved in the sys-
tems engineering process.

Systems
engineering

Electrical
engineering

Ergonomics

Software
engineering

Civil
engineering

Architecture

User interface
design

Electronic
engineering

Mechanical
 engineering

Figure 19.2  Professional
disciplines involved in
ATC systems engineering

	 Chapter 19  ■  Systems engineering    555

556    Chapter 19  ■  Systems engineering

	 19.1 	 Sociotechnical systems

The term system is universally used. We talk about computer systems, operating systems,
payment systems, the education system, the system of government, and so on. These are
all obviously quite different uses of the word “system,” although they share the essential
characteristic that, somehow, the system is more than simply the sum of its parts.

Abstract systems, such as the system of government, are outside the scope of this
book. I focus here on systems that include computers and software and that have some
specific purpose such as to enable communication, support navigation, or maintain
medical records. A useful working definition of these types of system is as follows:

A system is a purposeful collection of interrelated components of different kinds
that work together to deliver a set of services to the system owner and its users.

This general definition can cover a very wide range of systems. For example, a
simple system, such as a laser pointer, delivers an indication service. It may include a
few hardware components with a tiny control program in read-only memory (ROM).
By contrast, an air traffic control system includes thousands of hardware and soft-
ware components as well as human users who make decisions based on information
from that computer system. It delivers a range of services, including providing infor-
mation to pilots, maintaining safe separation of planes, utilizing airspace, and so on.

In all complex systems, the properties and behavior of the system components are
inextricably intermingled. The successful functioning of each system component
depends on the functioning of other components. Software can only operate if the
processor is operational. The processor can only carry out computations if the soft-
ware system defining these computations has been successfully installed.

Large-scale systems are often “systems of systems.” That is, they are made up of
several separate systems. For example, a police command and control system may
include a geographical information system to provide details of the location of inci-
dents. The same geographical information system may be used in systems for trans-
port logistics and emergency command and control. Engineering systems of systems
is an increasingly important topic in software engineering that I cover in Chapter 20.

Large-scale systems are, with a few exceptions, sociotechnical systems, which I
explained in Chapter 10. That is, they do not just include software and hardware but
also people, processes, and organizational policies. Sociotechnical systems are
enterprise systems that are intended to help deliver a business purpose. This purpose
might be to increase sales, reduce material used in manufacturing, collect taxes, main-
tain a safe airspace, and so on. Because they are embedded in an organizational envi-
ronment, the procurement, development, and use of these systems are influenced by
the organization’s policies and procedures, as well as by its working culture. The
users of the system are people who are influenced by the way the organization is man-
aged and by their interactions with other people inside and outside of the organization.

The close relationships between sociotechnical systems and the organizations that
use these systems means that it is often difficult to establish system boundaries.

	 19.1  ■  Sociotechnical systems    557

Different people within the organization will see the boundaries of the system in dif-
ferent ways. This is significant because establishing what is and what is not in the
scope of the system is important when defining the system requirements.

Figure 19.3 illustrates this problem. The diagram shows a sociotechnical system
as a set of layers, where each layer contributes, in some way, to the functioning of
the system. At the core is a software-intensive technical system and its operational
processes (shaded in Figure 19.3). Most people would agree that these are both parts
of the system. However, the system’s behavior is influenced by a range of sociotech-
nical factors outside of the core. Should the system boundary simply be drawn
around the core, or should it include other organizational levels?

Whether or not these broader sociotechnical considerations should be considered to
be part of a system depends on the organization and its policies and rules. If organiza-
tional rules and policies can be changed, then some people might argue they should be
part of the system. However, it is more difficult to change organizational culture and
even more challenging to change strategy and goals. Only governments can change laws
to accommodate a system. Moreover, different stakeholders may have different opinions
on where the system boundaries should be drawn. There are no simple answers to these
questions, but they have to be discussed and negotiated during the system design process.

Generally, large sociotechnical systems are used in organizations. When you are
designing and developing sociotechnical systems, you need to understand, as far as
possible, the organizational environment in which they will be used. If you don’t, the
systems may not meet business needs. Users and their managers may reject the sys-
tem or fail to use it to its full potential.

Figure 19.4 shows the key elements in an organization that may affect the require-
ments, design, and operation of a sociotechnical system. A new system may lead to
changes in some or all of these elements:

1.	 Process changes A new system may mean that people have to change the way
that they work. If so, training will certainly be required. If changes are signifi-
cant, or if they involve people losing their jobs, there is a danger that the users
will resist the introduction of the system.

Technical
system

National laws and regulations

Orga
nizational strategies and goals

Organizational culture

O
rg

an

iza
tional policies and rules

O
pe

rat
ional processes

Figure 19.3  Layered
structure of
sociotechnical systems

558    Chapter 19  ■  Systems engineering

2.	 Job changes New systems may deskill the users in an environment or cause them
to change the way they work. If so, users may actively resist the introduction of
the system into the organization. Professional staff, such as doctors or teachers,
may resist system designs that require them to change their normal way of work-
ing. The people involved may feel that their professional expertise is being
eroded and that their status in the organization is being reduced by the system.

3.	 Organizational policies The proposed system may not be completely consistent
with organizational policies (e.g., on privacy). This may require system changes,
policy changes, or process changes to bring the system and policies into line.

4.	 Organizational politics The system may change the political power structure in
an organization. For example, if an organization is dependent on a complex sys-
tem, those who control access to that system have a great deal of political power.
Alternatively, if an organization reorganizes itself into a different structure, this
may affect the requirements and use of the system.

Sociotechnical systems are complex systems, which means that it is practically
impossible to have a complete understanding, in advance, of their behavior. This
complexity leads to three important characteristics of sociotechnical systems:

1.	 They have emergent properties that are properties of the system as a whole, rather
than associated with individual parts of the system. Emergent properties depend
on both the system components and the relationships between them. Some of
these relationships only come into existence when the system is integrated from its
components, so the emergent properties can only be evaluated at that time.
Security and dependability are examples of important emergent system properties.

2.	 They are nondeterministic, so that when presented with a specific input, they
may not always produce the same output. The system’s behavior depends on the
human operators, and people do not always react in the same way. Furthermore,
use of the system may create new relationships between the system components
and hence change its emergent behavior.

3.	 The system’s success criteria are subjective rather than objective. The extent to
which the system supports organizational objectives does not just depend on the
system itself. It also depends on the stability of these objectives, the relationships

Policies Processes

Jobs Politics

Systems

Figure 19.4 
Organizational elements

	 19.1  ■  Sociotechnical systems    559

and conflicts between organizational objectives, and how people in the organi-
zation interpret these objectives. New management may reinterpret the organi-
zational objectives that a system was designed to support so that a “successful”
system may then be seen as no longer fit for its intended purpose.

Sociotechnical considerations are often critical in determining whether or not a
system has successfully met its objectives. Unfortunately, taking these into account
is very difficult for engineers who have little experience of social or cultural studies.
To help understand the effects of systems on organizations, various sociotechnical
systems methodologies have been proposed. My paper on sociotechnical systems
design discusses the advantages and disadvantages of these sociotechnical design
methodologies (Baxter and Sommerville 2011).

	 19.1.1 	 Emergent properties

The complex relationships between the components in a system mean that a system
is more than simply the sum of its parts. It has properties that are properties of the
system as a whole. These “emergent properties” (Checkland 1981) cannot be attrib-
uted to any specific part of the system. Rather, they only emerge once the system
components have been integrated. Some emergent properties, such as weight, can be
derived directly from the subsystem properties. More often, however, they emerge
from a combination of subsystem properties and subsystem relationships. The
system property cannot be calculated directly from the properties of the individual
system components. Examples of emergent properties are shown in Figure 19.5.

There are two types of emergent properties:

1.	 Functional emergent properties, when the purpose of a system only emerges after
its components are integrated. For example, a bicycle has the functional property
of being a transportation device once it has been assembled from its components.

Figure 19.5  Examples
of emergent properties

Property Description

Reliability System reliability depends on component reliability, but unexpected interactions
can cause new types of failure and therefore affect the reliability of the system.

Repairability This property reflects how easy it is to fix a problem with the system once it has
been discovered. It depends on being able to diagnose the problem, access the
components that are faulty, and modify or replace these components.

Security The security of the system (its ability to resist attack) is a complex property that
cannot be easily measured. Attacks may be devised that were not anticipated by
the system designers and so may defeat built-in safeguards.

Usability This property reflects how easy it is to use the system. It depends on the
technical system components, its operators, and its operating environment.

Volume The volume of a system (the total space occupied) depends on how the
component assemblies are arranged and connected.

560    Chapter 19  ■  Systems engineering

2.	 Non-functional emergent properties, which relate to the behavior of the system
in its operational environment. Reliability, performance, safety, and security are
examples of these properties. These system characteristics are critical for
computer-based systems, as failure to achieve a minimum defined level in these
properties usually makes the system unusable. Some users may not need some of
the system functions, so the system may be acceptable without them. However,
a system that is unreliable or too slow is likely to be rejected by all its users.

Emergent properties, such as reliability, depend on both the properties of
individual components and their interactions or relationships. For example, the
reliability of a sociotechnical system is influenced by three things:

1.	 Hardware reliability What is the probability of hardware components failing,
and how long does it take to repair a failed component?

2.	 Software reliability How likely is it that a software component will produce an
incorrect output? Software failure is unlike hardware failure in that software
does not wear out. Failures are often transient. The system carries on working
after an incorrect result has been produced.

3.	 Operator reliability How likely is it that the operator of a system will make an
error and provide an incorrect input? How likely is it that the software will fail
to detect this error and propagate the mistake?

Hardware, software, and operator reliability are not independent but affect each other
in unpredictable ways. Figure 19.6 shows how failures at one level can be prop
agated to other levels in the system. Say a hardware component in a system starts to
go wrong. Hardware failure can sometimes generate spurious signals that are outside
the range of inputs expected by the software. The software can then behave unpre-
dictably and produce unexpected outputs. These may confuse and consequently
cause stress in the system operator.

We know that people are more likely to make mistakes when they feel stressed.
So a hardware failure may be the trigger for operator errors. These mistakes can, in
turn, lead to unexpected software behavior, resulting in additional demands on the
processor. This could overload the hardware, causing more failures and so on. Thus,
an initial, relatively minor, failure, can rapidly develop into a serious problem that
could lead to a complete shutdown of the system.

The reliability of a system depends on the context in which that system is used.
However, the system’s environment cannot be completely specified, and it is often
impossible for the system designers to limit the environment for operational sys-
tems. Different systems operating within an environment may react to problems in
unpredictable ways, thus affecting the reliability of all of these systems.

For example, say a system is designed to operate at normal room temperature.
To allow for variations and exceptional conditions, the electronic components of
a system are designed to operate within a certain range of temperatures, say, from
0 degrees to 40 degrees Celsius. Outside this temperature range, the components will

	 19.1  ■  Sociotechnical systems    561

behave in an unpredictable way. Now assume that this system is installed close to an
air conditioner. If this air conditioner fails and vents hot gas over the electronics, then
the system may overheat. The components, and hence the whole system may then fail.

If this system had been installed elsewhere in that environment, this problem
would not have occurred. When the air conditioner worked properly, there were no
problems. However, because of the physical closeness of these machines, an unan-
ticipated relationship existed between them that led to system failure.

Like reliability, emergent properties such as performance or usability are hard to
assess but can be measured after the system is operational. Properties such as safety
and security, however, are not directly measurable. Here, you are not simply con-
cerned with attributes that relate to the behavior of the system but also with unwanted
or unacceptable behavior.

A secure system is one that does not allow unauthorized access to its data.
Unfortunately, it is clearly impossible to predict all possible modes of access and
explicitly forbid them. Therefore, it may only be possible to assess these “shall not”
properties after the system is operational. That is, you only know that a system is
insecure when someone manages to penetrate the system.

	 19.1.2 	 Non-determinism

A deterministic system is one that is absolutely predictable. If we ignore issues of
concurrency, software systems that run on reliable hardware are deterministic. When
they are presented with a sequence of inputs they will always produce the same
sequence of outputs. Of course, there is no such thing as completely reliable hardware,
but hardware is usually reliable enough to think of hardware systems as deterministic.

People, on the other hand, are non-deterministic. When presented with exactly
the same input (say a request to complete a task), their responses will depend on
their emotional and physical state, the person making the request, other people in the
environment, and whatever else they are doing. Sometimes they will be happy to do
the work, and, at other times, they will refuse; sometimes they will perform a task
well, and sometimes they will do it badly.

Sociotechnical systems are nondeterministic partly because they include people
and partly because changes to the hardware, software, and data in these systems are

Hardware

Software

Operation

Initial
failure

Failure
propagation

Failure
consequence

Figure 19.6  Failure
propagation

562    Chapter 19  ■  Systems engineering

so frequent. The interactions between these changes are complex, and so the behav-
ior of the system is unpredictable. Users do not know when and why changes have
been made, so they see the system as nondeterministic.

For example, say a system is presented with a set of 20 test inputs. It processes
these inputs and the results are recorded. At some later time, the same 20 test inputs
are processed, and the results are compared to the previous stored results. Five of
them are different. Does this mean that there have been five failures? Or are the dif-
ferences simply reasonable variations in the system’s behavior? You can only find
this out by looking at the results in more depth and making judgments about the way
the system has handled each input.

Non-determinism is often seen as a bad thing, and it is felt that designers should
try to avoid nondeterministic behavior wherever possible. In fact, in sociotechnical
systems, non-determinism has important benefits. It means that the behavior of a
system is not fixed for all time but can change depending on the system’s environ-
ment. For example, operators may observe that a system is showing signs of failure.
Instead of using the system normally, they can change their behavior to diagnose and
recover from the detected problems.

	 19.1.3 	 Success criteria

Generally, complex sociotechnical systems are developed to tackle “wicked prob-
lems” (Rittel and Webber 1973). A wicked problem is a problem that is so complex
and that involves so many related entities that there is no definitive problem specifi-
cation. Different stakeholders see the problem in different ways, and no one has a
full understanding of the problem as a whole. The true nature of the problem may
only emerge as a solution is developed.

An extreme example of a wicked problem is emergency planning to deal with the
aftermath of an earthquake. No one can accurately predict where the epicenter of an
earthquake will be, what time it will occur, or what effect it will have on the local
environment. It is impossible to specify in detail how to deal with the problem.
System designers have to make assumptions, but understanding what is required
emerges only after the earthquake has happened.

This makes it difficult to define the success criteria for a system. How do you decide
if a new system contributes to the business goals of the company that paid for the system?
The judgment of success is not usually made against the original reasons for procuring
and developing the system. Rather, it is based on whether or not the system is effective at
the time it is deployed. As the business environment can change very quickly, the busi-
ness goals may have changed significantly during the development of the system.

The situation is even more complex when there are multiple conflicting goals that
are interpreted differently by different stakeholders. For instance, the system on which
the Mentcare system is based was designed to support two separate business goals:

1.	 To improve the quality of care for sufferers from mental illness.

2.	 To improve the cost-effectiveness of treatments by providing managers with
detailed reports of care provided and the costs of that care.

	 19.2  ■  Conceptual design    563

Unfortunately, these proved to be conflicting goals because the information that
was needed to satisfy the reporting goal meant that doctors and nurses had to provide
additional information, over and above the health records that they normally main-
tained. This reduced the quality of care for patients as it meant that clinical staff
had less time to talk with them. From a doctor’s perspective, this system was not
an improvement on the previous manual system, but from a manager’s perspective,
it was.

Thus, any success criteria that are established in the early stages of the systems
engineering process have to be regularly reconsidered during system development
and use. You cannot evaluate these criteria objectively as they depend on the sys-
tem’s effect on its environment and its users. A system may apparently meet its
requirements as originally specified but be practically useless because of changes in
the environment where it is used.

	 19.2 	 Conceptual design

Once an idea for a system has been suggested, conceptual design is the very first
thing that you do in the systems engineering process. In the conceptual design phase,
you take that initial idea, investigate its feasibility, and develop it to create an overall
vision of a system that could be developed. You then have to describe the envisaged
system so that nonexperts, such as system users, senior company decision makers, or
politicians, can understand what you are proposing.

There is an obvious overlap between conceptual design and requirements
engineering. As part of the conceptual design process, you have to imagine how the
proposed system will be used. This may involve discussions with potential users and
other stakeholders, focus groups, and observations of how existing systems are used.
The goal of these activities is to understand how users work, what is important to
them, and what practical constraints on the system there might be.

The importance of establishing a vision of a proposed system is rarely mentioned
in the software design and requirements literature. However, this vision has been
part of the systems engineering process for military systems for many years. Fairley
et al. (Fairley, Thayer, and Bjorke 1994) discuss the idea of concept analysis and the
documentation of the results of concept analysis in a “Concept of Operations”
(ConOps) document. This idea of developing a ConOps document is now widely
used for large-scale systems, and you can find many examples of ConOps documents
on the web.

Unfortunately, as is so often the case with military and government systems, good
ideas can become mired in bureaucracy and inflexible standards. This is exactly what
happened with ConOps, and a ConOps document standard was proposed (IEEE,
2007). As Mostashari et al. say (Mostashari et al. 2012), this tends to lead to long and
unreadable documents, which do not serve their intended purpose. They propose a
more agile approach to the development of a ConOps document with a shorter and
more flexible document as the output of the process.

564    Chapter 19  ■  Systems engineering

I don’t like the term Concept of Operations partly because of its military connota-
tions and partly because I think that a conceptual design document is not just about
system operation. It should also present the system engineer’s understanding of why
the system is being developed, an explanation of why the design proposals are appro-
priate, and, sometimes, an initial organization for the system. As Fairley says, “It
should be organized to tell a story,” that is, written so that people without a technical
background can understand the proposals that are being made.

Figure 19.7 shows activities that may be part of the conceptual design process.
Conceptual design should always be a team process that involves people from differ-
ent backgrounds. I was part of the conceptual design team for the digital learning
environment, introduced in Chapter 1. For the digital learning environment, the
design team included teachers, education researchers, software engineers, system
administrators, and system managers.

Concept formulation is the first stage of the process where you try to refine an
initial statement of needs and work out what type of system would be best to meet
the needs of system stakeholders. Initially, we were tasked with proposing an
intranet for information sharing across schools that was easier to use than the cur-
rent system. However, after discussions with teachers, we discovered that this was
not really what was required. The existing system was awkward to use, but people
had found workarounds. What was really required was a flexible digital learning
environment that could be adapted by adding subject and age-specific tools and
content that are freely available on the Internet.

We discovered this because the concept formulation activity overlapped with the
activity of problem understanding. To understand a problem, you need to discuss
with users and other stakeholders how they do their work. You need to find out what
is important to them, what are the barriers that stop them from doing what they want
to do, and their ideas of what changes are required. You need to be open-minded (it
is their problem, not yours) and to be prepared to change your ideas when the reality
does not match your initial vision.

Concept formulation

Problem understanding

System proposal development

Feasibility study

System structure development

System vision documentFigure 19.7  Conceptual
design activities

	 19.2  ■  Conceptual design    565

In the system proposal development stage, the conceptual design team set out
their ideas for alternative systems and these are the basis for a feasibility study to
decide which of the ideas are worth further development. In a feasibility study, you
should look at comparable systems that have been developed elsewhere and techno-
logical issues (e.g., use of mobile devices) that may affect use of the system. Then
you need to assess whether or not the system could be implemented using current
hardware and software technologies.

I have found that an additional useful activity is to develop an outline structure
or architecture for the system. This activity is helpful both for making a feasibility
assessment and for providing a basis for more detailed requirements engineering
and architectural design. Furthermore, as the majority of systems are now assem-
bled from existing systems and components, an initial architecture means that the
key parts of the system have been identified and can be procured separately.
This approach is often better than procuring a system as a monolithic unit from a
single supplier.

For the digital learning environment, we decided on a layered service architecture
(shown in Figure 1.8). All components in the system should be considered to be
replaceable services. In this way, users can replace a standard service with their pre-
ferred alternative and so adapt the system to the ages and interests of the students
learning with the system.

All of these activities generate information that is used to develop the system
vision document. This is a critical document that senior decision makers use to
decide whether or not further development of the system should go ahead. It is also
used to develop further documents such as a risk analysis and budget estimate, which
are also important inputs to the decision-making process.

Managers use the system vision document to understand the system; a procure-
ment team uses it to define a tender document; and requirements engineers use it
as a basis for refining the system requirements. Because these different people
need different levels of detail, I suggest that the document should be structured
into two parts:

1.	 A short summary for senior decision makers that presents the key points of the
problem and the proposed system. It should be written so that readers can imme-
diately see how the system will be used and the benefits that it will provide.

2.	 A number of appendices that develop the ideas in more detail and that can be
used in the system procurement and requirements engineering activities.

It is challenging to write a summary of the system vision inasmuch as the readers
are busy people who are unlikely to have a technical background. I have found that
using user stories is very effective, providing a tangible vision of system use that
nontechnical people can relate to. Stories should be short and personalized and should
be a feasible description of the use of the system, as shown in Figure 19.8. There is
another example of a user story from the same system in Chapter 4 (Figure 4.9).

566    Chapter 19  ■  Systems engineering

User stories are effective because, as already noted, readers can relate to them; in
addition, they can show the capabilities of the proposed system in an easily accessi-
ble way. Of course, these are only part of a system vision, and the summary must
also include a high-level description of the basic assumptions made and the ways in
which the system will deliver value to the organization.

	 19.3 	 System procurement

System procurement or system acquisition is a process whose outcome is a decision
to buy one or more systems from system suppliers. At this stage, decisions are made
on the scope of a system that is to be purchased, system budgets and timescales, and
high-level system requirements. Using this information, further decisions are then
made on whether to procure a system, the type of system required, and the supplier
or suppliers of the system. The drivers for these decisions are:

1.	 The replacement of other organizational systems If the organization has a mix-
ture of systems that cannot work together or that are expensive to maintain, then
procuring a replacement system, with additional capabilities, may lead to
significant business benefits.

2.	 The need to comply with external regulations Increasingly, businesses are regu-
lated and have to demonstrate compliance with externally defined regulations
(e.g., Sarbanes–Oxley accounting regulations in the United States). Compliance
may require the replacement of noncompliant systems or the provision of new
systems specifically to monitor compliance.

Figure 19.8  A user story
used in a system vision
document

Digital art

Jill is an S2 pupil at a secondary school in Dundee. She has a smartphone of her own, and the family has a
shared Samsung tablet and a Dell laptop computer. At school, Jill signs on to the school computer and is pre-
sented with a personalized Glow+ environment, which includes a range of services, some chosen by her teach-
ers and some she has chosen herself from the Glow app library.

She is working on a Celtic art project, and she uses Google to research a range of art sites. She sketches out
some designs on paper and then uses the camera on her phone to photograph what she has done; she uploads
this using the school wifi to her personal Glow+ space. Her homework is to complete the design and write a
short commentary on her ideas.

At home, she uses the family tablet to sign on to Glow+, and she then uses an artwork app to process her
photograph and to extend the work, add color, and so on. She finishes this part of the work, and to complete it
she moves to her home laptop to type up her commentary. She uploads the finished work to Glow+ and sends
a message to her art teacher that it is available for review. Her teacher looks at the project in a free period
before Jill’s next art class using a school tablet, and, in class, she discusses the work with Jill.

After the discussion, the teacher and Jill decide that the work should be shared, and so they publish it to the
school web pages that show examples of students’ work. In addition, the work is included in Jill’s e-portfolio—
her record of schoolwork from age 3 to 18.

	 19.3  ■  System procurement    567

3.	 External competition If a business needs to compete more effectively or maintain
a competitive position, managers may decide to buy new systems to improve busi-
ness efficiency or effectiveness. For military systems, the need to improve capa-
bility in the face of new threats is an important reason for procuring new systems.

4.	 Business reorganization Businesses and other organizations frequently restructure
with the intention of improving efficiency and/or customer service. Reorganizations
lead to changes in business processes that require new systems support.

5.	 Available budget The budget that is available is an obvious factor in determining
the scope of new systems that can be procured.

In addition, new government systems are often procured to reflect political
changes and political policies. For example, politicians may decide to buy new sur-
veillance systems, which they claim will counter terrorism. Buying such systems
shows voters that they are taking action.

Large complex systems are usually engineered using a mixture of off-the-shelf
and specially built components. They are often integrated with existing legacy sys-
tems and organizational databases. When legacy systems and off-the-shelf systems
are used, new custom software may be needed to integrate these components. The
new software manages the component interfaces so that these components can inter-
operate. The need to develop this “glueware” is one reason why the savings from
using off-the-shelf components are sometimes not as great as anticipated.

Three types of systems or system components may have to be procured:

1.	 Off-the-shelf applications that may be used without change and that need only
minimal configuration for use.

2.	 Configurable application or ERP systems that have to be modified or adapted
for use either by modifying the code or by using inbuilt configuration features,
such as process definitions and rules.

3.	 Custom systems that have to be specially designed and implemented for use.

Each of these components tends to follow a different procurement process. Figure 19.9
illustrates the main features of the procurement process for these types of system. Key
issues that affect procurement processes are:

1.	 Organizations often have an approved and recommended set of application soft-
ware that has been checked by the IT department. It is usually possible to buy or
acquire open-source software from this set directly without the need for detailed
justification. For example, in the iLearn system, we recommended that
Wordpress should be made available for student and staff blogs. If microphones
are needed, off-the-shelf hardware can be bought. There are no detailed require-
ments, and the users adapt to the features of the chosen application.

2.	 Off-the-shelf components do not usually match requirements exactly, unless the
requirements have been written with these components in mind. Therefore, choosing

568    Chapter 19  ■  Systems engineering

a system means that you have to find the closest match between the system require-
ments and the facilities offered by off-the-shelf systems. ERP and other large-scale
application systems usually fall into this category. You may then have to modify the
requirements to fit in with the system assumptions. This can have knock-on effects
on other subsystems. You also usually have an extensive configuration process to
tailor and adapt the application or ERP system to the buyer’s working environment.

3.	 When a system is to be built specially, the specification of requirements is part
of the contract for the system being acquired. It is therefore a legal as well as a
technical document. The requirements document is critical, and procurement
processes of this type usually take a considerable amount of time.

4.	 For public sector systems in particular, there are detailed rules and regulations
that affect the procurement of systems. For example, in the European Union, all
public sector systems over a certain price must be open to tender by any supplier
in Europe. This requires detailed tender documents to be drawn up and the ten-
der to be advertised across Europe for a fixed period of time. Not only does this
rule slow down the procurement process, it also tends to inhibit agile develop-
ment. It forces the system buyer to develop requirements so that all companies
have enough information to bid for the system contract.

5.	 For application systems that require change or for custom systems, there is usu-
ally a contract negotiation period when the customer and supplier negotiate the
terms and conditions for development of the system. Once a system has been

Conceptual
design

Conceptual
design

Assess
approved

applications

Select
system
required

Place order
for system

Conceptual
design

Off-the-shelf systems

Configurable systems

Market
survey

Choose
system shortlist

Refine
requirements

Choose system
supplier

Negotiate
contract

Modify
requirements

Define
requirements

Issue request
for tender

Custom systems

Choose system
supplier

Negotiate
contract

Modify
requirements

Figure 19.9  System
procurement processes

	 19.3  ■  System procurement    569

selected, you may negotiate with the supplier on costs, license conditions,
possible changes to the system, and other contractual issues. For custom sys-
tems, negotiations are likely to involve payment schedules, reporting, accept-
ance criteria, requirements change requests, and costs of system changes. During
this process, requirements changes may be agreed that will reduce the overall
costs and avoid some development problems.

Complex sociotechnical systems are rarely developed “in house” by the buyer of
the system. Rather, external systems companies are invited to bid for the systems
engineering contract. The customer’s business is not systems engineering, so its
employees do not have the skills needed to develop the systems themselves. For
complex hardware/software systems, it may be necessary to use a group of suppliers,
each with a different type of expertise.

For large systems, such as an air traffic management system, a group of suppliers
may form a consortium to bid for a contract. The consortium should include all of the
capabilities required for this type of system. For an ATC system, this would include
computer hardware suppliers, software companies, peripheral suppliers, and suppli-
ers of specialist equipment such as radar systems.

Customers do not usually wish to negotiate with multiple suppliers, so the contract
is usually awarded to a principal contractor, who coordinates the project. The princi-
pal contractor coordinates the development of different subsystems by subcontrac-
tors. The subcontractors design and build parts of the system to a specification that is
negotiated with the principal contractor and the customer. Once completed, the prin-
cipal contractor integrates these components and delivers them to the customer.

Decisions made at the procurement stage of the systems engineering process are
critical for later stages in that process. Poor procurement decisions often lead to prob-
lems such as late delivery of a system and development of systems that are unsuited to
their operational environment. If the wrong system or the wrong supplier is chosen, then
the technical processes of system and software engineering become more complex.

For example, I studied a system “failure” where a decision was made to choose an
ERP system because this would “standardize” operations across the organization. These
operations were very diverse, and it turned out there were good reasons for this.
Standardization was practically impossible. The ERP system could not be adapted to cope
with this diversity. It was ultimately abandoned after incurring costs of around £10 million.

Decisions and choices made during system procurement have a profound effect
on the security and dependability of a system. For example, if a decision is made to
procure an off-the-shelf system, then the organization has to accept that they have no
influence over the security and dependability requirements of this system. System
security depends on decisions made by system vendors. In addition, off-the-shelf
systems may have known security weaknesses or may require complex configura-
tion. Configuration errors, where entry points to the system are not properly secured,
are a significant source of security problems.

On the other hand, a decision to procure a custom system means that a lot of effort
must be devoted to understanding and defining security and dependability requirements.
If a company has limited experience in this area, this is quite a difficult thing to do. If the

570    Chapter 19  ■  Systems engineering

required level of dependability as well as acceptable system performance is to be
achieved, then the development time may have to be extended and the budget increased.

Many bad procurement decisions stem from political rather than technical causes.
Senior management may wish to have more control and so demand that a single system
is used across an organization. Suppliers may be chosen because they have a long-
standing relationship with a company rather than because they offer the best technology.
Managers may wish to maintain compatibility with existing systems because they feel
threatened by new technologies. As I discuss in Chapter 20, people who do not under-
stand the required system are often responsible for procurement decisions. Engineering
issues do not necessarily play a major part in their decision-making process.

	 19.4 	 System development

System development is a complex process in which the elements that are part of the
system are developed or purchased and then integrated to create the final system.
The system requirements are the bridge between the conceptual design and the
development processes. During conceptual design, business and high-level func-
tional and non-functional system requirements are defined. You can think of this as
the start of development, hence the overlapping processes shown in Figure 19.1.
Once contracts for the system elements have been agreed, more detailed require-
ments engineering takes place.

Figure 19.10 is a model of the systems development process. Systems engineer-
ing processes usually follow a “waterfall” process model similar to the one that I
discussed in Chapter 2. Although the waterfall model is inappropriate for most types
of software development, higher-level systems engineering processes are plan-driven
processes that still follow this model.

Plan-driven processes are used in systems engineering because different elements
of the system are independently developed. Different contractors are working con-
currently on separate subsystems. Therefore, the interfaces to these elements have to
be designed before development begins. For systems that include hardware and other
equipment, changes during development can be very expensive or, sometimes, prac-
tically impossible. It is essential therefore, that the system requirements are fully
understood before hardware development or building work begins.

One of the most confusing aspects of systems engineering is that companies use
different terminology for each stage of the process. Sometimes, requirements engi-
neering is part of the development process, and sometimes it is a separate activity.
However, after conceptual design, there are seven fundamental development activities:

1.	 Requirements engineering is the process of refining, analyzing, and documenting
the high-level and business requirements identified in the conceptual design. I
have covered the most important requirements engineering activities in Chapter 4.

2.	 Architectural design overlaps significantly with the requirements engineering
process. The process involves establishing the overall architecture of the system,

	 19.4  ■  System development    571

identifying the different system components, and understanding the relation-
ships between them.

3.	 Requirements partitioning is concerned with deciding which subsystems (iden-
tified in the system architecture) are responsible for implementing the system
requirements. Requirements may have to be allocated to hardware, software, or
operational processes and prioritized for implementation. Ideally, you should
allocate requirements to individual subsystems so that the implementation of a
critical requirement does not need subsystem collaboration. However, this is not
always possible. At this stage you also decide on the operational processes and
on how these are used in the requirements implementation.

4.	 Subsystem engineering involves developing the software components of the sys-
tem, configuring off-the-shelf hardware and software, designing, if necessary,
special-purpose hardware, defining the operational processes for the system,
and re-designing essential business processes.

5.	 System integration is the process of putting together system elements to create a
new system. Only then do the emergent system properties become apparent.

6.	 System testing is an extended activity where the whole system is tested and problems
are exposed. The subsystem engineering and system integration phases are reentered
to repair these problems, tune the performance of the system, and implement new
requirements. System testing may involve both testing by the system developer and
acceptance/user testing by the organization that has procured the system.

7.	 System deployment is the process of making the system available to its users,
transferring data from existing systems, and establishing communications with
other systems in the environment. The process culminates with a “go live,” after
which users start to use the system to support their work.

Although the overall process is plan-driven, the processes of requirements devel-
opment and system design are inextricably linked. The requirements and the high-level

Subsystem
engineering

Architectural
design

Requirements
engineering

System
deployment

System
testing

System
integration

Requirements
partitioning

Figure 19.10  The
systems development
process

572    Chapter 19  ■  Systems engineering

design are developed concurrently. Constraints posed by existing systems may limit
design choices, and these choices may be specified in the requirements. You may
have to do some initial design to structure and organize the requirements engineering
process. As the design process continues, you may discover problems with existing
requirements and new requirements may emerge. Consequently, you can think of
these linked processes as a spiral, as shown in Figure 19.11.

The spiral reflects the reality that requirements affect design decisions and vice
versa, and so it makes sense to interleave these processes. Starting in the center, each
round of the spiral may add detail to the requirements and the design. As subsystems
are identified in the architecture, decisions are made on the responsibilities of these
subsystems for providing the system requirements. Some rounds of the spiral may
focus on requirements, others on design. Sometimes new knowledge collected dur-
ing the requirements and design process means that the problem statement itself has
to be changed.

For almost all systems, many possible designs meet the requirements. These
cover a range of solutions that combine hardware, software, and human operations.
The solution that you choose for further development may be the most appropriate
technical solution that meets the requirements. However, wider organizational and
political considerations may influence the choice of solution. For example, a govern-
ment client may prefer to use national rather than foreign suppliers for its system,
even if national products are technically inferior.

These influences usually take effect in the review and assessment phase of the
spiral model where designs and requirements may be accepted or rejected. The pro-
cess ends when a review decides that the requirements and high-level design are
sufficiently detailed for subsystems to be specified and designed.

System requirements and
design documentation

Review and
assessment

Architectural
designStart

Requirements
elicitation and

analysis
Domain and problem

understanding

Requirements
partitioning

Figure 19.11 
Requirements and
design spiral

	 19.4  ■  System development    573

Subsystem engineering involves designing and building the system’s hardware and
software components. For some types of systems, such as spacecraft, all hardware and
software components may be designed and built during the development process.
However, in most systems, some components are bought rather than developed. It is
usually much cheaper to buy existing products than to develop special-purpose compo-
nents. However, if you buy large off-the-shelf systems, such as ERP systems, there is a
significant cost in configuring these systems for use in their operational environment.

Subsystems are usually developed in parallel. When problems that cut across sub-
system boundaries are encountered, a system modification request must be made.
Where systems involve extensive hardware engineering, making modifications after
manufacturing has started is usually very expensive. Often “workarounds” that com-
pensate for the problem must be found. These workarounds usually involve software
changes to implement new requirements.

During systems integration, you take the independently developed subsystems
and put them together to make up a complete system. This integration can be
achieved using a “big bang” approach, where all the subsystems are integrated at the
same time. However, for technical and managerial reasons, an incremental integra-
tion process where subsystems are integrated one at a time is the best approach:

1.	 It is usually impossible to schedule the development of all the subsystems so
that they are all finished at the same time.

2.	 Incremental integration reduces the cost of error location. If many subsystems
are simultaneously integrated, an error that arises during testing may be in any of
these subsystems. When a single subsystem is integrated with an already work-
ing system, errors that occur are probably in the newly integrated subsystem or
in the interactions between the existing subsystems and the new subsystem.

As an increasing number of systems are built by integrating off-the-shelf hardware
and software application systems, the distinction between implementation and integra-
tion is becoming blurred. In some cases, there is no need to develop new hardware or
software. Essentially, systems integration is the implementation phase of the system.

During and after the integration process, the system is tested. This testing should
focus on testing the interfaces between components and the behavior of the system as a
whole. Inevitably, testing also reveals problems with individual subsystems that have to
be repaired. Testing takes a long time, and a common problem in system development
is that the testing team may run out of either budget or time. This problem can lead to the
delivery of error-prone systems that need be repaired after they have been deployed.

Subsystem faults that are a consequence of invalid assumptions about other subsys-
tems are often exposed during system integration. This may lead to disputes between
the contractors responsible for implementing different subsystems. When problems
are discovered in subsystem interaction, the contractors may argue about which sub-
system is faulty. Negotiations on how to solve the problems can take weeks or months.

The final stage of the system development process is system delivery and deploy-
ment. The software is installed on the hardware and is readied for operation. This may

574    Chapter 19  ■  Systems engineering

involve more system configuration to reflect the local environment where it is used,
the transfer of data from existing systems, and the preparation of user documentation
and training. At this stage, you may also have to reconfigure other systems in the
environment to ensure that the new system interoperates with them.

Although system deployment is straightforward in principle, it is often more diffi-
cult than anticipated. The user environment may be different from that anticipated by
the system developers. Adapting the system to make it work in an unexpected environ-
ment can be difficult. The existing system data may require extensive clean-up, and
parts of it may involve more effort than expected. The interfaces to other systems may
not be properly documented. You may find that the planned operational processes
have to be changed because they are not compatible with the operational processes for
other systems. User training is often difficult to arrange, with the consequence that,
initially at least, users are unable to access the capabilities of the system. System
deployment can therefore take much longer and cost much more than anticipated.

	 19.5 	 System operation and evolution

Operational processes are the processes that are involved in using the system as
intended by its designers. For example, operators of an air traffic control system
follow specific processes when aircraft enter and leave airspace, when they have to
change height or speed, when an emergency occurs, and so on. For new systems,
these operational processes have to be defined and documented during the system
development process. Operators may have to be trained and other work processes
adapted to make effective use of the new system. Undetected problems may arise
at this stage because the system specification may contain errors or omissions.
While the system may perform to specification, its functions may not meet the real
operational needs. Consequently, the operators may not use the system as its
designers intended.

Although the designers of operational processes may have based their process
designs on extensive user studies, there is always a period of “domestication”
(Stewart and Williams 2005) when users adapt to the new system and work out
practical processes of how to use it. While user interface design is important, studies
have shown that, given time, users can adapt to complex interfaces. As they become
experienced, they prefer ways of using the system quickly rather than easily. This
means that when designing systems, you should not simply cater for inexperienced
users but you should design the user interface to be adaptable for experienced users.

Some people think that system operators are a source of problems in a system and
that we should move toward automated systems where operator involvement is min-
imized. In my opinion, there are two problems with this approach:

1.	 It is likely to increase the technical complexity of the system because it has to be
designed to cope with all anticipated failure modes. This increases the costs and

	 19.5  ■  System operation and evolution    575

time required to build the system. Provision also has to be made to bring in peo-
ple to deal with unanticipated failures.

2.	 People are adaptable and can cope with problems and unexpected situations.
Thus, you do not have to anticipate everything that could possibly go wrong
when you are specifying and designing the system.

People have a unique capability of being able to respond effectively to the unex-
pected, even when they have never had direct experience of these unexpected events or
system states. Therefore, when things go wrong, the system operators can often recover
the situation by finding workarounds and using the system in nonstandard ways.
Operators also use their local knowledge to adapt and improve processes. Normally, the
actual operational processes are different from those anticipated by the system designers.

Consequently, you should design operational processes to be flexible and adapt-
able. The operational processes should not be too constraining; they should not
require operations to be done in a particular order; and the system software should
not rely on a specific process being followed. Operators usually improve the process
because they know what does and does not work in a real situation.

A problem that may only emerge after the system goes into operation is the oper-
ation of the new system alongside existing systems. There may be physical problems
of incompatibility, or it may be difficult to transfer data from one system to another.
More subtle problems might arise because different systems have different user
interfaces. Introducing a new system may increase the operator error rate, as the
operators use user interface commands for the wrong system.

	 19.5.1 	 System evolution

Large, complex systems usually have a long lifetime. Complex hardware/software
systems may remain in use for more than 20 years, even though both the original
hardware and software technologies used are obsolete. There are several reasons for
this longevity, as shown in Figure 19.12.

Over their lifetime, large complex systems change and evolve to correct errors in the
original system requirements and to implement new requirements that have emerged.
The system’s computers are likely to be replaced with new, faster machines. The organ-
ization that uses the system may reorganize itself and hence use the system in a different
way. The external environment of the system may change, forcing changes to the sys-
tem. Hence, evolution is a process that runs alongside normal system operational pro-
cesses. System evolution involves reentering the development process to make changes
and extensions to the system’s hardware, software, and operational processes.

System evolution, like software evolution (discussed in Chapter 9), is inherently
costly for several reasons:

1.	 Proposed changes have to be analyzed very carefully from a business and a tech-
nical perspective. Changes have to contribute to the goals of the system and
should not simply be technically motivated.

576    Chapter 19  ■  Systems engineering

2.	 Because subsystems are never completely independent, changes to one subsystem
may have side-effects that adversely affect the performance or behavior of other
subsystems. Consequent changes to these subsystems may therefore be needed.

3.	 The reasons for original design decisions are often unrecorded. Those responsible
for the system evolution have to work out why particular design decisions were made.

4.	 As systems age, their structure becomes corrupted by change, so the costs of
making further changes increases.

Systems that have been in use for many years are often reliant on obsolete hard-
ware and software technology. These “legacy systems” (discussed in Chapter 9) are
sociotechnical computer-based systems that have been developed using technology
that is now obsolete. However, they don’t just include legacy hardware and software.
They also rely on legacy processes and procedures—old ways of doing things that
are difficult to change because they rely on legacy software. Changes to one part of
the system inevitably involve changes to other components.

Changes made to a system during system evolution are often a source of problems
and vulnerabilities. If the people implementing the changes are different from those
who developed the system, they may be unaware that a design decision was taken for
dependability and security reasons. Therefore, they may change the system and lose
some safeguards that were deliberately implemented when the system was built.
Furthermore, as testing is so expensive, complete retesting may be impossible after
every system change. Consequently, testing may not discover the adverse side-
effects of changes that introduce or expose faults in other system components.

Figure 19.12  Factors
that influence system
lifetimes

Factor Rationale

Investment cost The costs of a systems engineering project may be tens or even hundreds of
millions of dollars. These costs can only be justified if the system can deliver
value to an organization for many years.

Loss of expertise As businesses change and restructure to focus on their core activities, they
often lose engineering expertise. This may mean that they lack the ability to
specify the requirements for a new system.

Replacement cost The cost of replacing a large system is very high. Replacing an existing system can
be justified only if this leads to significant cost savings over the existing system.

Return on investment If a fixed budget is available for systems engineering, spending on new
systems in some other area of the business may lead to a higher return on
investment than replacing an existing system.

Risks of change Systems are an inherent part of business operations, and the risks of
replacing existing systems with new systems cannot be justified. The danger
with a new system is that things can go wrong in the hardware, software, and
operational processes. The potential costs of these problems for the business
may be so high that they cannot take the risk of system replacement.

System dependencies Systems are interdependent and replacing one of these systems may lead to
extensive changes in other systems.

	 Chapter 19  ■  Further reading     577

K e y P o i n t s

■	 Systems engineering is concerned with all aspects of specifying, buying, designing, and testing
complex sociotechnical systems.

■	 Sociotechnical systems include computer hardware, software, and people, and are situated
within an organization. They are designed to support organizational or business goals and
objectives.

■	 The emergent properties of a system are characteristics of the system as a whole rather than of
its component parts. They include properties such as performance, reliability, usability, safety,
and security.

■	 The fundamental systems engineering processes are conceptual systems design, system pro-
curement, system development, and system operation.

■	 Conceptual systems design is a key activity where high-level system requirements and a vision
of the operational system is developed.

■	 System procurement covers all of the activities involved in deciding what system to buy and who
should supply that system. Different procurement processes are used for off-the-shelf applica-
tion systems, configurable COTS systems, and custom systems.

■	 System development processes include requirements specification, design, construction, inte-
gration, and testing.

■	 When a system is put into use, the operational processes and the system itself inevitably change
to reflect changes to the business requirements and the system’s environment.

F u r t h e r R e a d i n g

“Airport 95: Automated Baggage System.” An excellent, readable case study of what can go wrong
with a systems engineering project and how software tends to get the blame for wider systems fail-
ures. (ACM Software Engineering Notes, 21, March 1996). http://doi.acm.org/10.1145/227531.227544

“Fundamentals of Systems Engineering.” This is the introductory chapter in NASA’s systems engi-
neering handbook. It presents an overview of the systems engineering process for space systems.
Although these are mostly technical systems, there are sociotechnical issues to be considered.
Dependability is obviously critically important. (In NASA Systems Engineering Handbook, NASA-SP
2007-6105, 2007). http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008301_2008008500.pdf

The LSCITS Socio-technical Systems Handbook. This handbook introduces sociotechnical systems in
an accessible way and provides access to more detailed papers on sociotechnical topics. (Various
authors, 2012). http://archive.cs.st-andrews.ac.uk/STSE-Handbook

Architecting systems: Concepts, Principles and Practice. This is a refreshingly different book on systems
engineering that does not have the hardware focus of many “traditional” systems engineering books.

http://doi.acm.org/10.1145/227531.227544
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080008301_2008008500.pdf
http://archive.cs.st-andrews.ac.uk/STSE-Handbook

The author, who is an experienced systems engineer, draws on examples from a wide range of
systems and recognizes the importance of sociotechnical as well as technical issues. (H. Sillitto,
College Publications, 2014).

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/systems-engineering/

E x e r c i s e s

  19.1. �Give two examples of government functions that are supported by complex sociotechnical sys-
tems and explain why, in the foreseeable future, these functions cannot be completely automated.

  19.2. �Explain briefly why the involvement of a range of professional disciplines is essential in sys-
tems engineering.

  19.3. �Complex sociotechnical systems lead to three important characteristics. What are they?
Explain each in brief.

  19.4. �What is a “wicked problem”? Explain why the development of a national medical records
system should be considered a “wicked problem.”

  19.5. �A multimedia virtual museum system offering virtual experiences of ancient Greece is to be
developed for a consortium of European museums. The system should provide users with
the facility to view 3-D models of ancient Greece through a standard web browser and
should also support an immersive virtual reality experience. Develop a conceptual design for
such a system, highlighting its key characteristics and essential high-level requirements.

  19.6. �Explain why you need to be flexible and adapt system requirements when procuring large
off-the-shelf software systems, such as ERP systems. Search the web for discussions of the
failures of such systems and explain, from a sociotechnical perspective, why these failures
occurred. A possible starting point is: http://blog.360cloudsolutions.com/blog/bid/94028/
Top-Six-ERP-Implementation-Failures

  19.7. �Why is system integration a particularly critical part of the systems development process?
Suggest three sociotechnical issues that may cause difficulties in the system integration process.

  19.8. Why is system evolution inherently costly?

578    Chapter 19  ■  Systems engineering

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/systems-engineering
http://blog.360cloudsolutions.com/blog/bid/94028/Top-Six-ERP-Implementation-Failures
http://blog.360cloudsolutions.com/blog/bid/94028/Top-Six-ERP-Implementation-Failures

	 Chapter 19  ■  References    579

  19.9. �What are the arguments for and against considering system engineering as a profession in
its own right, like electrical engineering or software engineering?

19.10. �You are an engineer involved in the development of a financial system. During installation,
you discover that this system will make a significant number of people redundant. The peo-
ple in the environment deny you access to essential information to complete the system
installation. To what extent should you, as a systems engineer, become involved in this situa-
tion? Is it your professional responsibility to complete the installation as contracted? Should
you simply abandon the work until the procuring organization has sorted out the problem?

R e f e r e n c e s

Baxter, G., and I. Sommerville. 2011. “Socio-Technical Systems: From Design Methods to Systems
Engineering.” Interacting with Computers 23 (1): 4–17. doi:10.1016/j.intcom.2010.07.003.

Checkland, P. 1981. Systems Thinking, Systems Practice. Chichester, UK: John Wiley & Sons.

Fairley, R. E., R. H. Thayer, and P. Bjorke. 1994. “The Concept of Operations: The Bridge from Opera-
tional Requirements to Technical Specifications.” In 1st Int. Conf. on Requirements Engineering,
40–7. Colorado Springs, CO. doi:10.1109/ICRE.1994.292405.

IEEE. 2007. “IEEE Guide for Information Technology. System Definition—Concept of Operations
(ConOps) Document.” Electronics. Vol. 1998. doi:10.1109/IEEESTD.1998.89424. http://ieeexplore.
ieee.org/servlet/opac?punumber=6166

Mostashari, A., S. A. McComb, D. M. Kennedy, R. Cloutier, and P. Korfiatis. 2012. “Developing a
Stakeholder-Assisted Agile CONOPS Development Process.” Systems Engineering 15 (1): 1–13.
doi:10.1002/sys.20190.

Rittel, H., and M. Webber. 1973. “Dilemmas in a General Theory of Planning.” Policy Sciences 4:
155–169. doi:10.1007/BF01405730.

Stevens, R., P. Brook, K. Jackson, and S. Arnold. 1998. Systems Engineering: Coping with Complex-
ity. London: Prentice-Hall.

Stewart, J., and R. Williams. 2005. “The Wrong Trousers? Beyond the Design Fallacy: Social Learning
and the User.” In User Involvement in Innovation Processes. Strategies and Limitations from a
Socio-Technical Perspective, edited by H. Rohrache, 39–71. Berlin: Profil-Verlag.

Thayer, R. H. 2002. “Software System Engineering: A Tutorial.” IEEE Computer 35 (4): 68–73.
doi:10.1109/MC.2002.993773.

White, S., M. Alford, J. Holtzman, S. Kuehl, B. McCay, D. Oliver, D. Owens, C. Tully, and A. Willey.
1993. “Systems Engineering of Computer-Based Systems.” IEEE Computer 26 (11): 54–65.
doi:10.1109/ECBS.1994.331687.

http://ieeexplore.ieee.org/servlet/opac?punumber=6166
http://ieeexplore.ieee.org/servlet/opac?punumber=6166

Contents
20.1	 System complexity

20.2	 Systems of systems classification

20.3	 Reductionism and complex systems

20.4	 Systems of systems engineering

20.5	 Systems of systems architecture

Objectives
The objectives of this chapter are to introduce the idea of a system of
systems and to discuss the challenges of building complex systems of
software systems. When you have read this chapter, you will:

■	 understand what is meant by a system of systems and how it
differs from an individual system;

■	 understand systems of systems classification and the differences
between different types of systems of systems;

■	 understand why conventional methods of software engineering
that are based on reductionism are inadequate for developing
systems of systems;

■	 have been introduced to the systems of systems engineering
process and architectural patterns for systems of systems.

Systems of systems
20

We need software engineering because we create large and complex software
systems. The discipline emerged in the 1960s because the first attempts to build
large software systems mostly went wrong. Creating software was much more
expensive than expected, took longer than planned, and the software itself was often
unreliable. To address these problems, we have developed a range of software engi-
neering techniques and technologies, which have been remarkably successful. We
can now build systems that are much larger, more complex, much more reliable, and
more effective than the software systems of the 1970s.

However, we have not “solved” the problems of large system engineering.
Software project failures are still common. For example, there have been serious
problems and delays in the implementation of government health care systems in
both the United States and the UK. The root cause of these problems is, as it was in
the 1960s, that we are trying to build systems that are larger and more complex than
before. We are attempting to build these “mega-systems” using methods and tech-
nology that were never designed for this purpose. As I discuss later in the chapter, I
believe that current software engineering technology cannot scale up to cope with
the complexity that is inherent in many of the systems now being proposed.

The increase in size of software systems since the introduction of software engi-
neering has been remarkable. Today’s large systems may be a hundred or even a
thousand times larger than the “large” systems of the 1960s. Northrop and her col-
leagues (Northrop et al. 2006) suggested in 2006 that we would shortly see the
development of systems with a billion lines of code. Almost 10 years after this pre-
diction, I suspect such systems are already in use.

Of course, we do not start with nothing and then write a billion lines of code. As
I discussed in Chapter 15, the real success story of software engineering has been
software reuse. It is only because we have developed ways of reusing software
across applications and systems that large-scale development is possible. Very large-
scale systems now and in the future will be built by integrating existing systems
from different providers to create systems of systems (SoS).

What do we mean when we talk about a system of systems? As Hitchens says
(Hitchins 2009), from a general systems perspective, there is no difference between
a system and a system of systems. Both have emergent properties and can be com-
posed from subsystems. However, from a software engineering perspective, I think
there is a useful distinction between these terms. This distinction is sociotechnical
rather than technical:

A system of systems is a system that contains two or more independently
managed elements.

This means that there is no single manager for all of the parts of the system of
systems and that different parts of a system are subject to different management and
control policies and rules. As we shall see, distributed management and control has
a profound effect on the overall complexity of the system.

This definition of systems of systems says nothing about the size of systems of
systems. A relatively small system that includes services from different providers is

	 Chapter 20  ■  Systems of systems   581

582   Chapter 20  ■  Systems of systems

a system of systems. Some of the problems of SoS engineering apply to such small
systems, but the real challenges emerge when the constituent systems are themselves
large-scale systems.

Much of the work in the area of systems of systems has come from the defense
community. As the capability of software systems increased in the late 20th century,
it became possible to coordinate and control previously independent military
systems, such as naval and ground-based air and ship defense systems. The system
might include tens or hundreds of separate elements, with software systems keeping
track of these elements and providing controllers with information that allows them
to be deployed most effectively.

This type of system of systems is outside the scope of a software engineering
book. Instead, I focus here on systems of systems where the system elements are
software systems rather than hardware such as aircraft, military vehicles, or radars.
Systems of software systems are created by integrating separate software systems,
and, at the time of writing, most software SoS include a relatively small number of
separate systems. Each constituent system is usually a complex system in its own
right. However, it is predicted that, over the next few years, the size of software SoS
is likely to grow significantly as more and more systems are integrated to make use
of the capabilities that they offer.

Examples of systems of systems of software systems are:

1.	 A cloud management system that handles local private cloud management and
management of servers on public clouds such as Amazon and Microsoft.

2.	 An online banking system that handles loan requests and that connects to a
credit reference system provided by credit reference agencies to check the credit
of applicants.

3.	 An emergency information system that integrates information from police,
ambulance, fire, and coast guard services about the assets available to deal with
civil emergencies such as flooding and large-scale accidents.

4.	 The digital learning environment (iLearn) that I introduced in Chapter 1.
This system provides a range of learning support by integrating separate
software systems such as Microsoft Office 365, virtual learning environ-
ments such as Moodle, simulation modeling tools, and content such as
newspaper archives.

Maier (Maier 1998) identified five essential characteristics of systems of systems:

1.	 Operational independence of elements Parts of the system are not simply com-
ponents but can operate as useful systems in their own right. The systems within
the SoS evolve independently.

2.	 Managerial independence of elements Parts of the system are “owned” and man-
aged by different organizations or by different parts of a larger organization.
Therefore different rules and policies apply to the management and evolution of

	 Chapter 20  ■  Systems of systems   583

these systems. As I have suggested, this is the key factor that distinguishes a
system of systems from a system.

3.	 Evolutionary development SoS are not developed in a single project but evolve
over time from their constituent systems.

4.	 Emergence SoS have emergent characteristics that only become apparent after
the SoS has been created. Of course, as I have discussed in Chapter 19, emer-
gence is a characteristic of all systems, but it is particularly important in SoS.

5.	 Geographical distribution of elements The elements of a SoS are often geograph-
ically distributed across different organizations. This is important technically
because it means that an externally-managed network is an integral part of the
SoS. It is also important managerially as it increases the difficulties of communi-
cation between those involved in making system management decisions and adds
to the difficulties of maintaining system security.†

I would like to add two further characteristics to Maier’s list that are particularly
relevant to systems of software systems:

1.	 Data intensive A software SoS typically relies on and manages a very large
volume of data. In terms of size, this may be tens or even hundreds of times
larger than the code of the constituent systems itself.

2.	 Heterogeneity The different systems in a software SoS are unlikely to have been
developed using the same programming languages and design methods. This is
a consequence of the very rapid pace of evolution of software technologies.
Companies frequently update their development methods and tools as new,
improved versions become available. In a 20-year lifetime of a large SoS, tech-
nologies may change four or five times.

As I discuss in Section 20.1, these characteristics mean that SoS can be much
more complex than systems with a single owner and manager. I believe that our cur-
rent software engineering methods and techniques cannot scale to cope with this
complexity. Consequently, problems with the very large and complex systems that
we are now developing are inevitable. We need a completely new set of abstractions,
methods, and technologies for software systems of systems engineering.

This need has been recognized independently by a number of different authori-
ties. In the UK, a report published in 2004 (Royal Academy of Engineering 2004)
led to the establishment of a national research and training initiative in large-scale
complex IT systems (Sommerville et al. 2012). In the United States, the Software
Engineering Institute reported on Ultra-Large Scale Systems in 2006 (Northrop et al.
2006). From the systems engineering community, Stevens (Stevens 2010) discusses
the problems of constructing “mega-systems” in transport, health care, and defense.

†Maier, M. W. 1998. “Architecting Principles for Systems-of-Systems.” Systems Engineering 1 (4):
267–284. doi:10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D.

584   Chapter 20  ■  Systems of systems

	 20.1 	 System complexity

I suggested in the introduction that the engineering problems that arise when con-
structing systems of software systems are due to the inherent complexity of these
systems. In this section, I explain the basis of system complexity and discuss the
different types of complexity that arise in software SoS.

All systems are composed of parts (elements) with relationships between these
elements of the system. For example, the parts of a program may be objects, and the
parts of each object may be constants, variables, and methods. Examples of relation-
ships include “calls” (method A calls method B), “inherits-from” (object X inherits
the methods and attributes of object Y), and “part of   ” (method A is part of object X).

The complexity of any system depends on the number and types of relationships
between system elements. Figure 20.1 shows examples of two systems. System (a) is
a relatively simple system with only a small number of relationships between its ele-
ments. By contrast, System (b), with the same number of elements, is a more com-
plex system because it has many more element–element relationships.

The type of relationship also influences the overall complexity of a system. Static
relationships are relationships that are planned and analyzable from static depictions
of the system. Therefore, the “uses” relationship in a software system is a static rela-
tionship. From either the software source code or a UML model of a system, you can
work out how any one software component uses other components.

Dynamic relationships are relationships that exist in an executing system. The
“calls” relationship is a dynamic relationship because, in any system with if-statements,
you cannot tell whether or not one method will call another method. It depends on
the runtime inputs to the system. Dynamic relationships are more complex to analyze
as you need to know the system inputs and data used as well as the source code of
the system.

As well as system complexity, we also have to consider the complexity of the
processes used to develop and maintain the system once it has gone into use. Figure 20.2
illustrates these processes and their relationship with the developed system.

System (a) System (b)
Figure 20.1  Simple
and complex systems

	 20.1  ■  System complexity   585

As systems grow in size, they need more complex production and management pro-
cesses. Complex processes are themselves complex systems. They are difficult to under-
stand and may have undesirable emergent properties. They are more time consuming
than simpler processes, and they require more documentation and coordination between
the people and the organizations involved in the system development. The complexity of
the production process is one of the main reasons why projects go wrong, with software
delivered late and overbudget. Therefore, large systems are always at risk of cost and
time overruns.

Complexity is important for software engineering because it is the main influence
on the understandability and the changeability of a system. The more complex a sys-
tem, the more difficult it is to understand and analyze. Given that complexity is a func-
tion of the number of relationships between elements of a system, it is inevitable that
large systems are more complex than small systems. As complexity increases, there
are more and more relationships between elements of the system and an increased
likelihood that changing one part of a system will have undesirable effects elsewhere.

Several different types of complexity are relevant to sociotechnical systems:

1.	 The technical complexity of the system is derived from the relationships between
the different components of the system itself.

2.	 The managerial complexity of the system is derived from the complexity of the
relationships between the system and its managers (i.e., what can managers
change in the system) and the relationships between the managers of different
parts of the system.

Production process Management process

Complex system

Produces Manages

Figure 20.2  Production
and management
processes

586   Chapter 20  ■  Systems of systems

3.	 The governance complexity of a system depends on the relationships between
the laws, regulations, and policies that affect the system and the relationships
between the decision-making processes in the organizations responsible for the
system. As different parts of the system may be in different organizations and in
different countries, different laws, rules, and policies may apply to each system
within the SoS.

Governance and managerial complexity are related, but they are not the same
thing. Managerial complexity is an operational issue—what can and can’t actually be
done with the system. Governance complexity is associated with the higher level of
decision-making processes in organizations that affect the system. These decision-
making processes are constrained by national and international laws and regulations.

For example, say a company decides to allow its staff to access its systems using
their own mobile devices rather than company-issued laptops. The decision to allow
this is a governance decision because it changes the policy of the company. As a
result of this decision, management of the system becomes more complex as manag-
ers have to ensure that the mobile devices are configured properly so that company
data is secure. The technical complexity of the system also increases as there is no
longer a single implementation platform. Software may have to be modified to work
on laptops, tablets and phones.

As well as technical complexity, the characteristics of systems of systems may also
lead to significantly increased managerial and governance complexity. Figure 20.3
summarizes how the different SoS characteristics primarily contribute to different
types of complexity:

1.	 Operational independence The constituent systems in the SoS are subject to dif-
ferent policies and rules (governance complexity) and ways of managing the
system (managerial complexity).

2.	 Managerial independence The constituent systems in the SoS are managed by
different people in different ways. They have to coordinate to ensure that manage-
ment changes are consistent (managerial complexity). Special software may be
needed to support consistent management and evolution (technical complexity).

3.	 Evolutionary development contributes to the technical complexity of a SoS because
different parts of the system are likely to be built using different technologies.

4.	 Emergence is a consequence of complexity. The more complex a system, the
more likely it is that it will have undesirable emergent properties. These proper-
ties increase the technical complexity of the system as software has to be devel-
oped or changed to compensate for them.

5.	 Geographical distribution increases the technical, managerial, and governance
complexity in a SoS. Technical complexity is increased because software is
required to coordinate and synchronize remote systems; managerial complexity
is increased because it is more difficult for managers in different countries to
coordinate their actions; governance complexity is increased because different

	 20.2  ■  Systems of systems classification   587

parts of the systems may be located in different jurisdictions and so are subject
to different laws and regulations.

6.	 Data-intensive systems are technically complex because of the relationships
between the data items. The technical complexity is also likely to be increased
to cope with data errors and incompleteness. Governance complexity may be
increased because of different laws governing the use of data.

7.	 The heterogeneity of a system contributes to its technical complexity because of
the difficulties of ensuring that different technologies used in different parts of
the system are compatible.

Large-scale systems of systems are now unimaginably complex entities that can-
not be understood or analyzed as a whole. As I discuss in Section 20.3, the large
number of interactions between the parts and the dynamic nature of these interac-
tions means that conventional engineering approaches do not work well for complex
systems. It is complexity that is the root cause of problems in projects to develop
large software-intensive systems, not poor management or technical failings.

	 20.2 	 Systems of systems classification

Earlier, I suggested that the distinguishing feature of a system of systems was that
two or more of its elements were independently managed. Different people with
different priorities have the authority to take day-to-day operational decisions about
changes to the system. As their work is not necessarily aligned, conflicts can arise
that require a significant amount of time and effort to resolve. Systems of systems,
therefore, always have some degree of managerial complexity.

However, this broad definition of SoS covers a very wide range of system types. It
includes systems that are owned by a single organization but are managed by different

Figure 20.3  SoS
characteristics and
system complexity

SoS characteristic
Technical
complexity

Managerial
complexity

Governance
complexity

Operational independence X X

Managerial independence X X

Evolutionary development X

Emergence X

Geographical distribution X X X

Data-intensive X X

Heterogeneity X

588   Chapter 20  ■  Systems of systems

parts of that organization. It also includes systems whose constituent systems are
owned and managed by different organizations that may, at times, compete with
each other. Maier (Maier 1998) devised a classification scheme for SoS based on
their governance and management complexity:

1.	 Directed systems. Directed SoS are owned by a single organization and are
developed by integrating systems that are also owned by that organization. The
system elements may be independently managed by parts of the organization.
However, there is an ultimate governing body within the organization that can
set priorities for system management. It can resolve disputes between the man-
agers of different elements of the system. Directed systems therefore have some
managerial complexity but no governance complexity. A military command-
and-control system that integrates information from airborne and ground-based
systems is an example of a directed SoS.

2.	 Collaborative systems. Collaborative SoS are systems with no central authority
to set management priorities and resolve disputes. Typically, elements of the
system are owned and governed by different organizations. However, all of the
organizations involved recognize the mutual benefits of joint governance of
the system. They therefore usually set up a voluntary governance body that
makes decisions about the system. Collaborative systems have both manage-
rial complexity and a limited degree of governance complexity. An integrated
public transport information system is an example of a collaborative system of
systems. Bus, rail, and air transport providers agree to link their systems to
provide passengers with up-to-date information.

3.	 Virtual systems. Virtual systems have no central governance, and the partici-
pants may not agree on the overall purpose of the system. Participant systems
may enter or leave the SoS. Interoperability is not guaranteed but depends on
published interfaces that may change. These systems have a very high degree of
both managerial and governance complexity. An example of a virtual SoS is an
automated high-speed algorithmic trading system. These systems from different
companies automatically buy and sell stock from each other, with trades taking
place in fractions of a second.

Unfortunately, I think that the names that Maier has used do not really reflect the
distinctions between these different types of systems. As Maier himself says, there is
always some collaboration in the management of the system elements. So, “collabora-
tive systems” is not really a good name. The term directed systems implies top-down
authority. However, even within a single organization, the need to maintain good
working relationships between the people involved means that governance is agreed
to rather than imposed.

In “virtual” SoS, there may be no formal mechanisms for collaboration, but the
system has some mutual benefit for all participants. Therefore, they are likely to col-
laborate informally to ensure that the system can continue to operate. Furthermore,
Maier’s use of the term virtual could be confusing because “virtual” has now come
to mean “implemented by software,” as in virtual machines and virtual reality.

	 20.2  ■  Systems of systems classification   589

Figure 20.4 illustrates the collaboration in these different types of system. Rather
than use Maier’s names, I have used what I hope are more descriptive terms:

1.	 Organizational systems of systems are SoS where the governance and manage-
ment of the system lies within the same organization or company. These corre-
spond to Maier’s “directed SoS.” Collaboration between system owners is
managed by the organization. The SoS may be geographically distributed, with
different parts of the system subject to different national laws and regulations.
In Figure 20.4, Systems 1, 2, and 3 are independently managed, but the govern-
ance of these systems is centralized.

2.	 Federated systems are SoS where the governance of the SoS depends on a vol-
untary participative body in which all of the system owners are represented. In
Figure 20.4, this is shown by the owners of Systems 1, 2, and 3 participating in
a single governance body. The system owners agree to collaborate and believe
that decisions made by the governance body are binding. They implement these
decisions in their individual management policies, although implementations
may differ because of national laws, regulations, and culture.

3.	 System of system coalitions are SoS with no formal governance mechanisms
but where the organizations involved informally collaborate and manage their
own systems to maintain the system as a whole. For example, if one system
provides a data feed to others, the managers of that system will not change the
format of the data without notice. Figure 20.4 shows that there is no govern-
ance at the organizational level but that informal collaboration exists at the
management level.

This governance-based classification scheme provides a means of identifying the
governance requirements for a SoS. By classifying a system according to this model,
you can check if the appropriate governance structures exist and if these are the ones
you really need. Setting up these structures across organizations is a political process
and inevitably takes a long time. It is therefore helpful to understand the governance

Governance

Management

Technical

Organizational Federated Coalition

1 2 3 1 2 3
1 2 3

1 2 3 1 2 3 1 2 3

1 2 3

Figure 20.4  SoS
collaboration

590   Chapter 20  ■  Systems of systems

problem early in the process and take actions to ensure that appropriate governance
is in place. It may be the case that you need to adopt a governance model that moves
a system from one class to another. Moving the governance model to the left in
Figure 20.4 usually reduces complexity.

As I have suggested, the school digital learning environment (iLearn) is a system
of systems. As well as the digital learning system itself, it is connected to school
administration systems and to network management systems. These network man-
agement systems are used for Internet filtering, which stops students from accessing
undesirable material on the Internet.

iLearn is a relatively simple technical system, but it has a high level of govern-
ance complexity. This complexity arises because of the way that education is funded
and managed. In many countries pre-university education is funded and organized at
a local level rather than at a national level. States, cities, or counties are responsible
for schools in their area and have autonomy in deciding school funding and policies.
Each local authority maintains its own school administration system and network
management system.

In Scotland, there are 32 local authorities with responsibility for education in
their area. School administration is outsourced to one of three providers and iLearn
must connect to their systems. However, each local authority has its own network
management policies with separate network management systems involved.

The development of a digital learning system is a national initiative, but to cre-
ate a digital learning environment, it has to be integrated with network manage-
ment and school administration systems. It is therefore a system of systems with
administration and network management systems, as well as the systems within
iLearn such as Office 365 and Wordpress. There is no common governance pro-
cess across authorities, so, according to the classification scheme, this is a coali-
tion of systems. In practice, this means that it cannot be guaranteed that students
in different places can access the same tools and content, because of different
Internet filtering policies.

When we produced the conceptual model for the system, we made a strong rec-
ommendation that common policies should be established across local authorities on
administrative information provision and Internet filtering. In essence, we suggested
that the system should be a federated system rather than a coalition of systems. This
suggestion requires a new governance body to be established to agree on common
policies and standards for the system.

	 20.3 	 Reductionism and complex systems

I have already suggested that our current software engineering methods and tech-
nologies cannot cope with the complexity that is inherent in modern systems of sys-
tems. Of course, this idea is not new: Progress in all engineering disciplines has
always been driven by challenging and difficult problems. New methods and tools
are developed in response to failures and difficulties with existing approaches.

	 20.3  ■  Reductionism and complex systems   591

In software engineering, we have seen the incredibly rapid development of the
discipline to help manage the increasing size and complexity of software systems.
This effort has been very successful indeed. We can now build systems that are
orders of magnitude larger and more complex than those of the 1960s and 1970s.

As with other engineering disciplines, the approach that has been the basis
of complexity management in software engineering is called reductionism.
Reductionism is a philosophical position based on the assumptions that any system
is made up of parts or subsystems. It assumes that the behavior and properties of the
system as a whole can be understood and predicted by understanding the individual
parts and the relationships between these parts. Therefore, to design a system, the
parts making up that system are identified, constructed separately, and then assem-
bled into the complete system. Systems can be thought of as hierarchies, with the
important relationships between parent and child nodes in the hierarchy.

Reductionism has been and continues to be the fundamental underpinning
approach to all kinds of engineering. We can identify common abstractions
across the same types of system and design and build these separately. They can
then be integrated to create the required system. For example, the abstractions in
an automobile might be a body shell, a drive train, an engine, a fuel system, and
so on. There are a relatively small number of relationships between these abstrac-
tions, so it is possible to specify interfaces and design and build each part of the
system separately.

The same reductionist approach has been the basis of software engineering for
almost 50 years. Top-down design, where you start with a very high-level model of
a system and break this down to its components is a reductionist approach. This is
the basis of all software design methods, such as object-oriented design. Programming
languages include abstractions, such as procedures and objects that directly reflect
reductionist system decomposition.

Agile methods, although they may appear quite different from top-down systems
design, are also reductionist. They rely on being able to decompose a system into
parts, implement these parts separately, and then integrate these to create the system.
The only real difference between agile methods and top-down design is that the sys-
tem is decomposed into components incrementally rather than all at once.

Reductionist methods are most successful when there are relatively few rela-
tionships or interactions between the parts of a system and it is possible to model
these relationships in a scientific way. This is generally true for mechanical and
electrical systems where there are physical linkages between the system compo-
nents. It is less true for electronic systems and certainly not the case for software
systems, where there may be many more static and dynamic relationships between
system components.

The distinctions between software and hardware components was recognized in
the 1970s. Design methods emphasized the importance of limiting and controlling
the relationships between the parts of a system. These methods suggested that com-
ponents should be tightly integrated with loose coupling between these components.
Tight integration meant that most of the relationships were internal to a component,
and loose coupling meant that there were relatively few component–component

592   Chapter 20  ■  Systems of systems

relationships. The need for tight integration (data and operations) and loose cou-
pling was the driver for the development of object-oriented software engineering.

Unfortunately, controlling the number and types of relationship is practically
impossible in large systems, especially systems of systems. Reductionism does not
work well when there are many relationships in a system and when these relation-
ships are difficult to understand and analyze. Therefore, any type of large system
development is likely to run into difficulties.

The reasons for these potential difficulties are that the fundamental assumptions
inherent to reductionism are inapplicable for large and complex systems (Sommerville
et al. 2012). These assumptions are shown in Figure 20.5 and apply in three areas:

1.	 System ownership and control Reductionism assumes that there is a controlling
authority for a system that can resolve disputes and make high-level technical
decisions that will apply across the system. As we have seen, because there are
multiple bodies involved in their governance, this is simply not true for systems
of systems.

2.	 Rational decision making Reductionism assumes that interactions between com-
ponents can be objectively assessed by, for example, mathematical model-
ing. These assessments are the driver for system decision making. Therefore, if
one particular design of a vehicle, say, offers the best fuel economy without a
reduction in power, then a reductionist approach assumes that this will be the
design chosen.

3.	 Defined system boundaries Reductionism assumes that the boundaries of a sys-
tem can be agreed to and defined. This is often straightforward: There may be a
physical shell defining the system as in a car, a bridge has to cross a given
stretch of water, and so on. Complex systems are often developed to address
wicked problems (Rittel and Webber 1973). For such problems, deciding on
what is part of the system and what is outside it is usually a subjective judgment,
with frequent disagreements between the stakeholders involved.

Reductionist assumptions

Owners of a
system control
its development

Decisions are made
rationally, driven

by technical criteria

There is a definable
problem and clear
system boundaries

There is no single
system owner
or controller

Decision making
driven by political

motives

Wicked problem with
constantly renegotiated

system boundaries

Control Decision making Problem definition

Systems of systems reality

Figure 20.5 
Reductionist
assumptions
and complex
system reality

	 20.4  ■  Systems of systems engineering   593

These reductionist assumptions break down for all complex systems, but when
these systems are software-intensive, the difficulties are compounded:

1.	 Relationships in software systems are not governed by physical laws. We cannot
produce mathematical models of software systems that will predict their behavior and
attributes. We therefore have no scientific basis for decision making. Political factors
are usually the driver of decision making for large and complex software systems.

2.	 Software has no physical limitations; hence there are no limits on where the
boundaries of a system should be drawn. Different stakeholders will argue for the
boundaries to be placed in such a way that is best for them. Furthermore, it is
much easier to change software requirements than hardware requirements. The
boundaries and the scope of a system are likely to change during its development.

3.	 Linking software systems from different owners is relatively easy; hence we are more
likely to try and create a SoS where there is no single governing body. The manage-
ment and evolution of the different systems involved cannot be completely controlled.

For these reasons, I believe that the problems and difficulties that are commonplace
in large software systems engineering are inevitable. Failures of large government
projects such as the health automation projects in the UK and the United States are a
consequence of complexity rather than technical or project management failures.

Reductionist approaches such as object-oriented development have been very suc-
cessful in improving our ability to engineer many types of software system. They will
continue to be useful and effective in developing small and medium-sized systems
whose complexity can be controlled and which may be parts of a software SoS.
However, because of the fundamental assumptions underlying reductionism, “improv-
ing” these methods will not lead to an improvement in our ability to engineer complex
systems of systems. Rather, we need new abstractions, methods, and tools that recog-
nize the technical, human, social, and political complexities of SoS engineering. I
believe that these new methods will be probabilistic and statistical and that tools will
rely on system simulation to support decision making. Developing these new approaches
is a major challenge for software and systems engineering in the 21st century.

	 20.4 	 Systems of systems engineering

Systems of systems engineering is the process of integrating existing systems to create
new functionality and capabilities. Systems of systems are not designed in a top-down
way. Rather, they are created when an organization recognizes that they can add value
to existing systems by integrating these into a SoS. For example, a city government
might wish to reduce air pollution at particular hot-spots in the city. To do so, it might
integrate its traffic management system with a national real-time pollution monitoring
systems. This then allows for the traffic management system to alter its strategy to
reduce pollution by changing traffic light sequences, speed limits and so on.

594   Chapter 20  ■  Systems of systems

The problems of software SoS engineering have much in common with the prob-
lems of integrating large-scale application systems that I discussed in Chapter 15
(Boehm and Abts 1999). To recap, these were:

1.	 Lack of control over system functionality and performance.

2.	 Differing and incompatible assumptions made by the developers of the different
systems.

3.	 Different evolution strategies and timetables for the different systems.

4.	 Lack of support from system owners when problems arise.

Much of the effort in building systems of software systems comes from address-
ing these problems. It involves deciding on the system architecture, developing soft-
ware interfaces that reconcile differences between the participating systems, and
making the system resilient to unforeseen changes that may occur.

Software systems of systems are large and complex entities, and the processes
used for their development vary widely depending on the type of systems involved,
the application domain, and the needs of the organizations involved in developing
the SoS. However, as shown in Figure 20.6, five general activities are involved in
SoS development processes:

1.	 Conceptual design I introduced the idea of conceptual design in Chapter 19, which
covers systems engineering. Conceptual design is the activity of creating a high-
level vision for a system, defining essential requirements, and identifying constraints
on the overall system. In SoS engineering, an important input to the conceptual
design process is knowledge of the existing systems that may participate in the SoS.

2.	 System selection During this activity, a set of systems for inclusion in the SoS
is chosen. This process is comparable to the process of choosing application

Conceptual
design

System
selection

Architectural
design

Interface
development

Integration and
deployment

Systems
knowledge

 Governance and management policy settingFigure 20.6  An SoS
engineering process

	 20.4  ■  Systems of systems engineering   595

systems for reuse, covered in Chapter 15. You need to assess and evaluate exist-
ing systems to choose the capabilities that you need. When you are selecting
application systems, the selection criteria are largely commercial; that is, which
systems offer the most suitable functionality at a price you are prepared to pay?

However, political imperatives and issues of system governance and management
are often the key factors that influence what systems are included in a SoS. For
example, some systems may be excluded from consideration because an organiza-
tion does not wish to collaborate with a competitor. In other cases, organizations
that are contributing to a federation of systems may have systems in place and
insist that these are used, even though they are not necessarily the best systems.

3.	 Architectural design In parallel with system selection, an overall architecture
for the SoS has to be developed. Architectural design is a major topic in its own
right that I cover in Section 20.5.

4.	 Interface development The different systems involved in a SoS usually have
incompatible interfaces. Therefore, a major part of the software engineering
effort in developing a SoS is to develop interfaces so that constituent systems
can interoperate. This may also involve the development of a unified user inter-
face so that SoS operators do not have to deal with multiple user interfaces as
they use the different systems in the SoS.

5.	 Integration and deployment This stage involves making the different systems
involved in the SoS work together and interoperate through the developed inter-
faces. System deployment means putting the system into place in the organizations
concerned and making it operational.

In parallel with these technical activities, there needs to be a high-level activity
concerned with establishing policies for the governance of the system of systems and
defining management guidelines to implement these policies. Where there are several
organizations involved, this process can be prolonged and difficult. It may involve
organizations changing their own policies and processes. It is therefore important to
start governance discussions at an early stage in the SoS development process.

	 20.4.1 	 Interface development

The constituent systems in a SoS are usually developed independently for some spe-
cific purpose. Their user interface is tailored to that original purpose. These systems
may or may not have application programming interfaces (APIs) that allow other
systems to interface directly to them. Therefore, when these systems are integrated
into a SoS, software interfaces have to be developed, which allows the constituent
systems in the SoS to interoperate.

In general, the aim in SoS development is for systems to be able to communicate
directly with each other without user intervention. If these systems already offer a
service-based interface, as discussed in Chapter 18, then this communication can be
implemented using this approach. Interface development involves describing how to

596   Chapter 20  ■  Systems of systems

use the interfaces to access the functionality of each system. The systems involved
can communicate directly with each other. System coalitions, where all of the sys-
tems involved are peers, are likely to use this type of direct interaction as it does not
require prearranged agreements on system communication protocols.

More commonly, however, the constituent systems in a SoS either have their own
specialized API or only allow their functionality to be accessed through their user
interfaces. You therefore have to develop software that reconciles the differences
between these interfaces. It is best to implement these interfaces as service-based
interfaces, as shown in Figure 20.7 (Sillitto 2010).

To develop service-based interfaces, you have to examine the functionality of exist-
ing systems and define a set of services to reflect that functionality. The interface then
provides these services. The services are implemented either by calls to the underlying
system API or by mimicking user interaction with the system. One of the systems in
the SoS is usually a principal or coordinating system that manages the interactions
between the constituent systems. The principal system acts as a service broker, direct-
ing service calls between the different systems in the SoS. Each system therefore does
not need to know which other system is providing a called service.

User interfaces for each system in a SoS are likely to be different. The principal
system must have some overall user interfaces that handle user authentication and
provide access to the features of the underlying system. However, it is usually
expensive and time consuming to implement a unified user interface to replace the
individual interfaces of the underlying systems.

A unified user interface (UI) makes it easier for new users to learn to use the SoS
and reduces the likelihood of user error. However, whether or not unified UI devel-
opment is cost-effective depends on a number of factors:

1.	 The interaction assumptions of the systems in the SoS Some systems may have a
process-driven model of interaction where the system controls the interface and
prompts the user for inputs. Others may give control to the user, so that the user
chooses the sequence of interactions with the system. It is practically impossible
to unify different interaction models.

System 3

System 2

System 1

Principal
system

Service interfaces

Unified service
interface

Figure 20.7  Systems
with service interfaces

	 20.4  ■  Systems of systems engineering   597

2.	 The mode of use of the SoS In many cases, SoS are used in such a way that most
of the interactions of users at a site are with one of the constituent systems. They
use other systems only when additional information is required. For example, air
traffic controllers may normally use a radar system for flight information and only
access a flight plan database when additional information is required. A unified
interface is a bad idea in these situations because it would slow down interaction
with the most commonly used system. However, if the operators interact with all
of the constituent systems, then a unified UI may be the best way forward.

3.	 The “openness” of the SoS If the SoS is open, so that new systems may be
added to it when it is in use, then unified UI development is impractical. It is
impossible to anticipate what the UI of new systems will be. Openness also
applies to the organizations using the SoS. If new organizations can become
involved, then they may have existing equipment and their own preferences for
user interaction. They may therefore prefer not to have a unified UI.

In practice, the limiting factor in UI unification is likely to be the budget and time
available for UI development. UI development is one of the most expensive systems
engineering activities. In many cases, there is simply not enough project budget
available to pay for the creation of a unified SoS user interface.

	 20.4.2 	 Integration and deployment

System integration and deployment are usually separate activities. A system is inte-
grated from its components by an integration and testing team, validated, and then
released for deployment. The components are managed so that changes are con-
trolled and the integration team can be confident that the required version is included
in the system. However, for SoS, such an approach may not be possible. Some of the
component systems may already be deployed and in use, and the integration team
cannot control changes to these systems.

For SoS, therefore, it makes sense to consider integration and deployment to be
part of the same process. This approach reflects one of the design guidelines that I
discuss in the following section, which is that an incomplete system of systems
should be usable and provide useful functionality. The integration process should
begin with systems that are already deployed, with new systems added to the SoS to
provide coherent additions to the functionality of the overall system.

It often makes sense to plan the deployment of the SoS to reflect this, so that SoS
deployment takes place in a number of stages. For example, Figure 20.8 illustrates a
three-stage deployment process for the iLearn digital learning environment:

1.	 The initial deployment provides authentication, basic learning functionality,
and integration with school administration systems.

2.	 Stage 2 of the deployment adds an integrated storage system and a set of more
specialized tools to support subject-specific learning. These tools might include

598   Chapter 20  ■  Systems of systems

archives for history, simulation systems for science, and programming environ-
ments for computing.

3.	 Stage 3 adds features for user configuration and the ability of users to add new
systems to the iLearn environment. This stage allows different versions of the
system to be created for different age groups, further specialized tools, and
alternatives to the standard tools to be included.

As in any large systems engineering project, the most time-consuming and expen-
sive part of system integration is system testing. Testing systems of systems is difficult
and expensive for three reasons:

1.	 There may not be a detailed requirements specification that can be used as a
basis for system testing. It may not be cost-effective to develop a SoS require-
ments document because the details of the system functionality are defined by
the systems that are included.

2.	 The constituent systems may change in the course of the testing process, so tests
may not be repeatable.

3.	 If problems are discovered, it may not be possible to fix the problems by requir-
ing one or more of the constituent systems to be changed. Rather, some interme-
diate software may have to be introduced to solve the problem.

To help address some of these problems, I believe that SoS testing should take on
board some of the testing techniques developed in agile methods:

1.	 Agile methods do not rely on having a complete system specification for system
acceptance testing. Rather, stakeholders are closely engaged with the testing process

iLearn V1

Authentication system

Office 365

Wordpress

School admin systems

Moodle VLE

Learning portfolio system

Conferencing system

iLearn V2

Authentication system

Programming
environments

Drawing and photo tools

Science simulation systems

Storage system

Content systems
(history, languages, etc.)

iLearn V1 tools

iLearn V3

Authentication system

iLearn V2 tools

Storage system

Configuration system

Age-specific tools

Google Apps

ibook tools

Data analysis tools

Release timeline

Figure 20.8  Release
sequence For the
iLearn SoS

	 20.5  ■  Systems of systems architecture   599

and have the authority to decide when the overall system is acceptable. For SoS, a
range of stakeholders should be involved in the testing process if possible, and
they can comment on whether or not the system is ready for deployment.

2.	 Agile methods make extensive use of automated testing. This makes it much
easier to rerun tests to discover if unexpected system changes have caused prob-
lems for the SoS as a whole.

Depending on the type of system, you may have to plan the installation of equip-
ment and user training as part of the deployment process. If the system is being
installed in a new environment, equipment installation is straightforward. However,
if it is intended to replace an existing system, there may be problems in installing new
equipment if it is not compatible with the equipment that is in use. There may not be
the physical space for the new equipment to be installed alongside the working sys-
tem. There may be insufficient electrical power, or users may not have time to be
involved because they are busy using the current system. These nontechnical issues
can delay the deployment process and slow down the adoption and use of the SoS.

	 20.5 	 Systems of systems architecture

Perhaps the most crucial activity of the systems of systems engineering process is
architectural design. Architectural design involves selecting the systems to be
included in the SoS, assessing how these systems will interoperate, and designing
mechanisms that facilitate interaction. Key decisions on data management, redun-
dancy, and communications are made. In essence, the SoS architect is responsible
for realizing the vision set out in the conceptual design of the system. For organiza-
tional and federated systems, in particular, decisions made at this stage are crucial to
the performance, resilience, and maintainability of the system of systems.

Maier (Maier 1998) discusses four general principles for the architecting of com-
plex systems of systems:

1.	 Design systems so that they can deliver value if they are incomplete. Where a
system is composed of several other systems, it should not just be useful if all of
its components are working properly. Rather, there should be several “stable
intermediate forms” so that a partial system works and can do useful things.

2.	 Be realistic about what can be controlled. The best performance from a SoS may be
achieved when an individual or group exerts control over the overall system and its
constituents. If there is no control, then delivering value from the SoS is difficult.
However, attempts to overcontrol the SoS are likely to lead to resistance from the
individual system owners and consequent delays in system deployment and evolution.

3.	 Focus on the system interfaces. To build a successful system of systems, you
have to design interfaces so that the system elements can interoperate. It is

600   Chapter 20  ■  Systems of systems

important that these interfaces are not too restrictive so that the system elements
can evolve and continue to be useful participants in the SoS.

4.	 Provide collaboration incentives. When the system elements are independently
owned and managed, it is important each system owner have incentives to continue
to participate in the system. These may be financial incentives (pay per use or reduced
operational costs), access incentives (you share your data and I’ll share mine), or
community incentives (participate in a SoS and you get a say in the community).

Sillitto (Sillitto 2010) has added to these principles and suggests additional
important design guidelines. These include the following:

1.	 Design a SoS as node and web architecture. Nodes are sociotechnical systems
that include data, software, hardware, infrastructure (technical components),
and organizational policies, people, processes, and training (sociotechnical).
The web is not just the communications infrastructure between nodes, but it also
provides a mechanism for informal and formal social communications between
the people managing and running the systems at each node.

2.	 Specify behavior as services exchanged between nodes. The development of
service-oriented architectures now provides a standard mechanism for system
operability. If a system does not already provide a service interface, then this
interface should be implemented as part of the SoS development process.

3.	 Understand and manage system vulnerabilities. In any SoS, there will be unex-
pected failures and undesirable behavior. It is critically important to try to
understand vulnerabilities and design the system to be resilient to such failures.

The key message that emerges from both Maier’s and Sillitto’s work is that SoS
architects have to take a broad perspective. They need to look at the system as a
whole, taking into account both technical and sociotechnical considerations.
Sometimes the best solution to a problem is not more software but changes to the
rules and policies that govern the operation of the system.

Architectural frameworks such as MODAF (MOD 2008) and TOGAF (TOGAF
is a registered trademark of The Open Group 2011) have been suggested as a means
of supporting the architectural design of systems of systems. Architectural frame-
works were originally developed to support enterprise systems architectures, which
are portfolios of separate systems. Enterprise systems may be organizational systems
of systems, or they may have a simpler management structure so that the system
portfolio can be managed as a whole. Architectural frameworks are intended for the
development of organizational systems of systems where there is a single govern-
ance authority for the entire SoS.

An architectural framework recognizes that a single model of an architecture does
not present all of the information needed for architectural and business analysis.
Rather, frameworks propose a number of architectural views that should be created
and maintained to describe and document enterprise systems. Frameworks have
much in common and tend to reflect the language and history of the organizations

	 20.5  ■  Systems of systems architecture   601

involved. For example, MODAF and DODAF are comparable frameworks from the
UK Ministry of Defence (MOD) and the U.S. Department of Defense (DOD).

The TOGAF framework has been developed by the Open Group as an open stand-
ard and is intended to support the design of a business architecture, a data architec-
ture, an application architecture, and a technology architecture for an enterprise. At
its heart is the Architecture Development Method (ADM), which consists of a num-
ber of discrete phases. These are shown in Figure 20.9, taken from the TOGAF refer-
ence documentation (Open Group 2011).

All architectural frameworks involve the production and management of a large
set of architectural models. Each of the activities shown in Figure 20.8 leads to the
production of system models. However, this is problematic for two reasons:

1.	 Initial model development takes a long time and involves extensive negotiations
between system stakeholders. This slows the development of the overall system.

2.	 It is time-consuming and expensive to maintain model consistency as changes
are made to the organization and the constituent systems in a SoS.

Architecture frameworks are fundamentally reductionist, and they largely ignore
sociotechnical and political issues. While they do recognize that problems are diffi-
cult to define and are open-ended, they assume a degree of control and governance

A.
Architecture

vision

B.
Business

architecture

C.
Information

systems
architectures

D.
Technology
architecture

E.
Opportunities
and solutions

F.
Migration
planning

G.
Implementation

governance

H.
Architecture

change
management

Requirements
management

Preliminary

Figure 20.9  The TOGAF
architecture development
method (TOGAF ®
Version 9.1, © 1999–2011.
The Open Group.)

602   Chapter 20  ■  Systems of systems

that is impossible to achieve in many systems of systems. They are a useful checklist
to remind architects of things to think about in the architectural design process.
However, I think that the overhead involved in model management and the reduction-
ist approach taken by frameworks limits their usefulness in SoS architectural design.

	 20.5.1 	 Architectural patterns for systems of systems

I have described architectural patterns for different types of system in Chapters 6,
17, and 21. In short, an architectural pattern is a stylized architecture that can be
recognized across a range of different systems. Architectural patterns are a useful
way of stimulating discussions about the most appropriate architecture for a system
and for documenting and explaining the architectures used. This section covers a
number of “typical” patterns in systems of software systems. As with all architec-
tural patterns, real systems are usually based on more than one of these patterns.

The notion of architectural patterns for systems of systems is still at an early stage
of development. Kawalsky (Kawalsky et al. 2013) discusses the value of architec-
tural patterns in understanding and supporting SoS design, with a focus on patterns
for command and control systems. I find that patterns are effective in illustrating
SoS organization, without the need for detailed domain knowledge.

Systems as data-feeds

In this architectural pattern (Figure 20.10), there is a principal system that requires
data of different types. This data is available from other systems, and the principal
system queries these systems to get the data required. Generally, the systems that
provide data do not interact with each other. This pattern is often observed in organ-
izational or federated systems where some governance mechanisms are in place.

For example, to license a vehicle in the UK, you need to have both valid insurance and
a roadworthiness certificate. When you interact with the vehicle licensing system, it inter-
acts with two other systems to check that these documents are valid. These systems are:

1.	 An “insured vehicles” system, which is a federated system run by car insurance
companies that maintains information about all current car insurance policies.

Data feed 3

Data feed 1

Data feed 4Data feed 2
Principal
system

Figure 20.10  Systems
as data feeds

	 20.5  ■  Systems of systems architecture   603

2.	 An “MOT certificate” system, which is used to record all roadworthiness cer-
tificates issued by testing agencies licensed by the government.

The “systems as data feeds” architecture is an appropriate architecture to use
when it is possible to identify entities in a unique way and create relatively simple
queries about these entities. In the licensing system, vehicles can be uniquely identi-
fied by their registration number. In other systems, it may be possible to identify
entities such as pollution monitors by their GPS coordinates.

A variant of the “systems as data feeds” architecture arises when a number of
systems provide data that are similar but not identical. Therefore, the architecture
has to include an intermediate layer as shown in Figure 20.11. The role of this
intermediate layer is to translate the general query from the principal system into the
specific query required by the individual information system.

For example, the iLearn environment interacts with school administration systems
from three different providers. All of these systems provide the same information about
students (names, personal information, etc.) but have different interfaces. The databases
have different organizations, and the format of the data returned differs from one system
to another. The unifying interface here detects where the user of the system is based
and, using this regional information, knows which administrative system should be
accessed. It then converts a standard query into the appropriate query for that system.

Problems that can arise in systems that use this pattern are primarily interface
problems when the data feeds are unavailable or are slow to respond. It is important
to ensure that timeouts are included in the system so that a failure of a data feed does
not compromise the response time of the system as a whole. Governance mecha-
nisms should be in place to ensure that the format of provided data is not changed
without the agreement of all system owners.

Systems in a container

Systems in a container are systems of systems where one of the systems acts as a
virtual container and provides a set of common services such as an authentication
and a storage service. Conceptually, other systems are then placed into this container

Data feed 1

Data feed 3Data feed 2
Principal
system

Data feed 1(a) Data feed 1(b) Data feed 1(c)
Figure 20.11  Systems
as data feeds with a
unifying interface

604   Chapter 20  ■  Systems of systems

to make their functionality accessible to system users. Figure 20.12 illustrates a con-
tainer system with three common services and six included systems. The systems
that are included may be selected from an approved list of systems and need not be
aware that they are included in the container. This pattern of SoS is most often
observed in federated systems or system coalitions.

The iLearn environment is a system in a container. There are common services
that support authentication, storage of user data, and system configuration. Other
functionality comes from choosing existing systems such as a newspaper archive or
a virtual learning environment and integrating these into the container.

Of course, you don’t place systems into a real container to implement these systems
of systems. Rather, for each approved system, there is a separate interface that allows
it to be integrated with the common services. This interface manages the translation of
the common services provided by the container and the requirements of the integrated
system. It may also be possible to include systems that are not approved. However,
these will not have access to the common services provided by the container.

Figure 20.13 illustrates this integration. This graphic is a simplified version of
iLearn that provides three common services:

1.	 An authentication service that provides a single sign-in to all approved systems.
Users do not have to maintain separate credentials for these systems.

2.	 A storage service for user data. This service can be seamlessly transferred to and
from approved systems.

3.	 A configuration service that is used to include or remove systems from the container.

This example shows a version of iLearn for Physics. As well as an office productivity
system (Office 365) and a VLE (Moodle), this system includes simulation and data anal-
ysis systems. Other systems—YouTube and a science encyclopedia—are also part of this
system. However, these are not “approved,” and so no container interface is available.
Users must log on to these systems separately and organize their own data transfers.

Included systems

Container system

Common service 1

Common service 2

Common service 3

s1 s2 s3

s4 s5 s6

Figure 20.12  Systems in
a container

	 20.5  ■  Systems of systems architecture   605

There are two problems with this type of SoS architecture:

1.	 A separate interface must be developed for each approved system so that com-
mon services can be used with these systems. This means that only a relatively
small number of approved systems can be supported.

2.	 The owners of the container system have no influence on the functionality and
behavior of the included systems. Systems may stop working, or they may be
withdrawn at any time.

However, the main benefit of this architecture is that it allows for incremental
development. An early version of the container system can be based on “unap-
proved” systems. Interfaces to these can be developed in later versions so that they
are more closely integrated with the container services.

Trading systems

Trading systems are systems of systems where there is no single principal system but
processing may take place in any of the constituent systems. The systems involved
trade information among themselves. There may be one-to-one or one-to-many inter-
actions between these systems. Each system publishes its own interface, but there may
not be any interface standards that are followed by all systems. This system is shown
in Figure 20.14. Trading systems may be federated systems or system coalitions.

An example of a trading SoS is a system of systems for algorithmic trading of
stocks and shares. Brokers all have their own separate systems that can automati-
cally buy and sell stock from other systems. They set prices and negotiate individu-
ally with these systems. Another example of a trading system is a travel aggregator
that shows price comparisons and allows travel to be booked directly by a user.

The Digital Learning Environment

External interaction

Configuration

Storage

Authentication

YouTube
Science

encyclopedia

MS Office
365

Physics
simulatorMoodle Lab data

analyzer

Interfaces

Figure 20.13  The DLE
as a container system

606   Chapter 20  ■  Systems of systems

K e y P o i n t s

■	 Systems of systems are systems where two or more of the constituent systems are indepen-
dently managed and governed.

■	 Three types of complexity are important for systems of systems—technical complexity, manage-
rial complexity, and governance complexity.

■	 System governance can be used as the basis for a classification scheme for SoS. This leads to
three classes of SoS, namely, organizational systems, federated systems, and system coalitions.

■	 Reductionism as an engineering method breaks down because of the inherent complexity of
systems of systems. Reductionism assumes clear system boundaries, rational decision making,
and well-defined problems. None of these are true for systems of systems.

■	 The key stages of the SoS development process are conceptual design, system selection, archi-
tectural design, interface development, and integration and deployment. Governance and man-
agement policies must be designed in parallel with these activities.

Trading systems may be developed for any type of marketplace, with the informa-
tion exchanged being information about the goods being traded and their prices.
Although trading systems are systems in their own right and could conceivably be
used for individual trading, they are most useful in an automated trading context
where the systems negotiate directly with each other.

The major problem with this type of system is that there is no governance mecha-
nism, so any of the systems involved may change at any time. Because these changes
may contradict the assumptions made by other systems, trading cannot continue.
Sometimes the owners of the systems in the coalition wish to be able to continue
trading with other systems and so may make informal arrangements to ensure that
changes to one system do not make trading impossible. In other cases, such as a
travel aggregator, an airline may deliberately change its system so that it is unavail-
able and so force bookings to be made directly with it.

Trading
system 1

Trading
system 2

Trading
system 3

Trading
system 4

Figure 20.14  A trading
system of systems

■	 Architectural patterns for systems of systems are a means of describing and discussing typical
architectures for SoS. Important patterns are systems as data feeds, systems in a container, and
trading systems.

F u rt h e r R e a d i n g

“Architecting Principles for Systems of Systems.” A now-classic paper on systems of systems that
introduces a classification scheme for SoS, discusses its value, and proposes a number of architec-
tural principles for SoS design. (M. Maier, Systems Engineering, 1 (4), 1998).

Ultra-large Scale Systems: The Software Challenge of the Future This book, produced for the U.S.
Department of Defense in 2006, introduces the notion of ultra-large-scale systems, which are sys-
tems of systems with hundreds of nodes. It discusses the issues and challenges in developing such
systems. (L. Northrop et al., Software Engineering Institute, 2006). http://www.sei.cmu.edu/library/
assets/ULS_Book20062.pdf

“Large-scale Complex IT Systems.” This paper discusses the problems of large-scale complex IT
systems that are systems of systems and expands on the ideas here on the breakdown of reductionism.
It proposes a number of research challenges in the area of SoS. (I. Sommerville et al., Communica-
tions of the ACM, 55 (7), July 2012). http://dx.doi.org/ 10.1145/2209249.2209268

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/systems-engineering/

E x e rc i s e s

20.1. 	Explain why managerial and operational independence are the key distinguishing characteris-
tics of systems of systems when compared to other large, complex systems.

20.2. 	Briefly explain any four essential characteristics of systems of systems.

	 Chapter 20  ■  Exercises   607

http://www.sei.cmu.edu/library/assets/ULS_Book20062.pdf
http://dx.doi.org
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/systems-engineering
http://www.sei.cmu.edu/library/assets/ULS_Book20062.pdf

20.3. 	The classification of SoS presented in Section 20.2 suggests a governance-based classifica-
tion scheme. Giving reasons for your answer, identify the classifications for the following
systems of systems:

(a)	 A health care system that provides unified access to all patient health records from hospi-
tals, clinics, and primary care.

(b)	 The World Wide Web
(c)	 A government system that provides access to a range of welfare services such as pen-

sions, disability benefits, and unemployment benefits.

Are there any problems with the suggested classification for any of these systems?

20.4. 	Explain what is meant by reductionism and why it is effective as a basis for many kinds of
engineering.

20.5. 	Define systems of systems engineering. List the problems of software SoS engineering that
are also common to problems of integrating large-scale application systems.

20.6. 	How beneficial is a unified user interface in the interface design of SoS? What are the factors on
which the cost-effectiveness of a unified user interface is dependent?

20.7. 	Sillitto suggests that communications between nodes in a SoS are not just technical but
should also include informal sociotechnical communications between the people involved in
the system. Using the iLearn SoS as an example, suggest where these informal communica-
tions may be important to improve the effectiveness of the system.

20.8. 	Suggest the closest-fit architectural pattern for the systems of systems introduced in Exer-
cise 20.3.

20.9. 	�The trading system pattern assumes that there is no central authority involved. However, in
areas such as equity trading, trading systems must follow regulatory rules. Suggest how this
pattern might be modified to allow a regulator to check that these rules have been followed.
This should not involve all trades going through a central node.

20.10.	 �You work for a software company that has developed a system that provides information
about consumers and that is used within a SoS by a number of other retail businesses. They
pay you for the services used. Discuss the ethics of changing the system interfaces without
notice to coerce users into paying higher charges. Consider this question from the point of
view of the company’s employees, customers, and shareholders.

R e f e r e n c e s

Boehm, B., and C. Abts. 1999. “COTS Integration: Plug and Pray?” Computer 32 (1): 135–138.
doi:10.1109/2.738311.

Hitchins, D. 2009. “System of Systems—The Ultimate Tautology.” http://www.hitchins.net/profs-
stuff/profs-blog/system-of-systems---the.html

608   Chapter 20  ■  Systems of systems

http://www.hitchins.net/profs-stuff/profs-blog/system-of-systems---the.html
http://www.hitchins.net/profs-stuff/profs-blog/system-of-systems---the.html

Kawalsky, R., D. Joannou, Y. Tian, and A. Fayoumi. 2013. “Using Architecture Patterns to Architect
and Analyze Systems of Systems.” In Conference on Systems Engineering Research (CSER 13),
283–292. doi:10.1016/j.procs.2013.01.030.

Maier, M. W. 1998. “Architecting Principles for Systems-of-Systems.” Systems Engineering 1 (4):
267–284. doi:10.1002/(SICI)1520–6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D.

MOD, UK. 2008. “MOD Architecture Framework.” https://www.gov.uk/mod-architecture-framework

Northrop, Linda, R. P. Gabriel, M. Klein, and D. Schmidt. 2006. Ultra-Large-Scale Systems: The
Software Challenge of the Future. Pittsburgh: Software Engineering Institute. http://www.sei.cmu.
edu/library/assets/ULS_Book20062.pdf

Open Group. 2011. “Open Group Standard TOGAF Version 9.1.” http://pubs.opengroup.org/archi-
tecture/togaf91-doc/arch/

Rittel, H., and M. Webber. 1973. “Dilemmas in a General Theory of Planning.” Policy Sciences 4:
155–169. doi:10.1007/BF01405730.

Royal Academy of Engineering. 2004. “Challenges of Complex IT Projects.” London. http://www.
bcs.org/upload/pdf/complexity.pdf

Sillitto, H. 2010. “Design Principles for Ultra-Large-Scale Systems.” In Proceedings of the 20th
International Council for Systems Engineering International Symposium. Chicago.

Sommerville, I., D. Cliff, R. Calinescu, J. Keen, T. Kelly, M. Kwiatkowska, J. McDermid, and R. Paige.
2012. “Large-Scale Complex IT Systems.” Comm. ACM 55 (7): 71–77. doi:10.1145/2209249.2209268.

Stevens, R. 2010. Engineering Mega-Systems: The Challenge of Systems Engineering in the
Information Age. Boca Raton, FL: CRC Press.

	 Chapter 20  ■  References   609

https://www.gov.uk/mod-architecture-framework
http://www.sei.cmu.edu/library/assets/ULS_Book20062.pdf
http://pubs.opengroup.org/archi-tecture/togaf91-doc/arch
http://www.bcs.org/upload/pdf/complexity.pdf
http://pubs.opengroup.org/archi-tecture/togaf91-doc/arch
http://www.bcs.org/upload/pdf/complexity.pdf
http://www.sei.cmu.edu/library/assets/ULS_Book20062.pdf

Contents
21.1	 Embedded systems design

21.2	 Architectural patterns for real-time software

21.3	 Timing analysis

21.4	 Real-time operating systems

Objectives
The objective of this chapter is to introduce some of the characteristic
features of embedded real-time software engineering. When you have
read this chapter, you will:

■	 understand the concept of embedded software, which is used to
control systems that react to external events in their environment;

■	 have been introduced to a design process for real-time systems,
where the software systems are organized as a set of cooperating
processes;

■	 understand three architectural patterns that are commonly used in
embedded real-time systems design;

■	 understand the organization of real-time operating systems and
the role that they play in an embedded, real-time system.

Real-time software
engineering

21

	 Chapter 21  ■  Real-time software engineering   611

Computers are used to control a wide range of systems from simple domestic
machines, through games controllers, to entire manufacturing plants. These comput-
ers interact directly with hardware devices. Their software must react to events
generated by the hardware and often issue control signals in response to these
events. These signals result in an action, such as the initiation of a phone call, the
movement of a character on the screen, the opening of a valve, or the display of the
system status. The software in these systems is embedded in system hardware, often
in read-only memory. It responds, in real time, to events from the system’s environ-
ment. By real time, I mean that the software system has a deadline for responding to
external events. If this deadline is missed, then the overall hardware–software sys-
tem will not operate correctly.

Embedded software is very important economically because almost every electri-
cal device now includes software. There are therefore many more embedded software
systems than other types of software systems. Ebert and Jones (Ebert and Jones 2009)
estimated that there were about 30 embedded microprocessor systems per person in
developed countries. This figure was increasing between 10% and 20% per year. This
suggests that, by 2020, there will be more than 100 embedded systems per person.

Responsiveness in real time is the critical difference between embedded systems
and other software systems, such as information systems, web-based systems, or per-
sonal software systems, whose main purpose is data processing. For non–real-time
systems, the correctness of a system can be defined by specifying how system inputs
map to corresponding outputs that should be produced by the system. In response to
an input, a corresponding output should be generated by the system and, often, some
data should be stored. For example, if you choose a create command in a patient
information system, then the correct system response is to create a new patient
record in a database and to confirm that this has been done. Within reasonable limits,
it does not matter how long this takes.

However, in a real-time system, the correctness depends both on the response to
an input and the time taken to generate that response. If the system takes too long to
respond, then the required response may be ineffective. For example, if embedded
software controlling a car’s braking system is too slow, then an accident may occur
because it is impossible to stop the car in time.

Therefore, time is fundamental in the definition of a real-time software system:

A real-time software system is a system whose correct operation depends on
both the results produced by the system and the time at which these results are
produced. A “soft real-time system” is a system whose operation is degraded
if results are not produced according to the specified timing requirements. If
results are not produced according to the timing specification in a “hard real-
time system,” this is considered to be a system failure.

Timely response is an important factor in all embedded systems, but not all embedded
systems require a very fast response. For example, the insulin pump software that I have
used as an example in several chapters of this book is an embedded system. However,
while the system needs to check the glucose level at periodic intervals, it does not need to

612   Chapter 21  ■  Real-time software engineering

respond very quickly to external events. The wilderness weather station software is also
an embedded system, but, again, it does not require a fast response to external events.

As well as the need for real-time response, there are other important differences
between embedded systems and other types of software system:

1.	 Embedded systems generally run continuously and do not terminate. They start
when the hardware is switched on, and execute until the hardware is switched
off. Techniques for reliable software engineering, as discussed in Chapter 11,
may therefore have to be used to ensure continuous operation. The real-time
system may include update mechanisms that support dynamic reconfiguration
so that the system can be updated while it is in service.

2.	 Interactions with the system’s environment are unpredictable. In interactive sys-
tems, the pace of the interaction is controlled by the system. By limiting user
options, the events and commands to be processed are known in advance. By
contrast, real-time embedded systems must be able to respond to expected and
unexpected events at any time. This leads to a design for real-time systems
based on concurrency, with several processes executing in parallel.

3.	 Physical limitations may affect the design of a system. Examples of limitations
include restrictions on the power available to the system and the physical space
taken up by the hardware. These limitations may generate requirements for the
embedded software, such as the need to conserve power and so prolong battery life.
Size and weight limitations may mean that the software has to take over some hard-
ware functions because of the need to limit the number of chips used in the system.

4.	 Direct hardware interaction may be necessary. In interactive systems and infor-
mation systems, a layer of software (the device drivers) hides the hardware from
the operating system. This is possible because you can only connect a few types
of device to these systems, such as keyboards, mice, and displays. By contrast,
embedded systems may have to interact with a wide range of hardware devices
that do not have separate device drivers.

5.	 Issues of safety and reliability may dominate the system design. Many embed-
ded systems control devices whose failure may have high human or economic
costs. Therefore, dependability is critical, and the system design has to ensure
safety-critical behavior at all times. This often leads to a conservative approach
to design where tried and tested techniques are used instead of newer techniques
that may introduce new failure modes.

Real-time embedded systems can be thought of as reactive systems; that is, they
must react to events in their environment (Berry 1989; Lee 2002). Response times
are often governed by the laws of physics rather than chosen for human conveni-
ence. This is in contrast to other types of software where the system controls the
speed of the interaction. For example, the word processor that I am using to write
this book can check spelling and grammar, and there are no practical limits on the
time taken to do so.

	 21.1   ■  Embedded system design   613

	 21.1 	 Embedded system design

During the design process for embedded software, software designers have to consider in
detail the design and performance of the system hardware. Part of the system design
process may involve deciding which system capabilities are to be implemented in soft-
ware and which in hardware. For many real-time systems that are embedded in consumer
products, such as the systems in cell phones, the costs and power consumption of the
hardware are critical. Specific processors designed to support embedded systems may be
used. For some systems, special-purpose hardware may have to be designed and built.

A top-down software design process, in which the design starts with an abstract
model that is decomposed and developed in a series of stages, is impractical for most
real-time systems. Low-level decisions on hardware, support software, and system
timing must be considered early in the process. These limit the flexibility of system
designers. Additional software functionality, such as battery and power manage-
ment, may have to be included in the system.

Given that embedded systems are reactive systems that react to events in their
environment, the most general approach to embedded, real-time software design is
based on a stimulus-response model. A stimulus is an event occurring in the soft-
ware system’s environment that causes the system to react in some way; a response
is a signal or message that the software sends to its environment.

You can define the behavior of a real-time system by listing the stimuli received
by the system, the associated responses, and the time at which the response must be
produced. For example, Figure 21.1 shows possible stimuli and system responses for
a burglar alarm system (discussed in Section 21.2.1).

Stimuli fall into two classes:

1.	 Periodic stimuli These occur at predictable time intervals. For example, the sys-
tem may examine a sensor every 50 milliseconds and take action (respond)
depending on that sensor value (the stimulus).

2.	 Aperiodic stimuli These occur irregularly and unpredictably and are usually sig-
naled, using the computer’s interrupt mechanism. An example of such a stimulus
would be an interrupt indicating that an I/O transfer was complete and that data
was available in a buffer.

Stimuli come from sensors in the system’s environment, and responses are sent to
actuators, as shown in Figure 21.2. These actuators control equipment, such as a
pump, which then makes changes to the system’s environment. The actuators them-
selves may also generate stimuli. The stimuli from actuators often indicate that some
problem with the actuator has occurred, which must be handled by the system.

A general design guideline for real-time systems is to have separate control pro-
cesses for each type of sensor and actuator (Figure 21.3). For each type of sensor,
there may be a sensor management process that handles data collection from these
sensors. Data-processing processes compute the required responses for the stimuli
received by the system. Actuator control processes are associated with each actuator

614   Chapter 21  ■  Real-time software engineering

and manage the operation of that actuator. This model allows data to be collected
quickly from the sensor (before it is overwritten by the next input) and enables pro-
cessing and the associated actuator response to be carried out later.

A real-time system has to respond to stimuli that occur at different times. You
therefore have to organize the system architecture so that, as soon as a stimulus is
received, control is transferred to the correct handler. This is impractical in sequen-
tial programs. Consequently, real-time software systems are normally designed as a
set of concurrent, cooperating processes. To support the management of these pro-
cesses, the execution platform on which the real-time system executes may include a
real-time operating system (discussed in Section 21.4). The functions provided by
this operating system are accessed through the runtime support system for the real-
time programming language that is used.

There is no standard embedded system design process. Rather, different processes
are used that depend on the type of system, available hardware, and the organization
that is developing the system. The following activities may be included in a real-
time software design process:

1.	 Platform selection In this activity, you choose an execution platform for the
system, that is, the hardware and the real-time operating system to be used.
Factors that influence these choices include the timing constraints on the sys-
tem, limitations on power available, the experience of the development team,
and the price target for the delivered system.

2.	 Stimuli/response identification This involves identifying the stimuli that the
system must process and the associated response or responses for each stimulus.

Stimulus Response

Clear alarms Switch off all active alarms; switch off all lights
that have been switched on.

Console panic button positive Initiate alarm; turn on lights around console; call
police.

Power supply failure Call service technician.

Sensor failure Call service technician.

Single sensor positive Initiate alarm; turn on lights around site of
positive sensor.

Two or more sensors positive Initiate alarm; turn on lights around sites of
positive sensors; call police with location of
suspected break-in.

Voltage drop of between 10%
and 20%

Switch to battery backup; run power supply test.

Voltage drop of more than
20%

Switch to battery backup; initiate alarm; call
police, run power supply test.

Figure 21.1  Stimuli
and responses for a
burglar alarm system

	 21.1   ■  Embedded system design   615

Real-time
control system

ActuatorActuator ActuatorActuator

SensorSensorSensor SensorSensorSensor

Stimuli

Responses

Figure 21.2  A general
model of an embedded
real-time system

3.	 Timing analysis For each stimulus and associated response, you identify the
timing constraints that apply to both stimulus and response processing. These
constraints are used to establish the deadlines for the processes in the system.

4.	 Process design Process design involves aggregating the stimulus and response
processing into a number of concurrent processes. A good starting point for
designing the process architecture is the architectural patterns that I describe in
Section 20.2. You then optimize the process architecture to reflect the specific
requirements that you have to implement.

5.	 Algorithm design For each stimulus and response, you design algorithms to
carry out the required computations. Algorithm designs may have to be devel-
oped relatively early in the design process to indicate the amount of processing
required and the time needed to complete that processing. This is especially
important for computationally intensive tasks, such as signal processing.

6.	 Data design You specify the information that is exchanged by processes and the
events that coordinate information exchange, and design data structures to man-
age this information exchange. Several concurrent processes may share these
data structures.

7.	 Process scheduling You design a scheduling system that will ensure that pro-
cesses are started in time to meet their deadlines.

The specific activities and the activity sequence in a real-time system design pro-
cess depend on the type of system being developed, its novelty, and its environment.

Data
processor

Actuator
control

Actuator

Sensor
control

Sensor

Stimulus Response

Figure 21.3  Sensor and
actuator processes

616   Chapter 21  ■  Real-time software engineering

In some cases, for new systems, you may be able to follow a fairly abstract approach
where you start with the stimuli and associated processing, and decide on the hardware
and execution platforms late in the process. In other cases, the choice of hardware and
operating system is made before the software design starts. You then have to design
the software to take account of the constraints imposed by the system hardware.

Processes in a real-time system have to be coordinated and share information.
Process coordination mechanisms ensure mutual exclusion to shared resources. When
one process is modifying a shared resource, other processes should not be able to change
that resource. Mechanisms for ensuring mutual exclusion include semaphores, moni-
tors, and critical regions. These process synchronization mechanisms are described in
most operating system books (Silberschaltz, Galvin, and Gagne 2013; Stallings 2014).

When designing the information exchange between processes, you have to take
into account that these processes may be running at different speeds. One process is
producing information, and the other process is consuming that information. If the
producer is running faster than the consumer, new information could overwrite a
previously read information item before the consumer process has read the original
information. If the consumer process is running faster than the producer process, the
same item could be read twice.

To avoid this problem, you should implement information exchange using a
shared buffer and use mutual exclusion mechanisms to control access to that buffer.
This means that information can’t be overwritten before it has been read and that
information cannot be read twice. Figure 21.4 illustrates the organization of a shared
buffer. This is usually implemented as a circular queue, using a list data structure.
Mismatches in speed between the producer and consumer processes can be accom-
modated without having to delay process execution.

The producer process always enters data in the buffer location at the end of the
queue (represented as v10 in Figure 21.4). The consumer process always retrieves
information from the head of the queue (represented as v1 in Figure 21.4). After the
consumer process has retrieved the information, the tail of the queue is adjusted to
point at the next item (v2). After the producer process has added information, the tail
of the queue is adjusted to point at the next free slot in the queue.

Consumer
process

Producer
process

Circular Buffer

Head

Tail

v1

v2

v3
v4v5

v6

v7

v8

v9

v10

Figure 21.4  Producer/
consumer processes
sharing a circular buffer

	 21.1   ■  Embedded system design   617

Obviously, it is important to ensure that the producer and consumer process do
not attempt to access the same item at the same time (i.e., when Head = Tail). If they
do, the value of the item is unpredictable. The system also has to ensure that the
producer process does not add items to a full buffer and that the consumer process
does not try to take items from an empty buffer.

To do this, you implement the circular buffer as a process with Get and Put oper
ations to access the buffer. The Put operation is called by the producer process and
the Get operation by the consumer process. Synchronization primitives, such as
semaphores or critical regions, are used to ensure that the operation of Get and Put
are synchronized, so that they don’t access the same location simultaneously. If the
buffer is full, the Put process has to wait until a slot is free; if the buffer is empty, the
Get process has to wait until an entry has been made.

Once you have chosen the execution platform for the system, designed a process
architecture, and decided on a scheduling policy, you have to check that the system
will meet its timing requirements. You can perform this check through static analysis
of the system using knowledge of the timing behavior of components, or through
simulation. This analysis may reveal that the system will not perform adequately. The
process architecture, the scheduling policy, the execution platform, or all of these
may then have to be redesigned to improve the performance of the system.

Timing constraints or other requirements may sometimes mean that it is best to
implement some system functions, such as signal processing, in hardware. Modern
hardware components, such as FPGAs (field-programmable gate arrays), are flexible
and can be adapted to different functions. Hardware components deliver much better
performance than the equivalent software. System processing bottlenecks can be
identified and replaced by hardware, thus avoiding expensive software optimization.

	 21.1.1 	 Real-time system modeling

The events that a real-time system must react to often cause the system to move from
one state to another. For this reason, state models, which I introduced in Chapter 5,
are used to describe real-time systems. A state model of a system assumes that, at
any time, the system is in one of a number of possible states. When a stimulus is
received, this may cause a transition to a different state. For example, a system con-
trolling a valve may move from a state “Valve open” to a state “Valve closed” when
an operator command (the stimulus) is received.

State models are an integral part of real-time system design methods. The UML
supports the development of state models based on Statecharts (Harel 1987, 1988).
Statecharts are formal state machine models that support hierarchical states, so that
groups of states can be considered as a single entity. Douglass discusses the use of
the UML in real-time systems development (Douglass 1999).

I have already illustrated this approach to system modeling in Chapter 5 where I
used an example of a model of a simple microwave oven. Figure 21.5 is another
example of a state model that shows the operation of a fuel delivery software system
embedded in a petrol (gas) pump. The rounded rectangles represent system states,
and the arrows represent stimuli that force a transition from one state to another.

618   Chapter 21  ■  Real-time software engineering

The names chosen in the state machine diagram are descriptive. The associated
information indicates actions taken by the system actuators or information that is
displayed. Notice that this system never terminates but idles in a waiting state when
the pump is not operating.

The fuel delivery system is designed to allow unattended operation, with the fol-
lowing sequence of actions:

1.	 The buyer inserts a credit card into a card reader built into the pump. This causes
a transition to a Reading state where the card details are read and the buyer is
then asked to remove the card.

2.	 Removal of the card triggers a transition to a Validating state where the card is
validated.

3.	 If the card is valid, the system initializes the pump and, when the fuel hose is
removed from its holster, transitions to the Delivering state, where is ready to
deliver fuel. Activating the trigger on the nozzle causes fuel to be pumped; this
stops when the trigger is released (for simplicity, I have ignored the pressure
switch that is designed to stop fuel spillage).

Card
inserted

into reader

Timeout

Resetting
do: display CC

error

Initializing

do: initialize
display

Paying

Stopped

Reading

do: get CC
details

Waiting

do: display
 welcome

do:
deliver fuel

do: debit
CC account

Payment ack.

Ready Delivering

update displayNozzle
trigger on

Nozzle trigger off

Nozzle trigger on

Hose in
holster

do: validate
credit card

Validating

Invalid card

Card removed
Card OK

Hose out of holster

Hose in
holster

Timeout

Figure 21.5  State
machine model of a
petrol (gas) pump

	 21.1   ■  Embedded system design   619

4.	 After the fuel delivery is complete and the buyer has replaced the hose in its
holster, the system moves to a Paying state where the user’s account is debited.

5.	 After payment, the pump software returns to the Waiting state.

State models are used in model-driven engineering, which I discussed in Chapter 5,
to define the operation of a system. They can be transformed automatically or semiau-
tomatically to an executable program.

	 21.1.2 	 Real-time programming

Programming languages for real-time systems development have to include facilities
to access system hardware, and it should be possible to predict the timing of particu-
lar operations in these languages. Hard real-time systems, running on limited hard-
ware, are still sometimes programmed in assembly language so that tight deadlines
can be met. Systems programming languages, such as C, which allow efficient code
to be generated, are widely used.

The advantage of using a systems programming language like C is that it allows
the development of efficient programs. However, these languages do not include
constructs to support concurrency or the management of shared resources.
Concurrency and resource management are implemented through calls to primitives
provided by the real-time operating system for mutual exclusion. Because the com-
piler cannot check these calls, programming errors are more likely. Programs are
also often more difficult to understand because the language does not include real-
time features. As well as understanding the program, the reader also has to know
how real-time support is provided using system calls.

Because real-time systems must meet their timing constraints, you may not be
able to use object-oriented development for hard real-time systems. Object-oriented
development involves hiding data representations and accessing attribute values
through operations defined with the object. There is a significant performance over-
head in object-oriented systems because extra code is required to mediate access to
attributes and handle calls to operations. The consequent loss of performance may
make it impossible to meet real-time deadlines.

A version of Java has been developed for embedded systems development (Burns
and Wellings 2009; Bruno and Bollella 2009). This language includes a modified
thread mechanism, which allows threads to be specified that will not be interrupted

Real-time Java

The Java programming language has been modified to make it suitable for real-time systems development.
These modifications include asynchronous communications, the addition of time, including absolute and
relative time, a new thread model where threads cannot be interrupted by garbage collection, and a new
memory management model that avoids the unpredictable delays that can result from garbage collection.

http://software-engineering-book.com/web/real-time-java/

http://software-engineering-book.com/web/real-time-java

620   Chapter 21  ■  Real-time software engineering

by the language garbage collection mechanism. Asynchronous event handling and
timing specification has also been included. However, at the time of writing, this
specification has mostly been used on platforms that have significant processor and
memory capacity (e.g., a cell phone) rather than simpler embedded systems, with
more limited resources. These systems are still usually implemented in C.

	 21.2 	 Architectural patterns for real-time software

Architectural patterns are abstract, stylized descriptions of good design practice.
They capture knowledge about the organization of system architectures, when these
architectures should be used, and their advantages and disadvantages. You use an
architectural pattern to understand an architecture and as starting point for creating
your own, specific architectural design.

The difference between real-time and interactive software means that there are
distinct architectural patterns for real-time embedded systems. Real-time systems’
patterns are process-oriented rather than object- or component-oriented. In this sec-
tion, I discuss three real-time architectural patterns that are commonly used:

1.	 Observe and React This pattern is used when a set of sensors are routinely monitored
and displayed. When the sensors show that some event has occurred (e.g., an incom-
ing call on a cell phone), the system reacts by initiating a process to handle that event.

2.	 Environmental Control This pattern is used when a system includes sensors,
which provide information about the environment and actuators that can change
the environment. In response to environmental changes detected by the sensor,
control signals are sent to the system actuators.

3.	 Process Pipeline This pattern is used when data has to be transformed from one
representation to another before it can be processed. The transformation is
implemented as a sequence of processing steps, which may be carried out con-
currently. This allows for very fast data processing, because a separate core or
processor can execute each transformation.

These patterns can of course be combined, and you will often see more than one of
them in a single system. For example, when the Environmental Control pattern is
used, it is very common for the actuators to be monitored using the Observe and React
pattern. In the event of an actuator failure, the system may react by displaying a warn-
ing message, shutting down the actuator, switching in a backup system, and so forth.

The patterns that I cover are architectural patterns that describe the overall struc-
ture of an embedded system. Douglass (Douglass 2002) describes lower-level, real-
time design patterns that support more detailed design decision making. These
patterns include design patterns for execution control, communications, resource
allocation, and safety and reliability.

	 21.2  ■  Architectural patterns for real-time software   621

These architectural patterns should be the starting point for an embedded systems
design; however, they are not design templates. If you use them as such, you will
probably end up with an inefficient process architecture. You have to optimize the
process structure to ensure that you do not have too many processes. You also should
ensure that there is a clear correspondence between the processes and the sensors
and actuators in the system.

	 21.2.1 	 Observe and react

Monitoring systems are an important class of embedded real-time systems. A moni-
toring system examines its environment through a set of sensors and usually displays
the state of the environment in some way. This could be on a built-in screen, on
special-purpose instrument displays, or on a remote display. If the system detects
some exceptional event or sensor state, the monitoring system takes some action.

Name Observe and React

Description The input values of a set of sensors of the same types are
collected and analyzed. These values are displayed in some
way. If the sensor values indicate that some exceptional
condition has arisen, then actions are initiated to draw the
operator’s attention to that value and, if necessary, take actions
in response to the exceptional value.

Stimuli Values from sensors attached to the system.

Responses Outputs to display, alarm triggers, signals to reacting systems.

Processes Observer, Analysis, Display, Alarm, Reactor.

Used in Monitoring systems, alarm systems.

Figure 21.6  The
Observe and React
pattern

Analysis
process

Observer
process

Reactor process
Alarm

process

Sensor
values

Display
process

Display
values

DisplaySensors

Alarm
Other equipment

Figure 21.7  The
Observe and React
process structure

622   Chapter 21  ■  Real-time software engineering

This often involves raising an alarm to draw an operator’s attention to the event.
Sometimes the system may initiate some other preventative action, such as shutting
down the system to preserve it from damage.

The Observe and React pattern (Figures 21.6 and 21.7) is commonly used in
monitoring systems. The values of sensors are observed, and the system initiates
actions that depend on these sensor values. Monitoring systems may be composed of
several instantiations of the Observe and React pattern, one for each type of sensor
in the system. Depending on the system requirements, you may then optimize the
design by combining processes (e.g., you may use a single display process to display
the information from all of the different types of sensor).

As an example of the use of this pattern, consider the design of a burglar alarm
system to be installed in an office building:

A software system is to be implemented as part of a burglar alarm system for
commercial buildings. This uses several different types of sensors. These sen-
sors include movement detectors in individual rooms, door sensors that detect
corridor doors opening, and window sensors on ground-floor windows that
can detect when a window has been opened.

When a sensor detects the presence of an intruder, the system automatically calls
the local police and, using a  voice synthesizer, reports the location of the alarm.
It switches on lights in the rooms around the active sensor and sets off an audible
alarm. The sensor system is normally powered by mains power but is equipped
with a battery backup. Power loss is detected using a separate power circuit
monitor that monitors the mains voltage. If a voltage drop is detected, the system
assumes that intruders have interrupted the power supply, so an alarm is raised.

A process architecture for the alarm system is shown in Figure 21.8. The arrows
represent signals sent from one process to another. This system is a “soft” real-time
system that does not have stringent timing requirements. The sensors only need to detect

Lighting control
process

External alert
process

Voltage monitor
process

System
controller

Console display
process

Door sensor
process

Movement
detector process

Window sensor
process

Audible alarm
process

Control panel
process Testing process

Power management
process

Figure 21.8  The process
structure of a burglar
alarm system

	 21.2  ■  Architectural patterns for real-time software   623

the presence of people rather than high-speed events, so they only need to be polled 2 or
3 times per second. I cover the timing requirements for this system in Section 21.3.

I have already introduced the stimuli and responses in this alarm system in Figure
21.1. These responses are used as a starting point for the system design. The Observe
and React pattern is used in this design. There are observer processes associated with
each type of sensor and reactor processes for each type of reaction. A single analysis
process checks the data from all of the sensors. The display processes in the pattern
are combined into a single display process.

	 21.2.2 	 Environmental Control

The most widespread use of real-time embedded software is in control systems. In
these systems, the software controls the operation of equipment, based on stimuli

Name Environmental Control

Description The system analyzes information from a set of sensors that
collect data from the system’s environment. Further
information may also be collected on the state of the
actuators that are connected to the system. Based on the
data from the sensors and actuators, control signals are
sent to the actuators, which then cause changes to the
system’s environment. Information about the sensor values
and the state of the actuators may be displayed.

Stimuli Values from sensors attached to the system and the state
of the system actuators.

Responses Control signals to actuators display information.

Processes Monitor, Control, Display, Actuator driver, Actuator monitor.

Used in Control systems.

Figure 21.9  The
Environmental
Control pattern

Control
process

Monitor
process

Actuator monitor
process

Actuator
driver process

Sensor
values

Display
process

Display
values

DisplaySensors

Actuator

Control
instructions

Actuator
state

Figure 21.10 
The Environmental
Control process
structure

624   Chapter 21  ■  Real-time software engineering

from the equipment’s environment. For example, an anti-skid braking system in a
car monitors the car’s wheels and brake system (the system’s environment). It looks
for signs that the wheels are skidding when brake pressure is applied. If this is the
case, the system adjusts the brake pressure to stop the wheels locking and reduce the
likelihood of a skid.

Control systems may make use of the Environmental Control pattern, which is a
general control pattern that includes sensor and actuator processes. This pattern is
described in Figure 21.9, with the process architecture shown in Figure 21.10. A
variant of this pattern leaves out the display process. This variant is used in situa-
tions where user intervention is not required or where the rate of control is so high
that a display would not be meaningful.

This pattern can be the basis for a control system design with an instantiation
of the Environmental Control pattern for each actuator (or actuator type) being
controlled. You then optimize the design to reduce the number of processes. For
example, you may combine actuator monitoring and actuator control processes,
or you may have a single monitoring and control process for several actuators.
The optimizations that you choose depend on the timing requirements. You may
need to monitor sensors more frequently than you send control signals, in which
case it may be impractical to combine control and monitoring processes. There
may also be direct feedback between the actuator control and the actuator moni-
toring process. This allows fine-grain control decisions to be made by the actua-
tor control process.

You can see how this pattern is used in Figure 21.11, which shows an example of a
controller for a car braking system. The starting point for the design is associating an
instance of the pattern with each actuator type in the system. In this case, there are four
actuators, with each controlling the brake on one wheel. The individual sensor processes
are combined into a single wheel-monitoring process that monitors the sensors on all

Analysis
process

Wheel
monitor

Pedal
monitor

Brake 4
process

Brake 1
process

Brake 2
process

Brake 3
process

Brake 1 Brake 2

Brake 3 Brake 4

Pedal pressure sensor

Wheel sensors

Figure 21.11  Control
system architecture
for an anti-skid
braking system

	 21.2  ■  Architectural patterns for real-time software   625

wheels. This monitors the state of each wheel to check if the wheel is turning or locked.
A separate process monitors the pressure on the brake pedal exerted by the car driver.

The system includes an anti-skid feature, which is triggered if the sensors indicate
that a wheel is locked when the brake has been applied. This means that there is
insufficient friction between the road and the tire; in other words, the car is skidding.
If the wheel is locked, the driver cannot steer that wheel. To counteract this effect,
the system sends a rapid sequence of on/off signals to the brake on that wheel, which
allows the wheel to turn and control to be regained.

The Wheel monitor process monitors whether or not each wheel is turning. If a
wheel is skidding (not turning), it informs the Analysis process. This then signals the
processes associated with the wheels that are skidding to initiate anti-skid braking.

	 21.2.3 	 Process pipeline

Many real-time systems are concerned with collecting analog data from the system’s
environment. They then digitize that data for analysis and processing by the system.
The system may also convert digital data to analog data, which it then sends to its
environment. For example, a software radio accepts incoming packets of digital data
representing the radio transmission and transforms the data into a sound signal that
people can listen to.

The data processing involved in many of these systems has to be carried out very
quickly. Otherwise, incoming data may be lost and outgoing signals may be broken
up because essential information is missing. The Process Pipeline pattern makes
this rapid processing possible by breaking down the required data processing into a
sequence of separate transformations. Each of these transformations is implemented

Name Process Pipeline

Description A pipeline of processes is set up with data moving in sequence
from one end of the pipeline to another. The processes are often
linked by synchronized buffers to allow the producer and
consumer processes to run at different speeds. The culmination
of a pipeline may be display or data storage, or the pipeline may
terminate in an actuator.

Stimuli Input values from the environment or some other process

Responses Output values to the environment or a shared buffer

Processes Producer, Buffer, Consumer

Used in Data acquisition systems, multi-media systems

Figure 21.12 
The Process
Pipeline pattern

Buffer
process

Producer
process

Produced
data

Consumer
process

Consumed
data

...
Figure 21.13  Process
Pipeline process
structure

626   Chapter 21  ■  Real-time software engineering

by an independent process. This architecture is efficient for systems that use multi-
ple processors or multicore processors. Each process in the pipeline can be associ-
ated with a separate processor or core, so that the processing steps can be carried
out in parallel.

Figure 21.12 is a brief description of the data pipeline pattern, and Figure 21.13
shows the process architecture for this pattern. Notice that the processes involved
produce and consume information. The processes exchange information using
synchronized buffers, as I explained in Section 21.1. Producer and consumer pro-
cesses can thereby operate at different speeds without data losses.

An example of a system that may use a process pipeline is a high-speed data
acquisition system. Data acquisition systems collect data from sensors for subse-
quent processing and analysis. These systems are used in situations where the sen-
sors are collecting large volumes of data from the system’s environment and it isn’t
possible or necessary to process that data in real time. Rather, it is collected and
stored for later analysis. Data acquisition systems are often used in scientific experi-
ments and process control systems where physical processes, such as chemical reac-
tions, are very rapid. In these systems, the sensors may be generating data very
quickly, and the data acquisition system has to ensure that a sensor reading is col-
lected before the sensor value changes.

Figure 21.14 is a simplified model of a data acquisition system that might be part
of the control software in a nuclear reactor. This system collects data from sensors
monitoring the neutron flux (the density of neutrons) in the reactor. The sensor data
is placed in a buffer from which it is extracted and processed. The average flux level
is displayed on an operator’s display and stored for future processing.

	 21.3 	 Timing analysis

As I discussed in the introduction to this chapter, the correctness of a real-time sys-
tem depends not just on the correctness of its outputs but also on the time at which
these outputs were produced. Therefore, timing analysis is an important activity in
the embedded, real-time software development process. In such an analysis, you cal-
culate how often each process in the system must be executed to ensure that all inputs

Flux value
buffer

Flux
processing

Raw data
buffer

A-D
convertor

Sensor
identifier and

flux value

Processed
flux level

Neutron flux sensors
Storage

Display

Figure 21.14  Neutron
flux data acquisition

	 21.3  ■  Timing analysis   627

are processed and all system responses are produced in a timely way. The results of
the timing analysis are used to decide how frequently each process should execute
and how these processes should be scheduled by the real-time operating system.

Timing analysis for real-time systems is particularly difficult when the system
has to deal with a mixture of periodic and aperiodic stimuli and responses.
Because aperiodic stimuli are unpredictable, you have to make assumptions about
the probability of these stimuli occurring and therefore requiring service at any
particular time. These assumptions may be incorrect, and system performance
after delivery may not be adequate. Cooling’s book (Cooling 2003) discusses
techniques for real-time system performance analysis that takes aperiodic events
into account.

As computers have become faster, it has become possible in many systems to
design using only periodic stimuli. When processors were slow, aperiodic stimuli
had to be used to ensure that critical events were processed before their deadline,
as delays in processing usually involved some loss to the system. For example,
the failure of a power supply in an embedded system may mean that the system
has to shut down attached equipment in a controlled way, within a very short
time (say 50 milliseconds). This could be implemented as a “power fail” inter-
rupt. However, it can also be implemented using a periodic process that runs
frequently and checks the power. As long as the time between process invoca-
tions is short, there is still time to perform a controlled shutdown of the system
before the lack of power causes damage. For this reason, I only discuss timing
issues for periodic processes.

When you are analyzing the timing requirements of embedded real-time systems and
designing systems to meet these requirements, you have to consider three key factors:

1.	 Deadlines The times by which stimuli must be processed and some response
produced by the system. If the system does not meet a deadline, then, if it is a
hard real-time system, this is a system failure; in a soft real-time system, it
results in degraded system service.

2.	 Frequency The number of times per second that a process must execute so that
you are confident that it can always meet its deadlines.

3.	 Execution time The time required to process a stimulus and produce a response.
Execution time is not always the same because of the conditional execution of
code, delays waiting for other processes, and so on. Therefore, you may have to
consider both the average execution time of a process and the worst-case execu-
tion time for that process. The worst-case execution time is the maximum time
that the process takes to execute. In a hard real-time system, you may have to
make assumptions based on the worst-case execution time to ensure that dead-
lines are not missed. In soft real-time systems, you can base your calculations on
the average execution time.

To continue the example of a power supply failure, let’s calculate the worst-
case execution time for a process that switches equipment power from mains

628   Chapter 21  ■  Real-time software engineering

power to a battery backup. Figure 21.15 presents a timeline showing the events in
the system:

1.	 Assume that, after a mains power failure event, it takes 50 milliseconds (ms)
for the supplied voltage to drop to a level where the equipment may be dam-
aged. The battery backup must therefore be activated and in operation within
50 ms. Usually, you allow for a margin of error, so you should set a shorter
deadline of 40 ms because of physical variations in the equipment. This
means that all equipment must be running on the battery backup power sup-
ply within 40 ms.

2.	 However, the battery backup system cannot be instantaneously activated. It
takes 16 ms from starting the backup power supply to the supply being fully
operational. This means that the time available to detect the power failure and
start the battery backup system is 24 ms.

3.	 There is a process that is scheduled to run 250 times per second, that is, every 4 ms.
This process assumes that there is a power supply problem if a significant drop
in voltage occurs between readings and is sustained for three readings. This time
is allowed so that temporary fluctuations do not cause a switch to the battery
backup system.

4.	 In the above timeline, the power fails immediately after a reading has been
taken. Therefore, reading R1 is the start reading for the power fail check. The
voltage continues to drop for readings R2–R4, so a power failure is assumed.
This is the worst possible case, where a power failure event occurs immediately
after a sensor check, so 16 ms have elapsed since that event.

5.	 At this stage, the process that switches to the battery backup is started. Because
the battery backup takes 16 ms to become operational, the worst-case execution
time for this process is 8 ms, so that the 40 ms deadline can be reached.

4ms 8ms 12ms 16ms 20ms 24ms 28ms 32ms 36ms 40ms

R1 R2 R3 R4

Battery startupPower switcher

Normal voltage
level

Critical voltage
level

Time

Voltage

Figure 21.15 
Power failure timing
analysis

	 21.3  ■  Timing analysis   629

The starting point for timing analysis in a real-time system is the timing require-
ments, which should set out the deadlines for each required response in the system.
Figure 21.16 shows possible timing requirements for the office building burglar
alarm system discussed in Section 21.2.1. To simplify this example, let us ignore
stimuli generated by system testing procedures and external signals to reset the sys-
tem in the event of a false alarm. This means there are only two types of stimulus
processed by the system:

1.	 Power failure is detected by observing a voltage drop of more than 20%. The
required response is to switch the circuit to backup power by signaling an elec-
tronic power-switching device that switches the mains power to battery backup.

2.	 Intruder alarm is a stimulus generated by one of the system sensors. The
response to this stimulus is to compute the room number of the active sensor, set
up a call to the police, initiate the voice synthesizer to manage the call, and
switch on the audible intruder alarm and building lights in the area.

As shown in Figure 21.16, you should list the timing constraints for each class of
sensor separately, even when (as in this case) they are the same. By considering
them separately, you leave scope for future change and make it easier to compute the
number of times the controlling process has to be executed each second.

Allocating the system functions to concurrent processes is the next design stage.
Four types of sensors must be polled periodically, each with an associated process:
the voltage sensor, door sensors, window sensors, and movement detectors.
Normally, the processes associated with the sensor will execute very quickly as all

Stimulus/Response Timing requirements

Audible alarm The audible alarm should be switched on within half a
second of an alarm being raised by a sensor.

Communications The call to the police should be started within
2 seconds of an alarm being raised by a sensor.

Door alarm Each door alarm should be polled twice per second.

Lights switch The lights should be switched on within half a second
of an alarm being raised by a sensor.

Movement detector Each movement detector should be polled twice per
second.

Power failure The switch to backup power must be completed within
a deadline of 50 ms.

Voice synthesizer A synthesized message should be available within
2 seconds of an alarm being raised by a sensor.

Window alarm Each window alarm should be polled twice per second.

Figure 21.16 
Timing requirements
for the burglar
alarm system

630   Chapter 21  ■  Real-time software engineering

they are doing is checking whether or not a sensor has changed its status (e.g., from
off to on). It is reasonable to assume that the execution time to check and assess the
state of one sensor is less than 1 millisecond.

To ensure that you meet the deadlines defined by the timing requirements, you
then have to decide how frequently the related processes have to run and how many
sensors should be examined during each execution of the process. There are obvious
trade-offs here between frequency and execution time:

1.	 The deadline for detecting a change of state is 0.25 second, which means that
each sensor has to be checked 4 times per second. If you examine one sensor
during each process execution, then if there are N sensors of a particular type,
you must schedule the process 4N times per second to ensure that all sensors are
checked within the deadline.

2.	 If you examine four sensors, say, during each process execution, then the execu-
tion time is increased to about 4 ms, but you need only run the process N times/
second to meet the timing requirement.

In this case, because the system requirements define actions when two or more
sensors are positive, the best strategy is to examine sensors in groups, with groups
based on the physical proximity of the sensors. If an intruder has entered the build-
ing, then it will probably be adjacent sensors that are positive.

When you have completed the timing analysis, you may then annotate the process
model with information about frequency of execution and their expected execution
time (see Figure 21.17). Here, periodic processes are annotated with their frequency,
processes that are started in response to a stimulus are annotated with R, and the test-
ing process is a background process, annotated with B. This background process

Lighting control
process

External alert
process

Voltage monitor
process

System
controller

Console display
process

Door sensor
process

Movement
detector process

Window sensor
process

Audible alarm
process

Control panel
process Testing process

Power management
process

50 Hz (0.5 ms)

50 Hz (1 ms)

50 Hz (0.5 ms)

250 Hz (0.5 ms)

250 Hz
(1 ms)

B50 Hz (0.5 ms)

50 Hz (1 ms)

R (20 ms)

R (10 ms)R (5 ms)R (5 ms)

Figure 21.17 
Alarm process timing

	 21.4  ■  Real-time operating systems   631

only runs when processor time is available. In general, it is simpler to design a sys-
tem so that there are a small number of process frequencies. The execution times
represent the required worst-case execution times of the processes.

The final step in the design process is to design a scheduling system that will
ensure that a process will always be scheduled to meet its deadlines. You can only do
this if you know the scheduling approaches that are supported by the real-time oper-
ating system (OS) used (Burns and Wellings 2009). The scheduler in the real-time
OS allocates a process to a processor for a given amount of time. The time can be
fixed, or it may vary depending on the priority of the process.

In allocating process priorities, you have to consider the deadlines of each process so
that processes with short deadlines receive processor time to meet these deadlines. For
example, the voltage monitor process in the burglar alarm needs to be scheduled so that
voltage drops can be detected and a switch made to backup power before the system
fails. This should therefore have a higher priority than the processes that check sensor
values, as these have fairly relaxed deadlines compared to their expected execution time.

	 21.4 	 Real-time operating systems

The execution platform for most application systems is an operating system that
manages shared resources and provides features such as a file system and runtime
process management. However, the extensive functionality in a conventional operat-
ing system takes up a great deal of space and slows down the operation of programs.
Furthermore, the process management features in the system may not be designed to
allow fine-grain control over the scheduling of processes.

For these reasons, standard operating systems, such as Linux and Windows, are not
normally used as the execution platform for real-time systems. Very simple embedded
systems may be implemented as “bare metal” systems. The systems provide their own
execution support and so include system startup and shutdown, process and resource
management, and process scheduling. More commonly, however, embedded applica-
tions are built on top of a real-time operating system (RTOS), which is an efficient
operating system that offers the features needed by real-time systems. Examples of
RTOS are Windows Embedded Compact, VxWorks, and RTLinux.

A real-time operating system manages processes and resource allocation for a
real-time system. It starts and stops processes so that stimuli can be handled, and it
allocates memory and processor resources. The components of an RTOS (Figure
21.18) depend on the size and complexity of the real-time system being developed.
For all except the simplest systems, they usually include:

1.	 A real-time clock, which provides the information required to schedule pro-
cesses periodically.

2.	 If interrupts are supported, an interrupt handler, which manages aperiodic
requests for service.

632   Chapter 21  ■  Real-time software engineering

3.	 A scheduler, which is responsible for examining the processes that can be exe-
cuted and for choosing one of these processes for execution.

4.	 A resource manager, which allocates appropriate memory and processor
resources to processes that have been scheduled for execution.

5.	 A dispatcher, which is responsible for starting the execution of processes.

Real-time operating systems for large systems, such as process control or telecom-
munication systems, may have additional facilities, namely, disk storage management,
fault management facilities that detect and report system faults, and a configuration
manager that supports the dynamic reconfiguration of real-time applications.

	 21.4.1 	 Process management

Real-time systems have to handle external events quickly and, in some cases, meet
deadlines for processing these events. The event-handling processes must therefore
be scheduled for execution in time to detect the event. They must also be allocated
sufficient processor resources to meet their deadline. The process manager in an
RTOS is responsible for choosing processes for execution, allocating processor and
memory resources, and starting and stopping process execution on a processor.

Process resource
requirements

Scheduler

Scheduling
information

Resource
manager

Dispatcher

Real-time
clock

Processes
awaiting
resources

Ready
list

Interrupt
handler

Available
resource

list

Processor
list

Executing process

Ready
processes

Released
resources

Figure 21.18 
Components of a
real-time operating
system

	 21.4  ■  Real-time operating systems   633

The process manager has to manage processes with different priorities. For
some stimuli, such as those associated with certain exceptional events, it is essen-
tial that their processing should be completed within the specified time limits.
Other processes may be safely delayed if a more critical process requires service.
Consequently, the RTOS has to be able to manage at least two priority levels for
system processes:

1.	 Clock level This level of priority is allocated to periodic processes.

2.	 Interrupt level This is the highest priority level. It is allocated to processes that
need a very fast response. One of these processes will be the real-time clock
process. This process is not required if interrupts are not supported in the system.

A further priority level may be allocated to background processes (such as a self-
checking process) that do not need to meet real-time deadlines. These processes are
scheduled for execution when processor capacity is available.

Periodic processes must be executed at specified time intervals for data acquisition
and actuator control. In most real-time systems, there will be several types of periodic
process. Using the timing requirements specified in the application program, the RTOS
arranges the execution of periodic processes so that they can all meet their deadlines.

The actions taken by the operating system for periodic process management are
shown in Figure 21.19. The scheduler examines the list of periodic processes and
selects a process to be executed. The choice depends on the process priority, the
process periods, the expected execution times, and the deadlines of the ready pro-
cesses. Sometimes two processes with different deadlines should be executed at the
same clock tick. In such a situation, one process must be delayed. Normally, the
system will choose to delay the process with the longest deadline.

Processes that have to respond quickly to asynchronous events may be interrupt-
driven. The computer’s interrupt mechanism causes control to transfer to a prede-
termined memory location. This location contains an instruction to jump to a
simple and fast interrupt service routine. The service routine disables further inter-
rupts to avoid being interrupted itself. It then discovers the cause of the interrupt
and initiates, with a high priority, a process to handle the stimulus causing the
interrupt. In some high-speed data acquisition systems, the interrupt handler saves
the data that the interrupt signaled was available in a buffer for later processing.
Interrupts are then enabled again, and control is returned to the operating system.

Resource manager

Allocate memory
and processor

Scheduler

Choose process
for execution

Dispatcher

Start execution on an
available processor

Process queue Memory map Processor list Ready list

Figure 21.19  RTOS
actions required
to start a process

634    Chapter 21  ■  Real-time software engineering

At any one time several processes, all with different priorities, could be executed.
The process scheduler implements system-scheduling policies that determine the
order of process execution. There are two commonly used scheduling strategies:

1.	 Nonpreemptive scheduling After a process has been scheduled for execution, it
runs to completion or until it is blocked for some reason, such as waiting for
input. This can cause problems if there are processes with different priorities
and a high-priority process has to wait for a low-priority process to finish.

2.	 Preemptive scheduling The execution of an executing process may be stopped if
a higher-priority process requires service. The higher-priority process preempts
the execution of the lower-priority process and is allocated to a processor.

Within these strategies, different scheduling algorithms have been developed.
These include round-robin scheduling, where each process is executed in turn; rate
monotonic scheduling, where the process with the shortest period (highest fre-
quency) is given priority; and shortest deadline first scheduling, where the process in
the queue with the shortest deadline is scheduled (Burns and Wellings 2009).

Information about the process to be executed is passed to the resource manager.
The resource manager allocates memory and, in a multiprocessor system, also adds
a processor to this process. The process is then placed on the “ready list,” a list of
processes that are ready for execution. When a processor finishes executing a pro-
cess and becomes available, the dispatcher is invoked. It scans the ready list to find
a process that can be executed on the available processor and starts its execution.

K e y P o i n t s

■	 An embedded software system is part of a hardware/software system that reacts to events in
its environment. The software is “embedded” in the hardware. Embedded systems are normally
real-time systems.

■	 A real-time system is a software system that must respond to events in real time. System
correctness does not just depend on the results it produces, but also on the time when these
results are produced.

■	 Real-time systems are usually implemented as a set of communicating processes that react to
stimuli to produce responses.

■	 State models are an important design representation for embedded real-time systems. They are used
to show how the system reacts to its environment as events trigger changes of state in the system.

■	 Several standard patterns can be observed in different types of embedded system. These
include a pattern for monitoring the system’s environment for adverse events, a pattern for
actuator control, and a data-processing pattern.

■	 Designers of real-time systems have to do a timing analysis, which is driven by the deadlines for
processing and responding to stimuli. They have to decide how often each process in the system
should run and the expected and worst-case execution time for processes.

■	 A real-time operating system is responsible for process and resource management. It always
includes a scheduler, which is the component responsible for deciding which process should be
scheduled for execution.

F u rt h er R ea d i n g

Real-time Systems and Programming Language: Ada, Real-time Java and C/Real-time POSIX, 4th ed.
An excellent and comprehensive text that provides broad coverage of all aspects of real-time sys-
tems. (A. Burns and A. Wellings, Addison-Wesley, 2009).

“Trends in Embedded Software Engineering.” This article suggests that model-driven development
(as discussed in Chapter 5 of this book) will become an important approach to embedded systems
development. This is part of a special issue on embedded systems, and other articles, such as the
one by Ebert and Jones, are also useful reading. (IEEE Software, 26 (3), May–June 2009). http://dx.
doi.org/10.1109/MS.2009.80

Real-time systems: Design Principles for Distributed Embedded Applications, 2nd ed. This is a com-
prehensive textbook on modern real-time systems that may be distributed and mobile systems. The
author focuses on hard real-time systems and covers important topics such as Internet connectivity
and power management. (H. Kopetz, Springer, 2013).

W e b s i te

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/systems-engineering/

E x erc i s e s

21.1. 	Explain why responsiveness in real time is the critical difference between embedded sys-
tems and other software systems.

21.2. 	Identify possible stimuli and the expected responses for an embedded system that controls a
home refrigerator or a domestic washing machine.

21.3. 	Using the state-based approach to modeling, as discussed in Section 21.1.1, model the
operation of the embedded software for a voicemail system that is included in a landline phone.

	 Chapter 21  ■  Exercises   635

http://dx.doi.org/10.1109/MS.2009.80
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/systems-engineering
http://dx.doi.org/10.1109/MS.2009.80

This should display the number of recorded messages on an LED display and should allow the
user to dial-in and listen to the recorded messages.

21.4. 	What are the commonly used architectural patterns in real-time systems and when are they
used?

21.5. 	Show how the Environmental Control pattern could be used as the basis of the design of a
system to control the temperature in a greenhouse. The temperature should be between 10
and 30 degrees Celsius. If it falls below 10 degrees, the heating system should be switched
on; if it goes above 30, the windows should be automatically opened.

21.6. 	Design a process architecture for an environmental monitoring system that collects data
from a set of air quality sensors situated around a city. There are 5000 sensors organized
into 100 neighborhoods. Each sensor must be interrogated four times per second. When
more than 30% of the sensors in a particular neighborhood indicate that the air quality is
below an acceptable level, local warning lights are activated. All sensors return the read-
ings to a central computer, which generates reports every 15 minutes on the air quality in
the city.

21.7. 	A train protection system automatically applies the brakes of a train if the speed limit for a
segment of track is exceeded or if the train enters a track segment that is currently signaled
with a red light (i.e., the segment should not be entered). Details are shown in Figure 21.20.
Identify the stimuli that must be processed by the on-board train control system and the
associated responses to these stimuli.

Train protection system

•  �The system acquires information on the speed limit of a segment from a trackside transmitter, which
continually broadcasts the segment identifier and its speed limit. The same transmitter also broadcasts
information on the status of the signal controlling that track segment. The time required to broadcast track
segment and signal information is 50 ms.

•  �The train can receive information from the trackside transmitter when it is within 10 m of a transmitter.
•  The maximum train speed is 180 kph.
•  �Sensors on the train provide information about the current train speed (updated every 250 ms) and the train

brake status (updated every 100 ms).
•  �If the train speed exceeds the current segment speed limit by more than 5 kph, a warning is sounded in the

driver’s cabin. If the train speed exceeds the current segment speed limit by more than 10 kph, the train’s
brakes are automatically applied until the speed falls to the segment speed limit. Train brakes should be
applied within 100 ms of the time when the excessive train speed has been detected.

•  �If the train enters a track segment that is signaled with a red light, the train protection system applies the train
brakes and reduces the speed to zero. Train brakes should be applied within 100 ms of the time when the red
light signal is received.

•  The system continually updates a status display in the driver’s cabin.

Figure 21.20 
Requirements for
a train protection
system

636   Chapter 21  ■  Real-time software engineering

21.8. 	Suggest a possible process architecture for this system.

21.9. 	If a periodic process in the on-board train protection system is used to collect data from the
trackside transmitter, how often must it be scheduled to ensure that the system is guaranteed
to collect information from the transmitter? Explain how you arrived at your answer.

21.10.	 �With the help of examples, define what a real-time operating system is. Explain how it is
different from a conventional operating system. What are the components included in real-time
operating systems and what are their responsibilities?

R efere n ce s

Berry, G. 1989. “Real-Time Programming: Special-Purpose or General-Purpose Languages.” In
Information Processing, edited by G. Ritter, 89:11–17. Amsterdam: Elsevier Science Publishers.

Bruno, E. J., and G. Bollella. 2009. Real-Time Java Programming: With Java RTS. Boston: Prentice-Hall.

Burns, A., and A. Wellings. 2009. Real-Time Systems and Programming Languages: Ada, Real-Time
Java and C/Real-Time POSIX. Boston: Addison-Wesley.

Cooling, J. 2003. Software Engineering for Real-Time Systems. Harlow, UK: Addison-Wesley.

Douglass, B. P. 1999. Real-Time UML: Developing Efficient Objects for Embedded Systems, 2nd ed.
Boston: Addison-Wesley.

––––––. 2002. Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems.
Boston: Addison-Wesley.

Ebert, C., and C. Jones. 2009. “Embedded Software: Facts, Figures and Future.” IEEE Computer 26 (3):
42–52. doi:10.1109/MC.2009.118.

Harel, D. 1987. “Statecharts: A Visual Formalism for Complex Systems.” Sci. Comput. Programming 8
(3): 231–274. doi:10.1016/0167-6423(87)90035-9.

––––––. 1988. “On Visual Formalisms.” Comm. ACM 31 (5): 514–530. doi:10.1145/42411.42414.

Lee, E A. 2002. “Embedded Software.” In Advances in Computers, edited by M. Zelkowitz. Vol. 56.
London: Academic Press.

Silberschaltz, A., P. B. Galvin, and G. Gagne. 2013. Operating System Concepts, 9th ed. New York:
John Wiley & Sons.

Stallings, W. 2014. Operating Systems: Internals and Design Principles, 8th ed. Boston: Prentice-Hall.

	 Chapter 21  ■  References   637

This page intentionally left blank

PART

It is sometimes suggested that the key difference between software engi-
neering and other types of programming is that software engineering is
a managed process. By this, I mean that the software development takes
place within an organization and is subject to a range of schedule, budget
and organizational constraints. I introduce a range of management topics in
this part of the book with a focus on technical management issues rather
than ‘softer’ management issues such as people management, or the more
strategic management of enterprise systems.

Chapters 22 and 23 focus on the essential project management activities,
planning, risk management and people management. Chapter 22 intro-
duces software project management and its first major section is con-
cerned with risk management where managers identify what might go
wrong and plan what they might do about it. This chapter also includes
sections on people management and team working.

Chapter 23 covers project planning and estimation. I introduce bar charts
as fundamental planning tools and explain why plan-driven development
will remain an important development approach, in spite of the success
of agile methods. I also discuss issues that influence the price charged
for a system and techniques of software cost estimation. I use the
COCOMO family of cost models to describe algorithmic cost modeling
and explain the benefits and disadvantages of algorithmic approaches.

4 Software
Management

Chapters 24 explains the basics of software quality management, as
practised in large projects. Quality management is concerned with pro-
cesses and techniques for ensuring and improving the quality of soft-
ware. I discuss the importance of standards in quality management, the
use of reviews and inspections in the quality assurance process. The final
section of this chapter covers software measurement and I discuss the
benefits and problems in using metrics and software data analytics in
quality management.

Finally, Chapter 25 discusses configuration management, a critical issue
for all large systems. However, the need for configuration management is
not always obvious to students who have only been concerned with per-
sonal software development, so I describe the various aspects of this
topic here, including version management, system building, change man-
agement and release management. I explain why continuous integration
or daily system building is important. An important change in this edition
is the inclusion of new material on distributed version management sys-
tems, such as Git, which are being increasingly used to support software
engineering by distributed teams.

Project management
22

Objectives
The objective of this chapter is to introduce software project management
and two important management activities, namely, risk management and
people management. When you have read the chapter you will:

■	 know the principal tasks of software project managers;

■	 have been introduced to the notion of risk management and some of
the risks that can arise in software projects;

■	 understand factors that influence personal motivation and what these
might mean for software project managers;

■	 understand key issues that influence team working, such as team
composition, organization, and communication.

Contents
22.1	 Risk management

22.2	 Managing people

22.3	 Teamwork

642    Chapter 22  ■  Project management

Software project management is an essential part of software engineering. Projects
need to be managed because professional software engineering is always subject to
organizational budget and schedule constraints. The project manager’s job is to ensure
that the software project meets and overcomes these constraints as well as delivering
high-quality software. Good management cannot guarantee project success. However,
bad management usually results in project failure: The software may be delivered late,
cost more than originally estimated, or fail to meet the expectations of customers.

The success criteria for project management obviously vary from project to pro-
ject, but, for most projects, important goals are:

■	 to deliver the software to the customer at the agreed time;

■	 to keep overall costs within budget;

■	 to deliver software that meets the customer’s expectations;

■	 to maintain a coherent and well-functioning development team.

These goals are not unique to software engineering but are the goals of all
engineering projects. However, software engineering is different from other types of
engineering in a number of ways that make software management particularly chal-
lenging. Some of these differences are:

1.	 The product is intangible A manager of a shipbuilding or a civil engineering
project can see the product being developed. If a schedule slips, the effect on the
product is visible—parts of the structure are obviously unfinished. Software is
intangible. It cannot be seen or touched. Software project managers cannot see
progress by looking at the artifact that is being constructed. Rather, they rely on
others to produce evidence that they can use to review the progress of the work.

2.	 Large software projects are often “one-off” projects Every large software
development project is unique because every environment where software is
developed is, in some ways, different from all others. Even managers who have
a large body of previous experience may find it difficult to anticipate problems.
Furthermore, rapid technological changes in computers and communications
can make experience obsolete. Lessons learned from previous projects may not
be readily transferable to new projects.

3.	 Software processes are variable and organization-specific The engineering process
for some types of system, such as bridges and buildings, is well understood. However,
different companies use quite different software development processes. We cannot
reliably predict when a particular software process is likely to lead to development
problems. This is especially true when the software project is part of a wider systems
engineering project or when completely new software is being developed.

Because of these issues, it is not surprising that some software projects are late,
overbudget, and behind schedule. Software systems are often new, very complex,
and technically innovative. Schedule and cost overruns are also common in other

engineering projects, such as new transport systems, that are complex and innova-
tive. Given the difficulties involved, it is perhaps remarkable that so many software
projects are delivered on time and to budget.

It is impossible to write a standard job description for a software project manager. The
job varies tremendously depending on the organization and the software being developed.
Some of the most important factors that affect how software projects are managed are:

1.	 Company size Small companies can operate with informal management and
team communications and do not need formal policies and management struc-
tures. They have less management overhead than larger organizations. In larger
organizations, management hierarchies, formal reporting and budgeting, and
approval processes must be followed.

2.	 Software customers If the customer is an internal customer (as is the case for
software product development), then customer communications can be informal
and there is no need to fit in with the customer’s ways of working. If custom
software is being developed for an external customer, agreement has to be
reached on more formal communication channels. If the customer is a govern-
ment agency, the software company must operate according to the agency’s
policies and procedures, which are likely to be bureaucratic.

3.	 Software size Small systems can be developed by a small team, which can get
together in the same room to discuss progress and other management issues. Large
systems usually need multiple development teams that may be geographically
distributed and in different companies. The project manager has to coordinate the
activities of these teams and arrange for them to communicate with each other.

4.	 Software type If the software being developed is a consumer product, formal
records of project management decisions are unnecessary. On the other hand, if
a safety-critical system is being developed, all project management decisions
should be recorded and justified as these may affect the safety of the system.

5.	 Organizational culture Some organizations have a culture that is based on
supporting and encouraging individuals, while others are group focused. Large
organizations are often bureaucratic. Some organizations have a culture of
taking risks, whereas others are risk averse.

6.	 Software development processes Agile processes typically try to operate with
“lightweight” management. More formal processes require management
monitoring to ensure that the development team is following the defined process.

These factors mean that project managers in different organizations may work in
quite different ways. However, a number of fundamental project management activ-
ities are common to all organizations:

1.	 Project planning Project managers are responsible for planning, estimating, and
scheduling project development and assigning people to tasks. They supervise

	 Chapter 22  ■  Project management    643

644    Chapter 22  ■  Project management

the work to ensure that it is carried out to the required standards, and they mon-
itor progress to check that the development is on time and within budget.

2.	 Risk management Project managers have to assess the risks that may affect a
project, monitor these risks, and take action when problems arise.

3.	 People management Project managers are responsible for managing a team of
people. They have to choose people for their team and establish ways of work-
ing that lead to effective team performance.

4.	 Reporting Project managers are usually responsible for reporting on the progress
of a project to customers and to the managers of the company developing the
software. They have to be able to communicate at a range of levels, from detailed
technical information to management summaries. They have to write concise,
coherent documents that abstract critical information from detailed project
reports. They must be able to present this information during progress reviews.

5.	 Proposal writing The first stage in a software project may involve writing a
proposal to win a contract to carry out an item of work. The proposal describes
the objectives of the project and how it will be carried out. It usually includes
cost and schedule estimates and justifies why the project contract should be
awarded to a particular organization or team. Proposal writing is a critical task
as the survival of many software companies depends on having enough propos-
als accepted and contracts awarded.

Project planning is an important topic in its own right, which I discuss in
Chapter 23. In this chapter, I focus on risk management and people management.

	 22.1 	 Risk management

Risk management is one of the most important jobs for a project manager. You can think
of a risk as something that you’d prefer not to have happen. Risks may threaten the pro-
ject, the software that is being developed, or the organization. Risk management involves
anticipating risks that might affect the project schedule or the quality of the software
being developed, and then taking action to avoid these risks (Hall 1998; Ould 1999).

Risks can be categorized according to type of risk (technical, organizational,
etc.), as I explain in Section 22.1.1. A complementary classification is to classify
risks according to what these risks affect:

1.	 Project risks affect the project schedule or resources. An example of a project
risk is the loss of an experienced system architect. Finding a replacement archi-
tect with appropriate skills and experience may take a long time; consequently,
it will take longer to develop the software design than originally planned.

2.	 Product risks affect the quality or performance of the software being developed.
An example of a product risk is the failure of a purchased component to perform

	 22.1  ■  Risk management    645

as expected. This may affect the overall performance of the system so that it is
slower than expected.

3.	 Business risks affect the organization developing or procuring the software. For
example, a competitor introducing a new product is a business risk. The intro-
duction of a competitive product may mean that the assumptions made about
sales of existing software products may be unduly optimistic.

Of course, these risk categories overlap. An experienced engineer’s decision to
leave a project, for example, presents a project risk because the software delivery
schedule will be affected. It inevitably takes time for a new project member to under-
stand the work that has been done, so he or she cannot be immediately productive.
Consequently, the delivery of the system may be delayed. The loss of a team mem-
ber can also be a product risk because a replacement may not be as experienced and
so could make programming errors. Finally, losing a team member can be a business
risk because an experienced engineer’s reputation may be a critical factor in winning
new contracts.

For large projects, you should record the results of the risk analysis in a risk reg-
ister along with a consequence analysis. This sets out the consequences of the risk
for the project, product, and business. Effective risk management makes it easier to
cope with problems and to ensure that these do not lead to unacceptable budget or
schedule slippage. For small projects, formal risk recording may not be required, but
the project manager should be aware of them.

The specific risks that may affect a project depend on the project and the organi-
zational environment in which the software is being developed. However, there are
also common risks that are independent of the type of software being developed.
These can occur in any software development project. Some examples of these com-
mon risks are shown in Figure 22.1.

Software risk management is important because of the inherent uncertainties in
software development. These uncertainties stem from loosely defined requirements,
requirements changes due to changes in customer needs, difficulties in estimating the
time and resources required for software development, and differences in individual
skills. You have to anticipate risks, understand their impact on the project, the product,
and the business, and take steps to avoid these risks. You may need to draw up contin-
gency plans so that, if the risks do occur, you can take immediate recovery action.

An outline of the process of risk management is presented in Figure 22.2. It
involves several stages:

1.	 Risk identification You should identify possible project, product, and business risks.

2.	 Risk analysis You should assess the likelihood and consequences of these risks.

3.	 Risk planning You should make plans to address the risk, either by avoiding it or
by minimizing its effects on the project.

4.	 Risk monitoring You should regularly assess the risk and your plans for risk
mitigation and revise these plans when you learn more about the risk.

646    Chapter 22  ■  Project management

Risk Affects Description

Staff turnover Project Experienced staff will leave the project before it is
finished.

Management change Project There will be a change of company management
with different priorities.

Hardware
unavailability

Project Hardware that is essential for the project will not
be delivered on schedule.

Requirements
change

Project and product There will be a larger number of changes to the
requirements than anticipated.

Specification delays Project and product Specifications of essential interfaces are not
available on schedule.

Size underestimate Project and product The size of the system has been underestimated.

Software tool
underperformance

Product Software tools that support the project do not
perform as anticipated.

Technology change Business The underlying technology on which the system is
built is superseded by new technology.

Product competition Business A competitive product is marketed before the
system is completed.

Figure 22.1  Examples
of common project,
product, and business
risks

Risk
identification

Risk
analysis

Risk
planning

Risk
monitoring

List of potential
risks

Prioritized risk
list

Risk avoidance
and contingency

plans

Risk
assessment

For large projects, you should document the outcomes of the risk management
process in a risk management plan. This should include a discussion of the risks
faced by the project, an analysis of these risks, and information on how you plan to
manage the risk if it seems likely to be a problem.

The risk management process is an iterative process that continues throughout
a project. Once you have drawn up an initial risk management plan, you monitor
the situation to detect emerging risks. As more information about the risks becomes

Figure 22.2  The risk
management process

	 22.1  ■  Risk management    647

available, you have to re-analyze the risks and decide if the risk priority has
changed. You may then have to change your plans for risk avoidance and contin-
gency management.

Risk management in agile development is less formal. The same fundamental
activities should still be followed and risks discussed, although these may not be
formally documented. Agile development reduces some risks, such as risks from
requirements changes. However, agile development also has a downside. Because of
its reliance on people, staff turnover can have significant effects on the project, prod-
uct, and business. Because of the lack of formal documentation and its reliance on
informal communications, it is very hard to maintain continuity and momentum if
key people leave the project.

	 22.1.1 	 Risk identification

Risk identification is the first stage of the risk management process. It is concerned
with identifying the risks that could pose a major threat to the software engineering
process, the software being developed, or the development organization. Risk identi-
fication may be a team process in which a team gets together to brainstorm possible
risks. Alternatively, project managers may identify risks based on their experience of
what went wrong on previous projects.

As a starting point for risk identification, a checklist of different types of risk may
be used. Six types of risk may be included in a risk checklist:

1.	 Estimation risks arise from the management estimates of the resources required
to build the system.

2.	 Organizational risks arise from the organizational environment where the soft-
ware is being developed.

3.	 People risks are associated with the people in the development team.

4.	 Requirements risks come from changes to the customer requirements and the
process of managing the requirements change.

5.	 Technology risks come from the software or hardware technologies that are
used to develop the system.

6.	 Tools risks come from the software tools and other support software used to
develop the system.

Figure 22.3 shows examples of possible risks in each of these categories. When
you have finished the risk identification process, you should have a long list of risks
that could occur and that could affect the product, the process, and the business. You
then need to prune this list to a manageable size. If you have too many risks, it is
practically impossible to keep track of all of them.

648    Chapter 22  ■  Project management

Figure 22.3  Examples
of different types of
risk

Risk type Possible risks

Estimation     1. �The time required to develop the software is
underestimated.

    2. The rate of defect repair is underestimated.
    3. The size of the software is underestimated.

Organizational     4. �The organization is restructured so that different
management are responsible for the project.

    5. �Organizational financial problems force reductions in the
project budget.

People     6. It is impossible to recruit staff with the skills required.
    7. Key staff are ill and unavailable at critical times.
    8. Required training for staff is not available.

Requirements     9. �Changes to requirements that require major design
rework are proposed.

10. �Customers fail to understand the impact of requirements
changes.

Technology 11. �The database used in the system cannot process as many
transactions per second as expected.

12. �Faults in reusable software components have to be
repaired before these components are reused.

Tools 13. �The code generated by software code generation tools is
inefficient.

14. �Software tools cannot work together in an integrated way.

	 22.1.2 	 Risk analysis

During the risk analysis process, you have to consider each identified risk and make
a judgment about the probability and seriousness of that risk. There is no easy way to
do so. You have to rely on your judgment and experience of previous projects and
the problems that arose in them. It is not possible to make precise, numeric assess-
ment of the probability and seriousness of each risk. Rather, you should assign the
risk to one of a number of bands:

1.	 The probability of the risk might be assessed as insignificant, low, moderate,
high, or very high.

2.	 The effects of the risk might be assessed as catastrophic (threaten the survival of
the project), serious (would cause major delays), tolerable (delays are within
allowed contingency), or insignificant.

You may then tabulate the results of this analysis process using a table
ordered according to the seriousness of the risk. Figure 22.4 illustrates this for
the risks that I have identified in Figure 22.3. Obviously, the assessment of
probability and seriousness is arbitrary here. To make this assessment, you need

	 22.1  ■  Risk management    649

Figure 22.4  Risk types
and examples

Risk Probability Effects

Organizational financial problems force reductions in the project
budget (5).

Low Catastrophic

It is impossible to recruit staff with the skills required (6). High Catastrophic

Key staff are ill at critical times in the project (7). Moderate Serious

Faults in reusable software components have to be repaired
before these components are reused (12).

Moderate Serious

Changes to requirements that require major design rework are
proposed (9).

Moderate Serious

The organization is restructured so that different managements are
responsible for the project (4).

High Serious

The database used in the system cannot process as many
transactions per second as expected (11).

Moderate Serious

The time required to develop the software is underestimated (1). High Serious

Software tools cannot be integrated (14). High Tolerable

Customers fail to understand the impact of requirements
changes (10).

Moderate Tolerable

Required training for staff is not available (8). Moderate Tolerable

The rate of defect repair is underestimated (2). Moderate Tolerable

The size of the software is underestimated (3). High Tolerable

Code generated by code generation tools is inefficient (13). Moderate Insignificant

detailed information about the project, the process, the development team, and
the organization.

Of course, both the probability and the assessment of the effects of a risk may
change as more information about the risk becomes available and as risk manage-
ment plans are implemented. You should therefore update this table during each
iteration of the risk management process.

Once the risks have been analyzed and ranked, you should assess which of these
risks are most significant. Your judgment must depend on a combination of the prob-
ability of the risk arising and the effects of that risk. In general, catastrophic risks
should always be considered, as should all serious risks that have more than a moder-
ate probability of occurrence.

Boehm (Boehm 1988) recommends identifying and monitoring the “top 10” risks.
However, I think that the right number of risks to monitor must depend on the pro-
ject. It might be 5 or it might be 15. From the risks identified in Figure 22.4, I think
that it is appropriate to consider the eight risks that have catastrophic or serious con-
sequences (Figure 22.5).

650    Chapter 22  ■  Project management

	 22.1.3 	 Risk planning

The risk planning process develops strategies to manage the key risks that threaten
the project. For each risk, you have to think of actions that you might take to mini-
mize the disruption to the project if the problem identified in the risk occurs. You
should also think about the information that you need to collect while monitoring the
project so that emerging problems can be detected before they become serious.

In risk planning, you have to ask “what-if” questions that consider both individual
risks, combinations of risks, and external factors that affect these risks. For example,
questions that you might ask are:

1.	 What if several engineers are ill at the same time?

2.	 What if an economic downturn leads to budget cuts of 20% for the project?

3.	 What if the performance of open-source software is inadequate and the only
expert on that open-source software leaves?

4.	 What if the company that supplies and maintains software components goes out
of business?

5.	 What if the customer fails to deliver the revised requirements as predicted?

Based on the answers to these “what-if” questions, you may devise strategies for
managing the risks. Figure 22.5 shows possible risk management strategies that have
been identified for the key risks (i.e., those that are serious or intolerable) shown in
Figure 22.4. These strategies fall into three categories:

1.	 Avoidance strategies Following these strategies means that the probability that
the risk will arise is reduced. An example of a risk avoidance strategy is the
strategy for dealing with defective components shown in Figure 22.5.

2.	 Minimization strategies Following these strategies means that the impact of the
risk is reduced. An example of a risk minimization strategy is the strategy for
staff illness shown in Figure 22.5.

3.	 Contingency plans Following these strategies means that you are prepared for
the worst and have a strategy in place to deal with it. An example of a contin-
gency strategy is the strategy for organizational financial problems that I have
shown in Figure 22.5.

You can see a clear analogy here with the strategies used in critical systems
to ensure reliability, security, and safety, where you must avoid, tolerate, or
recover from failures. Obviously, it is best to use a strategy that avoids the risk.
If this is not possible, you should use a strategy that reduces the chances that the
risk will have serious effects. Finally, you should have strategies in place to

	 22.1  ■  Risk management    651

cope with the risk if it arises. These should reduce the overall impact of a risk on
the project or product.

	 22.1.4 	 Risk monitoring

Risk monitoring is the process of checking that your assumptions about the product,
process, and business risks have not changed. You should regularly assess each of
the identified risks to decide whether or not that risk is becoming more or less prob-
able. You should also think about whether or not the effects of the risk have changed.
To do this, you have to look at other factors, such as the number of requirements
change requests, which give you clues about the risk probability and its effects.
These factors are obviously dependent on the types of risk. Figure 22.6 gives some
examples of factors that may be helpful in assessing these risk types.

You should monitor risks regularly at all stages in a project. At every manage-
ment review, you should consider and discuss each of the key risks separately. You
should decide if the risk is more or less likely to arise and if the seriousness and
consequences of the risk have changed.

Figure 22.5  Strategies
to help manage risk

Risk Strategy

Organizational
financial problems

Prepare a briefing document for senior management
showing how the project is making a very important
contribution to the goals of the business and presenting
reasons why cuts to the project budget would not be
cost-effective.

Recruitment
problems

Alert customer to potential difficulties and the possibility
of delays; investigate buying-in components.

Staff illness Reorganize team so that there is more overlap of work
and people therefore understand each other’s jobs.

Defective
components

Replace potentially defective components with bought-in
components of known reliability.

Requirements
changes

Derive traceability information to assess requirements
change impact; maximize information hiding in the design.

Organizational
restructuring

Prepare a briefing document for senior management
showing how the project is making a very important
contribution to the goals of the business.

Database
performance

Investigate the possibility of buying a higher-performance
database.

Underestimated
development time

Investigate buying-in components; investigate use of
automated code generation.

652    Chapter 22  ■  Project management

Figure 22.6  Risk
indicators

Risk type Potential indicators

Estimation Failure to meet agreed schedule; failure to clear reported
defects.

Organizational Organizational gossip; lack of action by senior management.

People Poor staff morale; poor relationships among team members;
high staff turnover.

Requirements Many requirements change requests; customer complaints.

Technology Late delivery of hardware or support software; many
reported technology problems.

Tools Reluctance by team members to use tools; complaints about
software tools; requests for faster computers/more memory,
and so on.

	 22.2 	 Managing people

The people working in a software organization are its greatest assets. It is expen-
sive to recruit and retain good people, and it is up to software managers to ensure
that the engineers working on a project are as productive as possible. In success-
ful companies and economies, this productivity is achieved when people are
respected by the organization and are assigned responsibilities that reflect their
skills and experience.

It is important that software project managers understand the technical issues that
influence the work of software development. Unfortunately, however, good software
engineers are not always good people managers. Software engineers often have
strong technical skills but may lack the softer skills that enable them to motivate and
lead a project development team. As a project manager, you should be aware of the
potential problems of people management and should try to develop people manage-
ment skills.

There are four critical factors that influence the relationship between a manager
and the people that he or she manages:

1.	 Consistency All the people in a project team should be treated in a comparable
way. No one expects all rewards to be identical, but people should not feel that
their contribution to the organization is undervalued.

2.	 Respect Different people have different skills, and managers should respect
these differences. All members of the team should be given an opportunity to
make a contribution. In some cases, of course, you will find that people simply
don’t fit into a team and they cannot continue, but it is important not to jump to
conclusions about them at an early stage in the project.

	 22.2  ■  Managing people    653

3.	 Inclusion People contribute effectively when they feel that others listen to
them and take account of their proposals. It is important to develop a working
environment where all views, even those of the least experienced staff, are
considered.

4.	 Honesty As a manager, you should always be honest about what is going well
and what is going badly in the team. You should also be honest about your level
of technical knowledge and be willing to defer to staff with more knowledge
when necessary. If you try to cover up ignorance or problems, you will eventu-
ally be found out and will lose the respect of the group.

Practical people management has to be based on experiences so my aim in this
section and the following section on teamwork is to raise awareness of the most
important issues that project managers may have to deal with.

	 22.2.1 	 Motivating people

As a project manager, you need to motivate the people who work with you so that
they will contribute to the best of their abilities. In practice, motivation means organ-
izing work and its environment to encourage people to work as effectively as possi-
ble. If people are not motivated, they will be less interested in the work they are
doing. They will work slowly, be more likely to make mistakes, and will not contrib-
ute to the broader goals of the team or the organization.

To provide this encouragement, you should understand a little about what moti-
vates people. Maslow (Maslow 1954) suggests that people are motivated by satisfy-
ing their needs. These needs are arranged in a series of levels, as shown in Figure 22.7.
The lower levels of this hierarchy represent fundamental needs for food, sleep, and
so on, and the need to feel secure in an environment. Social need is concerned with
the need to feel part of a social grouping. Esteem need represents the need to feel
respected by others, and self-realization need is concerned with personal develop-
ment. People need to satisfy lower-level needs such as hunger before the more
abstract, higher-level needs.

People working in software development organizations are not usually hungry,
thirsty, or physically threatened by their environment. Therefore, making sure that
peoples’ social, esteem, and self-realization needs are satisfied is most important
from a management point of view.

1.	 To satisfy social needs, you need to give people time to meet their co-workers
and provide places for them to meet. Software companies such as Google pro-
vide social space in their offices for people to get together. This is relatively
easy when all of the members of a development team work in the same place,
but, increasingly, team members are not located in the same building or even the
same town or state. They may work for different organizations or from home
most of the time.

654    Chapter 22  ■  Project management

	 Social networking systems and teleconferencing can be used for remote com-
munications, but my experience with these systems is that they are most effec-
tive when people already know each other. You should arrange some face-to-face
meetings early in the project so that people can directly interact with other
members of the team. Through this direct interaction, people become part of a
social group and accept the goals and priorities of that group.

2.	 To satisfy esteem needs, you need to show people that they are valued by the
organization. Public recognition of achievements is a simple and effective way
of doing this. Obviously, people must also feel that they are paid at a level that
reflects their skills and experience.

3.	 Finally, to satisfy self-realization needs, you need to give people responsibility
for their work, assign them demanding (but not impossible) tasks, and provide
opportunities for training and development where people can enhance their
skills. Training is an important motivating influence as people like to gain new
knowledge and learn new skills.

Maslow’s model of motivation is helpful up to a point, but I think that a problem
with it is that it takes an exclusively personal viewpoint on motivation. It does not
take adequate account of the fact that people feel themselves to be part of an organ-
ization, a professional group, and one or more cultures. Being a member of a cohe-
sive group is highly motivating for most people. People with fulfilling jobs often
like to go to work because they are motivated by the people they work with and the
work that they do. Therefore, as a manager, you also have to think about how a
group as a whole can be motivated. I discuss this and other teamwork issues in
Section 22.3.

In Figure 22.8, I illustrate a problem of motivation that managers often have to
face. In this example, a competent group member loses interest in the work and in
the group as a whole. The quality of her work falls and becomes unacceptable. This
situation has to be dealt with quickly. If you don’t sort out the problem, the other
group members will become dissatisfied and feel that they are doing an unfair share
of the work.

Physiological needs

Safety needs

Social needs

Esteem needs

Self-realization
needs

Figure 22.7  Human
needs hierarchy

	 22.2  ■  Managing people    655

In this example, Alice tries to find out if Dorothy’s personal circumstances could
be the problem. Personal difficulties commonly affect motivation because people
cannot therefore concentrate on their work. You may have to give them time and
support to resolve these issues, although you also have to make it clear that they still
have a responsibility to their employer.

Dorothy’s motivation problem is one that can arise when projects develop in an
unexpected direction. People who expect to do one type of work may end up doing
something completely different. In those circumstances, you may decide that the
team member should leave the team and find opportunities elsewhere. In this
example, however, Alice decides to try to convince Dorothy that broadening her
experience is a positive career step. She gives Dorothy more design autonomy and
organizes training courses in software engineering that will give her more opportuni-
ties after her current project has finished.

Psychological personality type also influences motivation. Bass and Dunteman
(Bass and Dunteman 1963) identified three classifications for professional workers:

1.	 Task-oriented people, who are motivated by the work they do. In software engi-
neering, these are people who are motivated by the intellectual challenge of soft-
ware development.

Figure 22.8  Individual
motivation

Case study: Motivation

Alice is a software project manager working in a company that develops alarm systems.
This company wishes to enter the growing market of assistive technology to help elderly
and disabled people live independently. Alice has been asked to lead a team of six
developers that can develop new products based on the company’s alarm technology.

Alice’s assistive technology project starts well. Good working relationships develop
within the team, and creative new ideas are developed. The team decides to develop a
system that a user can initiate and control the alarm system from a cell phone or tablet
computer. However, some months into the project, Alice notices that Dorothy, a hard-
ware expert, starts coming into work late, that the quality of her work is deteriorating,
and, increasingly, that she does not appear to be communicating with other members
of the team.

Alice talks about the problem informally with other team members to try to find out
if Dorothy’s personal circumstances have changed and if this might be affecting her
work. They don’t know of anything, so Alice decides to talk with Dorothy to try to
understand the problem.

After some initial denials of any problem, Dorothy admits that she has lost interest
in the job. She expected that she would be able to develop and use her hardware
interfacing skills. However, because of the product direction that has been chosen, she
has little opportunity to use these skills. Basically, she is working as a C programmer on
the alarm system software.

While she admits that the work is challenging, she is concerned that she is not
developing her interfacing skills. She is worried that finding a job that involves hard-
ware interfacing will be difficult after this project. Because she does not want to upset
the team by revealing that she is thinking about the next project, she has decided that
it is best to minimize conversation with them.

656    Chapter 22  ■  Project management

2.	 Self-oriented people, who are principally motivated by personal success and
recognition. They are interested in software development as a means of achiev-
ing their own goals. They often have longer-term goals, such as career progres-
sion, that motivate them, and they wish to be successful in their work to help
realize these goals.

3.	 Interaction-oriented people, who are motivated by the presence and actions of
co-workers. As more and more attention is paid to user interface design, interac-
tion-oriented individuals are becoming more involved in software engineering.

Research has shown that interaction-oriented personalities usually like to work as
part of a group, whereas task-oriented and self-oriented people usually prefer to act
as individuals. Women are more likely to be interaction-oriented than men are. They
are often more effective communicators. I discuss the mix of these different person-
ality types in groups in the case study shown later in Figure 22.10.

Each individual’s motivation is made up of elements of each class, but one type
of motivation is usually dominant at any one time. However, individuals can change.
For example, technical people who feel they are not being properly rewarded can
become self-oriented and put personal interests before technical concerns. If a group
works particularly well, self-oriented people can become more interaction-oriented.

	 22.3 	 Teamwork

Most professional software is developed by project teams that range in size from
two to several hundred people. However, as it is impossible for everyone in a large
group to work together on a single problem, large teams are usually split into a
number of smaller groups. Each group is responsible for developing part of the
overall system. The best size for a software engineering group is 4 to 6 members,
and they should never have more than 12 members. When groups are small, com-
munication problems are reduced. Everyone knows everyone else, and the whole
group can get around a table for a meeting to discuss the project and the software
that they are developing.

The People Capability Maturity Model

The People Capability Maturity Model (P-CMM) is a framework for assessing how well organizations manage
the development of their staff. It highlights best practice in people management and provides a basis for organi-
zations to improve their people management processes. It is best suited to large rather than small, informal
companies.

http://software-engineering-book.com/web/people-cmm/

http://software-engineering-book.com/web/people-cmm

	 22.3  ■  Teamwork    657

Putting together a group that has the right balance of technical skills, experi-
ence, and personalities is a critical management task. However, successful groups
are more than simply a collection of individuals with the right balance of skills. A
good group is cohesive and thinks of itself as a strong, single unit. The people
involved are motivated by the success of the group as well as by their own per-
sonal goals.

In a cohesive group, members think of the group as more important than the
individuals who are group members. Members of a well-led, cohesive group are
loyal to the group. They identify with group goals and other group members.
They attempt to protect the group, as an entity, from outside interference. This
makes the group robust and able to cope with problems and unexpected
situations.

The benefits of creating a cohesive group are:

1.	 The group can establish its own quality standards Because these standards are
established by consensus, they are more likely to be observed than external
standards imposed on the group.

2.	 Individuals learn from and support each other Group members learn by work-
ing together. Inhibitions caused by ignorance are minimized as mutual learning
is encouraged.

3.	 Knowledge is shared Continuity can be maintained if a group member leaves.
Others in the group can take over critical tasks and ensure that the project is not
unduly disrupted.

4.	 Refactoring and continual improvement is encouraged Group members work
collectively to deliver high-quality results and fix problems, irrespective of the
individuals who originally created the design or program.

Good project managers should always try to encourage group cohesiveness. They
may try to establish a sense of group identity by naming the group and establishing a
group identity and territory. Some managers like explicit group-building activities
such as sports and games, although these are not always popular with group mem-
bers. Social events for group members and their families are a good way to bring
people together.

One of the most effective ways of promoting cohesion is to be inclusive. That is,
you should treat group members as responsible and trustworthy, and make informa-
tion freely available. Sometimes managers feel that they cannot reveal certain infor-
mation to everyone in the group. This invariably creates a climate of mistrust. An
effective way of making people feel valued and part of a group is to make sure that
they know what is going on.

You can see an example in the case study in Figure 22.9. Alice arranges regular
informal meetings where she tells the other group members what is going on. She
makes a point of involving people in the product development by asking them to
come up with new ideas derived from their own family experiences. The “away

658    Chapter 22  ■  Project management

days” are also good ways of promoting cohesion: People relax together while they
help each other learn about new technologies.

Whether or not a group is effective depends, to some extent, on the nature of the
project and the organization doing the work. If an organization is in a state of turmoil
with constant reorganizations and job insecurity, it is difficult for team members to
focus on software development. Similarly, if a project keeps changing and is in dan-
ger of cancellation, people lose interest in it.

Given a stable organizational and project environment, the three factors that have
the biggest effect on team working are:

1.	 The people in the group You need a mix of people in a project group as software
development involves diverse activities such as negotiating with clients, pro-
gramming, testing, and documentation.

2.	 The way the group is organized A group should be organized so that individuals
can contribute to the best of their abilities and tasks can be completed as
expected.

3.	 Technical and managerial communications Good communication between
group members, and between the software engineering team and other project
stakeholders, is essential.

As with all management issues, getting the right team cannot guarantee project
success. Too many other things can go wrong, including changes to the business and
the business environment. However, if you don’t pay attention to group composi-
tion, organization, and communications, you increase the likelihood that your pro-
ject will run into difficulties.

Figure 22.9  Group
cohesion

Case study: Team spirit

Alice, an experienced project manager, understands the importance of creating a cohe-
sive group. As her company is developing a new product, she takes the opportunity to
involve all group members in the product specification and design by getting them to
discuss possible technology with elderly members of their families. She encourages
them to bring these family members to meet other members of the development group.

Alice also arranges monthly lunches for everyone in the group. These lunches are an
opportunity for all team members to meet informally, talk around issues of concern,
and get to know each other. At the lunch, Alice tells the group what she knows about
organizational news, policies, strategies, and so forth. Each team member then briefly
summarizes what they have been doing, and the group discusses a general topic, such
as new product ideas from elderly relatives.

Every few months, Alice organizes an “away day” for the group where the team
spends two days on “technology updating.” Each team member prepares an update on
a relevant technology and presents it to the group. This is an offsite meeting, and
plenty of time is scheduled for discussion and social interaction.

	 22.3  ■  Teamwork    659

	 22.3.1 	 Selecting group members

A manager or team leader’s job is to create a cohesive group and organize that group
so that they work together effectively. This task involves selecting a group with the
right balance of technical skills and personalities. Sometimes people are hired from
outside the organization; more often, software engineering groups are put together
from current employees who have experience on other projects. Managers rarely
have a completely free hand in team selection. They often have to use the people
who are available in the company, even if they are not the ideal people for the job.

Many software engineers are motivated primarily by their work. Software devel-
opment groups, therefore, are often composed of people who have their own ideas
about how technical problems should be solved. They want to do the best job possi-
ble, so they may deliberately redesign systems that they think can be improved and
add extra system features that are not in the system requirements. Agile methods
encourage engineers to take the initiative to improve the software. However, some-
times this means that time is spent doing things that aren’t really needed and that
different engineers compete to rewrite each other’s code.

Technical knowledge and ability should not be the only factor used to select group
members. The “competing engineers” problem can be reduced if the people in the
group have complementary motivations. People who are motivated by the work are
likely to be the strongest technically. People who are self-oriented will probably be
best at pushing the work forward to finish the job. People who are interaction-ori-
ented help facilitate communications within the group. I think that it is particularly
important to have interaction-oriented people in a group. They like to talk to people
and can detect tensions and disagreements at an early stage, before these problems
have a serious impact on the group.

In the case study in Figure 22.10, I have suggested how Alice, the project man-
ager, has tried to create a group with complementary personalities. This particular
group has a good mix of interaction- and task-oriented people, but I have already
discussed, in Figure 22.8, how Dorothy’s self-oriented personality has caused prob-
lems because she has not been doing the work that she expected. Fred’s part-time
role in the group as a domain expert might also be a problem. He is mostly interested
in technical challenges, so he may not interact well with other group members. The
fact that he is not always part of the team means that he may not fully relate to the
team’s goals.

It is sometimes impossible to choose a group with complementary personalities.
If this is the case, the project manager has to control the group so that individual
goals do not take precedence over organizational and group objectives. This control
is easier to achieve if all group members participate in each stage of the project.
Individual initiative is most likely to develop when group members are given instruc-
tions without being aware of the part that their task plays in the overall project.

For example, say a software engineer takes over the development of a system and
notices that possible improvements could be made to the design. If he or she imple-
ments these improvements without understanding the rationale for the original
design, any changes, though well-intentioned, might have adverse implications for

660    Chapter 22  ■  Project management

other parts of the system. If all the members of the group are involved in the design
from the start, they are more likely to understand why design decisions have been
made. They may then identify with these decisions rather than oppose them.

	 22.2.3 	 Group organization

The way a group is organized affects the group’s decisions, the ways information is
exchanged, and the interactions between the development group and external project
stakeholders. Important organizational questions for project managers include the
following:

1.	 Should the project manager be the technical leader of the group? The technical
leader or system architect is responsible for the critical technical decisions made
during software development. Sometimes the project manager has the skill and
experience to take on this role. However, for large projects, it is best to separate
technical and managerial roles. The project manager should appoint a senior engi-
neer to be the project architect, who will take responsibility for technical leadership.

2.	 Who will be involved in making critical technical decisions, and how will these
decisions be made? Will decisions be made by the system architect or the pro-
ject manager or by reaching consensus among a wider range of team members?

3.	 How will interactions with external stakeholders and senior company manage-
ment be handled? In many cases, the project manager will be responsible for these
interactions, assisted by the system architect if there is one. However, an alternative
organizational model is to create a dedicated role concerned with external liaison
and appoint someone with appropriate interaction skills to that role.

Figure 22.10  Group
composition

Case study: Group composition

In creating a group for assistive technology development, Alice is aware of the impor-
tance of selecting members with complementary personalities. When interviewing
potential group members, she tried to assess whether they were task-oriented, self-
oriented, or interaction-oriented. She felt that she was primarily a self-oriented type
because she considered the project to be a way of getting noticed by senior manage-
ment and possibly being promoted. She therefore looked for one or perhaps two inter-
action-oriented personalities, with task-oriented individuals to complete the team. The
final assessment that she arrived at was:

Alice—self-oriented
Brian—task-oriented
Chun—interaction-oriented
Dorothy—self-oriented
Ed—interaction-oriented
Fiona—task-oriented
Fred—task-oriented
Hassan—interaction-oriented

	 22.3  ■  Teamwork    661

4.	 How can groups integrate people who are not co-located? It is now common for
groups to include members from different organizations and for people to work
from home as well as in a shared office. This change has to be considered in
group decision-making processes.

5.	 How can knowledge be shared across the group? Group organization affects
information sharing as certain methods of organization are better for sharing
than others. However, you should avoid too much information sharing as people
become overloaded and excessive information distracts them from their work.

Small programming groups are usually organized in an informal way. The group
leader gets involved in the software development with the other group members. In an
informal group, the group as a whole discusses the work to be carried out, and tasks
are allocated according to ability and experience. More senior group members may be
responsible for the architectural design. However, detailed design and implementation
is the responsibility of the team member who is allocated to a particular task.

Agile development teams are always informal groups. Agile enthusiasts claim
that formal structure inhibits information exchange. Many decisions that are usually
seen as management decisions (such as decisions on schedule) may be devolved to
group members. However, there still needs to be a project manager who is responsi-
ble for strategic decision making and communications outside of the group.

Informal groups can be very successful, particularly when most group members
are experienced and competent. Such a group makes decisions by consensus, which
improves cohesiveness and performance. However, if a group is composed mostly of
inexperienced or incompetent members, informality can be a hindrance. With no
experienced engineers to direct the work, the result can be a lack of coordination
between group members and, possibly, eventual project failure.

In hierarchical groups the group leader is at the top of the hierarchy. He or she has
more formal authority than the group members and so can direct their work. There is
a clear organizational structure, and decisions are made toward the top of the hierar-
chy and implemented by people lower down. Communications are primarily
instructions from senior staff; the people at lower levels of the hierarchy have rela-
tively little communication with the managers at the upper levels.

Hiring the right people

Project managers are often responsible for selecting the people in the organization who will join their software
engineering team. Getting the best possible people in this process is very important as poor selection decisions
may be a serious risk to the project.

Key factors that should influence the selection of staff are education and training, application domain and tech-
nology experience, communication ability, adaptability, and problem solving ability.

http://software-engineering-book.com/web/people-selection/

http://software-engineering-book.com/web/people-selection

662    Chapter 22  ■  Project management

Hierarchical groups can work well when a well-understood problem can be easily
broken down into software components that can be developed in different parts of the
hierarchy. This grouping allows for rapid decision making, which is why military organ-
izations follow this model. However, it rarely works well for complex software engineer-
ing. In software development, effective team communications at all levels is essential:

1.	 Changes to the software often require changes to several parts of the system, and
this requires discussion and negotiation at all levels in the hierarchy.

2.	 Software technologies change so fast that more junior staff may know more
about new technologies than experienced staff. Top-down communications may
mean that the project manager does not find out about the opportunities of using
these new technologies. More junior staff may become frustrated because of
what they see as old-fashioned technologies being used for development.

A major challenge facing project managers is the difference in technical ability
between group members. The best programmers may be up to 25 times more productive
than the worst programmers. It makes sense to use these “super-programmers” in the
most effective way and to provide them with as much support as possible.

At the same time, focusing on the super-programmers can be demotivating for other
group members who are resentful that they are not given responsibility. They may be
concerned that this will affect their career development. Furthermore, if a “super-
programmer” leaves the company, the impact on a project can be huge. Therefore,
adopting a group model that is based on individual experts can pose significant risks.

	 22.3.3 	 Group communications

It is absolutely essential that group members communicate effectively and efficiently
with each other and with other project stakeholders. Group members must exchange
information on the status of their work, the design decisions that have been made,
and changes to previous design decisions. They have to resolve problems that arise
with other stakeholders and inform these stakeholders of changes to the system, the
group, and delivery plans. Good communication also helps strengthen group cohe-
siveness. Group members come to understand the motivations, strengths, and weak-
nesses of other people in the group.

The effectiveness and efficiency of communications are influenced by:

1.	 Group size As a group gets bigger, it gets harder for members to communicate
effectively. The number of one-way communication links is n * (n − 1), where n
is the group size, so, with a group of eight members, there are 56 possible
communication pathways. This means that it is quite possible that some people
will rarely communicate with each other. Status differences between group
members mean that communications are often one-way. Managers and experi-
enced engineers tend to dominate communications with less experienced staff,
who may be reluctant to start a conversation or make critical remarks.

	 22.3  ■  Teamwork    663

2.	 Group structure People in informally structured groups communicate more
effectively than people in groups with a formal, hierarchical structure. In hierar-
chical groups, communications tend to flow up and down the hierarchy. People
at the same level may not talk to each other. This is a particular problem in a
large project with several development groups. If people working on different
subsystems only communicate through their managers, then there are more
likely to be delays and misunderstandings.

3.	 Group composition People with the same personality types (discussed in
Section 22.2) may clash, and, as a result, communications can be inhibited.
Communication is also usually better in mixed-sex groups than in single-sex
groups (Marshall and Heslin 1975). Women are often more interaction-oriented
than men and may act as interaction controllers and facilitators for the group.

4.	 The physical work environment The organization of the workplace is a major factor
in facilitating or inhibiting communications. While some companies use standard
open-plan offices for their staff, others invest in providing a workspace that includes
a mixture of private and group working areas. This allows for both collaborative
activities and individual development that require a high level of concentration.

5.	 The available communication channels There are many different forms of
communication—face to face, email messages, formal documents, telephone,
and technologies such as social networking and wikis. As project teams become
increasingly distributed, with team members working remotely, you need to
make use of interaction technologies, such as conferencing systems, to facilitate
group communications.

Project managers usually work to tight deadlines, and, consequently, they often try
to use communication channels that don’t take up too much of their time. They may
rely on meetings and formal documents to pass on information to project staff and
stakeholders and send long emails to project staff. Unfortunately, while this may be an
efficient approach to communication from a project manager’s perspective, it is not
usually very effective. There are often good reasons why people can’t attend meetings,
and so they don’t hear the presentation. People do not have time to read long docu-
ments and emails that are not directly relevant to their work. When several versions of
the same document are produced, readers find it difficult to keep track of the changes.

The physical work environment

Group communications and individual productivity are both affected by the team’s working environment.
Individual workspaces are better for concentration on detailed technical work as people are less likely to be
distracted by interruptions. However, shared workspaces are better for communications. A well-designed work
environment takes both of these needs into account.

http://software-engineering-book.com/web/workspace/

http://software-engineering-book.com/web/workspace

664    Chapter 22  ■  Project management

Effective communication is achieved when communications are two-way and
the people involved can discuss issues and information and establish a common
understanding of proposals and problems. All this can be done through meetings,
although these meetings are often dominated by powerful personalities. Informal
discussions when a manager meets with the team for coffee are sometimes more
effective.

More and more project teams include remote members, which also makes meet-
ings more difficult. To involve them in communications, you may make use of
wikis and blogs to support information exchange. Wikis support the collaborative
creation and editing of documents, and blogs support threaded discussions about
questions and comments made by group members. Wikis and blogs allow project
members and external stakeholders to exchange information, irrespective of their
location. They help manage information and keep track of discussion threads,
which often become confusing when conducted by email. You can also use instant
messaging and teleconferences, which can be easily arranged, to resolve issues that
need discussion.

K e y P o i n t s

■	 Good software project management is essential if software engineering projects are to be devel-
oped on schedule and within budget.

■	 Software management is distinct from other engineering management. Software is intangible.
Projects may be novel or innovative, so there is no body of experience to guide their manage-
ment. Software processes are not as mature as traditional engineering processes.

■	 Risk management involves identifying and assessing major project risks to establish the prob-
ability that they will occur and the consequences for the project if that risk does arise. You
should make plans to avoid, manage, or deal with likely risks if or when they arise.

■	 People management involves choosing the right people to work on a project and organizing the
team and its working environment so that they are as productive as possible.

■	 People are motivated by interaction with other people, by the recognition of management and
their peers, and by being given opportunities for personal development.

■	 Software development groups should be fairly small and cohesive. The key factors that influ-
ence the effectiveness of a group are the people in that group, the way that it is organized, and
the communication between group members.

■	 Communications within a group are influenced by factors such as the status of group members,
the size of the group, the gender composition of the group, personalities, and available commu-
nication channels.

F u rt h e r R e a d i n g

The Mythical Man Month: Essays on Software Engineering (Anniversary Edition). The problems of
software management have remained largely unchanged since the 1960s, and this is one of the best
books on the topic. It presents an interesting and readable account of the management of one of the
first very large software projects, the IBM OS/360 operating system. The anniversary edition
(published 20 years after the original edition in 1975) includes other classic papers by Brooks.
(F. P. Brooks, 1995, Addison-Wesley).

Peopleware: Productive Projects and Teams, 2nd ed. This now classic book focuses on the impor-
tance of treating people properly when managing software projects. It is one of the few books that
recognizes how the place where people work influences communications and productivity. Strongly
recommended. (T. DeMarco and T. Lister, 1999, Dorset House).

Waltzing with Bears: Managing Risk on Software Projects. A very practical and easy-to-read intro-
duction to risks and risk management. (T. DeMarco and T. Lister, 2003, Dorset House).

Effective Project Management: Traditional, Agile, Extreme. 2014 (7th ed.). This is a textbook on pro-
ject management in general rather than software project management. It is based on the so-called
PMBOK (Project Management Body of Knowledge) and, unlike most books on this topic, discusses
PM techniques for agile projects. (R. K. Wysocki, 2014).

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-management/

E x e rc i s e s

22.1.	 Explain why the intangibility of software systems poses special problems for software project
management.

22.2. 	Explain how company size and software size are factors that affect software project
management.

22.3.	 �Using reported instances of project problems in the literature, list management difficulties
and errors that occurred in these failed programming projects. (I suggest that you start with
The Mythical Man Month, as suggested in Further Reading.)

22.4.	 In addition to the risks shown in Figure 22.1, identify at least six other possible risks that
could arise in software projects.

22.5.	 What is risk monitoring? How can risks be monitored? List a few examples of types of risks
and their potential indicators.

	 Chapter 22  ■  Exercises    665

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-management

22.6. 	Fixed-price contracts, where the contractor bids a fixed price to complete a system develop-
ment, may be used to move project risk from client to contractor. If anything goes wrong, the
contractor has to pay. Suggest how the use of such contracts may increase the likelihood that
product risks will arise.

22.7. 	Explain why keeping all members of a group informed about progress and technical decisions
in a project can improve group cohesiveness.

22.8. 	What qualities of a cohesive group’s members make the group robust? List out the key
benefits of creating a cohesive group.

22.9.	 Write a case study in the style used here to illustrate the importance of communications in a
project team. Assume that some team members work remotely and that it is not possible to
get the whole team together at short notice.

22.10. 	�Your manager asks you to deliver software to a schedule that you know can only be met by
asking your project team to work unpaid overtime. All team members have young children.
Discuss whether you should accept this demand from your manager or whether you should
persuade your team to give their time to the organization rather than to their families. What
factors might be significant in your decision?

R e f e r e n c e s

Bass, B. M., and G. Dunteman. 1963. “Behaviour in Groups as a Function of Self, Interaction and
Task Orientation.” J. Abnorm. Soc. Psychology. 66 (4): 19–28. doi:10.1037/h0042764.

Boehm, B. W. 1988. “A Spiral Model of Software Development and Enhancement.” IEEE Computer
21 (5): 61–72. doi:10.1109/2.59.

Hall, E. 1998. Managing Risk: Methods for Software Systems Development. Reading, MA: Addison-
Wesley.

Marshall, J. E., and R. Heslin. 1975. “Boys and Girls Together. Sexual Composition and the Effect of
Density on Group Size and Cohesiveness.” J. of Personality and Social Psychology 35 (5): 952–961.
doi:10.1037/h0076838.

Maslow, A. A. 1954. Motivation and Personality. New York: Harper & Row.

Ould, M. 1999. Managing Software Quality and Business Risk. Chichester, UK: John Wiley & Sons.

666    Chapter 22  ■  Project management

Project planning
23

Objectives
The objective of this chapter is to introduce project planning, scheduling,
and cost estimation. When you have read the chapter, you will:

■	 understand the fundamentals of software costing and the factors that
affect the price of a software system to be developed for external
clients;

■	 know what sections should be included in a project plan that is
created within a plan-driven development process;

■	 understand what is involved in project scheduling and the use of bar
charts to present a project schedule;

■	 have been introduced to agile project planning based on the
“planning game”;

■	 understand cost estimation techniques and how the COCOMO II
model can be used for software cost estimation.

Contents
23.1	 Software pricing

23.2	 Plan-driven development

23.3	 Project scheduling

23.4	 Agile planning

23.5	 Estimation techniques

23.6	 COCOMO cost modeling

668    Chapter 23  ■  Project planning

Project planning is one of the most important jobs of a software project manager. As
a manager, you have to break down the work into parts and assign them to project
team members, anticipate problems that might arise, and prepare tentative solutions
to those problems. The project plan, which is created at the start of a project and
updated as the project progresses, is used to show how the work will be done and to
assess progress on the project.

Project planning takes place at three stages in a project life cycle:

1.	 At the proposal stage, when you are bidding for a contract to develop or provide
a software system. You need a plan at this stage to help you decide if you have
the resources to complete the work and to work out the price that you should
quote to a customer.

2.	 During the project startup phase, when you have to plan who will work on the
project, how the project will be broken down into increments, how resources
will be allocated across your company, and so on. Here, you have more infor-
mation than at the proposal stage, and you can therefore refine the initial effort
estimates that you have prepared.

3.	 Periodically throughout the project, when you update your plan to reflect new
information about the software and its development. You learn more about the
system being implemented and the capabilities of your development team. As
software requirements change, the work breakdown has to be altered and the
schedule extended. This information allows you to make more accurate esti-
mates of how long the work will take.

Planning at the proposal stage is inevitably speculative, as you do not have a
complete set of requirements for the software to be developed. You have to respond
to a call for proposals based on a high-level description of the software functional-
ity that is required. A plan is often a required part of a proposal, so you have to
produce a credible plan for carrying out the work. If you win the contract, you then
have to re-plan the project, taking into account changes since the proposal was
made and new information about the system, the development process, and the
development team.

When you are bidding for a contract, you have to work out the price that you
will propose to the customer for developing the software. As a starting point for
calculating this price, you need to draw up an estimate of your costs for complet-
ing the project work. Estimation involves working out how much effort is
required to complete each activity and, from this step, calculating the total cost
of activities. You should always calculate software costs objectively, with the
aim of accurately predicting the cost of developing the software. Once you
have a reasonable estimate of the likely costs, you are then in a position to calcu-
late the price that you will quote to the customer. As I discuss in the next section,
many factors influence the pricing of a software project—it is not simply cost
plus profit.

You should use three main parameters when computing the costs of a software
development project:

■	 effort costs (the costs of paying software engineers and managers);

■	 hardware and software costs, including hardware maintenance and software
support; and

■	 travel and training costs.

For most projects, the biggest cost is the effort cost. You have to estimate the total
effort (in person-months) that is likely to be required to complete the work of a pro-
ject. Obviously, you have limited information to make such an estimate. You there-
fore make the best possible estimate and then add contingency (extra time and effort)
in case your initial estimate is optimistic.

For commercial systems, you normally use commodity hardware, which is rela-
tively cheap. However, software costs can be significant if you have to license mid-
dleware and platform software. Extensive travel may be needed when a project is
developed at different sites. While travel costs themselves are usually a small frac-
tion of the effort costs, the time spent traveling is often wasted and adds significantly
to the effort costs of the project. You can use electronic meeting systems and other
collaborative software to reduce travel and so have more time available for produc-
tive work.

Once a contract to develop a system has been awarded, the outline project
plan for the project has to be refined to create a project startup plan. At this stage,
you should know more about the requirements for this system. Your aim should
be to create a project plan with enough detail to help make decisions about pro-
ject staffing and budgeting. You use this plan as a basis for allocating resources
to the project from within the organization and to help decide if you need to hire
new staff.

The plan should also define project monitoring mechanisms. You must keep track
of the progress of the project and compare actual and planned progress and costs.
Although most companies have formal procedures for monitoring, a good manager
should be able to form a clear picture of what is going on through informal discus-
sions with project staff. Informal monitoring can predict potential project problems
by revealing difficulties as they occur. For example, daily discussions with project

Overhead costs

When you estimate the costs of effort on a software project, you don’t simply multiply the salaries of the people
involved by the time spent on the project. You have to take into account all of the organizational overheads
(office space, administration, etc.) that must be covered by the income from a project. You calculate the costs
by computing these overheads and adding a proportion to the costs of each engineer working on a project.

http://software-engineering-book.com/web/overhead-costs/

	 Chapter 23  ■  Project planning    669

http://software-engineering-book.com/web/overhead-costs

670    Chapter 23  ■  Project planning

staff might reveal that the team is having problems with a software fault in the com-
munications systems. The project manager can then immediately assign a communi-
cations expert to the problem to help find and solve the problem.

The project plan always evolves during the development process because of
requirements changes, technology issues, and development problems. Development
planning is intended to ensure that the project plan remains a useful document for staff
to understand what is to be achieved and when it is to be delivered. Therefore, the
schedule, cost estimate, and risks all have to be revised as the software is developed.

If an agile method is used, there is still a need for a project startup plan because
regardless of the approach used, the company still needs to plan how resources will
be allocated to a project. However, this is not a detailed plan, and you only need to
include essential information about the work breakdown and project schedule.
During development, an informal project plan and effort estimates are drawn up for
each release of the software, with the whole team involved in the planning process.
Some aspects of agile planning have already been covered in Chapter 3, and I discuss
other approaches in Section 23.4.

	 23.1 	 Software pricing

In principle, the price of a software system developed for a customer is simply the
cost of development plus profit for the developer. In practice, however, the relation-
ship between the project cost and the price quoted to the customer is not usually so
simple. When calculating a price, you take broader organizational, economic, polit-
ical, and business considerations into account (Figure 23.1). You need to think
about organizational concerns, the risks associated with the project, and the type of
contract that will be used. These issues may cause the price to be adjusted upward
or downward.

To illustrate some of the project pricing issues, consider the following scenario:

A small software company, PharmaSoft, employs 10 software engineers. It has
just finished a large project but only has contracts in place that require five
development staff. However, it is bidding for a very large contract with a
major pharmaceutical company that requires 30 person-years of effort over
two years. The project will not start for at least 12 months but, if granted, it
will transform the finances of the company.

PharmaSoft gets an opportunity to bid on a project that requires six people
and has to be completed in 10 months. The costs (including overheads of this
project) are estimated at $1.2 million. However, to improve its competitive
position, PharmaSoft decides to bid a price to the customer of $0.8 million.
This means that, although it loses money on this contract, it can retain special-
ist staff for the more profitable future projects that are likely to come on stream
in a year’s time.

	 23.1  ■  Software pricing    671

This is an example of an approach to software pricing called “pricing to win.”
Pricing to win means that a company has some idea of the price that the customer
expects to pay and makes a bid for the contract based on the customer’s expected
price. This may seem unethical and unbusinesslike, but it does have advantages for
both the customer and the system provider.

A project cost is agreed on the basis of an outline proposal. Negotiations then take
place between client and customer to establish the detailed project specification.
This specification is constrained by the agreed cost. The buyer and seller must agree
on what is acceptable system functionality. The fixed factor in many projects is not
the project requirements but the cost. The requirements may be changed so that the
project costs remain within budget.

For example, say a company (OilSoft) is bidding for a contract to develop a fuel
delivery system for an oil company that schedules deliveries of fuel to its service
stations. There is no detailed requirements document for this system, so OilSoft esti-
mates that a price of $900,000 is likely to be competitive and within the oil compa-
ny’s budget. After being granted the contract, OilSoft then negotiates the detailed
requirements of the system so that basic functionality is delivered. It then estimates
the additional costs for other requirements.

This approach has advantages for both the software developer and the cus-
tomer. The requirements are negotiated to avoid requirements that are difficult
to implement and potentially very expensive. Flexible requirements make it eas-
ier to reuse software. The oil company has awarded the contract to a known
company that it can trust. Furthermore, it may be possible to spread the cost of

Factor Description

Contractual terms A customer may be willing to allow the developer to retain ownership
of the source code and reuse it in other projects. The price charged
might then be reduced to reflect the value of the source code to the
developer.

Cost estimate uncertainty If an organization is unsure of its cost estimate, it may increase its price
by a contingency over and above its normal profit.

Financial health Companies with financial problems may lower their price to gain a
contract. It is better to make a smaller-than-normal profit or break even
than to go out of business. Cash flow is more important than profit in
difficult economic times.

Market opportunity A development organization may quote a low price because it wishes to
move into a new segment of the software market. Accepting a low
profit on one project may give the organization the opportunity to make
a greater profit later. The experience gained may also help it develop
new products.

Requirements volatility If the requirements are likely to change, an organization may lower its
price to win a contract. After the contract is awarded, high prices can be
charged for changes to the requirements.

Figure 23.1  Factors
affecting software
pricing

672    Chapter 23  ■  Project planning

the project over several versions of the system. This may reduce the costs of
system deployment and allow the client to budget for the project cost over sev-
eral financial years.

	 23.2 	 Plan-driven development

Plan-driven or plan-based development is an approach to software engineering
where the development process is planned in detail. A project plan is created that
records the work to be done, who will do it, the development schedule, and the work
products. Managers use the plan to support project decision making and as a way of
measuring progress. Plan-driven development is based on engineering project man-
agement techniques and can be thought of as the “traditional” way of managing large
software development projects. Agile development involves a different planning
process, discussed in Section 23.4, where decisions are delayed.

The problem with plan-driven development is that early decisions have to be revised
because of changes to the environments in which the software is developed and used.
Delaying planning decisions avoids unnecessary rework. However, the arguments in favor
of a plan-driven approach are that early planning allows organizational issues (availability
of staff, other projects, etc.) to be taken into account. Potential problems and dependencies
are discovered before the project starts, rather than once the project is underway.

In my view, the best approach to project planning involves a sensible mixture of
plan-based and agile development. The balance depends on the type of project and
skills of the people who are available. At one extreme, large security and safety-
critical systems require extensive up-front analysis and may have to be certified
before they are put into use. These systems should be mostly plan-driven. At the
other extreme, small to medium-size information systems, to be used in a rapidly
changing competitive environment, should be mostly agile. Where several compa-
nies are involved in a development project, a plan-driven approach is normally used
to coordinate the work across each development site.

	 23.2.1 	 Project plans

In a plan-driven development project, a project plan sets out the resources available to
the project, the work breakdown, and a schedule for carrying out the work. The plan
should identify the approach that is taken to risk management as well as risks to the pro-
ject and the software under development. The details of project plans vary depending on
the type of project and organization but plans normally include the following sections:

1.	 Introduction Briefly describes the objectives of the project and sets out the con-
straints (e.g., budget, time) that affect the management of the project.

2.	 Project organization Describes the way in which the development team is
organized, the people involved, and their roles in the team.

	 23.2  ■  Plan-driven development    673

3.	 Risk analysis Describes possible project risks, the likelihood of these risks aris-
ing, and the risk reduction strategies (discussed in Chapter 22) that are proposed.

4.	 Hardware and software resource requirements Specifies the hardware and support
software required to carry out the development. If hardware has to be purchased,
estimates of the prices and the delivery schedule may be included.

5.	 Work breakdown Sets out the breakdown of the project into activities and iden-
tifies the inputs to and the outputs from each project activity.

6.	 Project schedule Shows the dependencies between activities, the estimated time
required to reach each milestone, and the allocation of people to activities. The
ways in which the schedule may be presented are discussed in the next section
of the chapter.

7.	 Monitoring and reporting mechanisms Defines the management reports that
should be produced, when these should be produced, and the project monitoring
mechanisms to be used.

The main project plan should always include a project risk assessment and a
schedule for the project. In addition, you may develop a number of supplementary
plans for activities such as testing and configuration management. Figure 23.2 shows
some supplementary plans that may be developed. These are all usually needed in
large projects developing large, complex systems.

	 23.2.2 	 The planning process

Project planning is an iterative process that starts when you create an initial project
plan during the project startup phase. Figure 23.3 is a UML activity diagram that
shows a typical workflow for a project planning process. Plan changes are inevita-
ble. As more information about the system and the project team becomes available

Plan Description

Configuration management plan Describes the configuration management procedures and
structures to be used.

Deployment plan Describes how the software and associated hardware (if required)
will be deployed in the customer’s environment. This should
include a plan for migrating data from existing systems.

Maintenance plan Predicts the maintenance requirements, costs, and effort.

Quality plan Describes the quality procedures and standards that will be
used in a project.

Validation plan Describes the approach, resources, and schedule used for
system validation.

Figure 23.2  Project
plan supplements

674    Chapter 23  ■  Project planning

during the project, you should regularly revise the plan to reflect requirements,
schedule, and risk changes. Changing business goals also leads to changes in project
plans. As business goals change, this could affect all projects, which may then have
to be re-planned.

At the beginning of a planning process, you should assess the constraints affect-
ing the project. These constraints are the required delivery date, staff available, over-
all budget, available tools, and so on. In conjunction with this assessment, you
should also identify the project milestones and deliverables. Milestones are points in
the schedule against which you can assess progress, for example, the handover of the
system for testing. Deliverables are work products that are delivered to the customer,
for example, a requirements document for the system.

The process then enters a loop that terminates when the project is complete. You
draw up an estimated schedule for the project, and the activities defined in the schedule
are initiated or are approved to continue. After some time (usually about two to three
weeks), you should review progress and note discrepancies from the planned schedule.
Because initial estimates of project parameters are inevitably approximate, minor slip-
pages are normal and you will have to make modifications to the original plan.

You should make realistic rather than optimistic assumptions when you are defin-
ing a project plan. Problems of some description always arise during a project, and
these lead to project delays. Your initial assumptions and scheduling should there-
fore be pessimistic and take unexpected problems into account. You should include
contingency in your plan so that if things go wrong, then your delivery schedule is
not seriously disrupted.

If there are serious problems with the development work that are likely to lead to
significant delays, you need to initiate risk mitigation actions to reduce the risks of
project failure. In conjunction with these actions, you also have to re-plan the pro-
ject. This may involve renegotiating the project constraints and deliverables with the
customer. A new schedule of when work should be completed also has to be estab-
lished and agreed to with the customer.

Define project
schedule

Identify
risks

Identify
constraints

Define
milestones

and
deliverables

«system»
Project planner

Do the work

Monitor progress
against plan

[no problems]

[minor problems and slippages]

[project
finished][unfinished]

[serious
problems]

Initiate risk
mitigation actions

Replan
projectFigure 23.3  The project

planning process

	 23.3  ■  Project scheduling    675

If this renegotiation is unsuccessful or the risk mitigation actions are ineffective,
then you should arrange for a formal project technical review. The objectives of this
review are to find an alternative approach that will allow the project to continue.
Reviews should also check that the customer’s goals are unchanged and that the
project remains aligned with these goals.

The outcome of a review may be a decision to cancel a project. This may be a
result of technical or managerial failings but, more often, is a consequence of exter-
nal changes that affect the project. The development time for a large software project
is often several years. During that time, the business objectives and priorities inevi-
tably change. These changes may mean that the software is no longer required or
that the original project requirements are inappropriate. Management may then
decide to stop software development or to make major changes to the project to
reflect the changes in the organizational objectives.

	 23.3 	 Project scheduling

Project scheduling is the process of deciding how the work in a project will be organ-
ized as separate tasks, and when and how these tasks will be executed. You estimate
the calendar time needed to complete each task and the effort required, and you sug-
gest who will work on the tasks that have been identified. You also have to estimate
the hardware and software resources that are needed to complete each task. For
example, if you are developing an embedded system, you have to estimate the time
that you need on specialized hardware and the costs of running a system simulator.
In terms of the planning stages that I introduced in the introduction of this chapter,
an initial project schedule is usually created during the project startup phase. This
schedule is then refined and modified during development planning.

Both plan-based and agile processes need an initial project schedule, although less
detail is included in an agile project plan. This initial schedule is used to plan how peo-
ple will be allocated to projects and to check the progress of the project against its
contractual commitments. In traditional development processes, the complete schedule
is initially developed and then modified as the project progresses. In agile processes,
there has to be an overall schedule that identifies when the major phases of the project
will be completed. An iterative approach to scheduling is then used to plan each phase.

Scheduling in plan-driven projects (Figure 23.4) involves breaking down the total
work involved in a project into separate tasks and estimating the time required to
complete each task. Tasks should normally last at least a week and no longer than
2 months. Finer subdivision means that a disproportionate amount of time must be
spent on re-planning and updating the project plan. The maximum amount of time
for any task should be 6 to 8 weeks. If a task will take longer than this, it should be
split into subtasks for project planning and scheduling.

Some of these tasks are carried out in parallel, with different people working on
different components of the system. You have to coordinate these parallel tasks and
organize the work so that the workforce is used optimally and you don’t introduce

676    Chapter 23  ■  Project planning

unnecessary dependencies between the tasks. It is important to avoid a situation
where the whole project is delayed because a critical task is unfinished.

If a project is technically advanced, initial estimates will almost certainly be opti-
mistic even when you try to consider all eventualities. In this respect, software
scheduling is no different from scheduling any other type of large advanced project.
New aircraft, bridges, and even new models of cars are frequently late because of
unanticipated problems. Schedules, therefore, must be continually updated as better
progress information becomes available. If the project being scheduled is similar to
a previous project, previous estimates may be reused. However, projects may use
different design methods and implementation languages, so experience from previ-
ous projects may not be applicable in the planning of a new project.

When you are estimating schedules, you must take into account the possibility
that things will go wrong. People working on a project may fall ill or leave, hardware
may fail, and essential support software or hardware may be delivered late. If the
project is new and technically advanced, parts of it may turn out to be more difficult
and take longer than originally anticipated.

A good rule of thumb is to estimate as if nothing will go wrong and then increase
your estimate to cover anticipated problems. A further contingency factor to cover
unanticipated problems may also be added to the estimate. This extra contingency factor
depends on the type of project, the process parameters (deadline, standards, etc.), and
the quality and experience of the software engineers working on the project. Contingency
estimates may add 30 to 50% to the effort and time required for the project.

	 23.3.1 	 Schedule presentation

Project schedules may simply be documented in a table or spreadsheet showing the
tasks, estimated effort, duration, and task dependencies (Figure 23.5). However, this
style of presentation makes it difficult to see the relationships and dependencies
between the different activities. For this reason, alternative graphical visualizations
of project schedules have been developed that are often easier to read and under-
stand. Two types of visualization are commonly used:

1.	 Calendar-based bar charts show who is responsible for each activity, the
expected elapsed time, and when the activity is scheduled to begin and end. Bar
charts are also called Gantt charts, after their inventor, Henry Gantt.

Estimate resources
for activities

Identify activity
dependencies

Identify
activities

Allocate people
to activities

Software requirements
and design information

Bar charts describing the
project schedule

Create project
charts

Figure 23.4  The project
scheduling process

	 23.3  ■  Project scheduling    677

2.	 Activity networks show the dependencies between the different activities mak-
ing up a project. These networks are described in an associated web section.

Project activities are the basic planning element. Each activity has:

■	 a duration in calendar days or months;

■	 an effort estimate, which shows the number of person-days or person-months to
complete the work;

■	 a deadline by which the activity should be complete; and

■	 a defined endpoint, which might be a document, the holding of a review meeting,
the successful execution of all tests, or the like.

When planning a project, you may decide to define project milestones. A mile-
stone is a logical end to a stage of the project where the progress of the work can
be reviewed. Each milestone should be documented by a brief report (often sim-
ply an email) that summarizes the work done and whether or not the work has
been completed as planned. Milestones may be associated with a single task or
with groups of related activities. For example, in Figure 23.5, milestone M1 is
associated with task T1 and marks the end of that activity. Milestone M3 is asso-
ciated with a pair of tasks T2 and T4; there is no individual milestone at the end
of these tasks.

Task Effort (person-days) Duration (days) Dependencies

T1 15 10

T2 8 15

T3 20 15 T1 (M1)

T4 5 10

T5 5 10 T2, T4 (M3)

T6 10 5 T1, T2 (M4)

T7 25 20 T1 (M1)

T8 75 25 T4 (M2)

T9 10 15 T3, T6 (M5)

T10 20 15 T7, T8 (M6)

T11 10 10 T9 (M7)

T12 20 10 T10, T11 (M8)

Figure 23.5  Tasks,
durations, and
dependencies

678    Chapter 23  ■  Project planning

Some activities create project deliverables—outputs that are delivered to the
software customer. Usually, the deliverables that are required are specified in the
project contract, and the customer’s view of the project’s progress depends on
these deliverables. Milestones and deliverables are not the same thing. Milestones
are short reports that are used for progress reporting, whereas deliverables are
more substantial project outputs such as a requirements document or the initial
implementation of a system.

 Figure 23.5 shows a hypothetical set of tasks, their estimated effort and duration,
and task dependencies. From this table, you can see that task T3 is dependent on task
T1. This means that task T1 has to be completed before T3 starts. For example, T1
might be the selection of a system for reuse and T3, the configuration of the selected
system. You can’t start system configuration until you have chosen and installed the
application system to be modified.

Notice that the estimated duration for some tasks is more than the effort required
and vice versa. If the effort is less than the duration, the people allocated to that task
are not working full time on it. If the effort exceeds the duration, this means that
several team members are working on the task at the same time.

 Figure 23.6 takes the information in Figure 23.5 and presents the project sched-
ule as a bar chart showing a project calendar and the start and finish dates of tasks.
Reading from left to right, the bar chart clearly shows when tasks start and end. The
milestones (M1, M2, etc.) are also shown on the bar chart. Notice that tasks that are
independent may be carried out in parallel. For example, tasks T1, T2, and T4 all
start at the beginning of the project.

As well as planning the delivery schedule for the software, project managers have
to allocate resources to tasks. The key resource is, of course, the software engineers
who will do the work. They have to be assigned to project activities. The resource
allocation can be analyzed by project management tools, and a bar chart can be gener-
ated showing when staff are working on the project (Figure 23.7). People may be
working on more than one task at the same time, and sometimes they are not working
on the project. They may be on holiday, working on other projects, or attending train-
ing courses. I show part-time assignments using a diagonal line crossing the bar.

Large organizations usually employ a number of specialists who work on a pro-
ject when needed. In Figure 23.7, you can see that Mary is a specialist who works on

Activity charts

An activity chart is a project schedule representation that presents the project plan as a directed graph. It shows
which tasks can be carried out in parallel and those that must be executed in sequence due to their dependen-
cies on earlier activities. If a task is dependent on several other tasks, then all of these tasks must be completed
before it can start. The “critical path” through the activity chart is the longest sequence of dependent tasks. This
defines the project duration.

http://software-engineering-book.com/web/planning-activities/

http://software-engineering-book.com/web/planning-activities

	 23.3  ■  Project scheduling    679

only a single task (T5) in the project. The use of specialists is unavoidable when
complex systems are being developed, but it can lead to scheduling problems. If one
project is delayed while a specialist is working on it, this may affect other projects
where the specialist is also required. These projects may be delayed because the
specialist is not available.

If a task is delayed, later tasks that are dependent on it may be affected. They can-
not start until the delayed task is completed. Delays can cause serious problems with
staff allocation, especially when people are working on several projects at the same
time. If a task (T) is delayed, the people allocated to it may be assigned to other work
(W). To complete this work may take longer than the delay, but, once assigned, they
cannot simply be reassigned back to the original task. This may then lead to further
delays in T as they complete W.

Normally, you should use a project planning tool, such as the Basecamp or
Microsoft project, to create, update, and analyze project schedule information.
Project management tools usually expect you to input project information into a
table, and they create a database of project information. Bar charts and activity charts
can then be generated automatically from this database.

Week 0 1 2 3 4 5 6 7 8 9 10 11

T4

T1

T2

(M1/T1)

T7

T3

(M5/T3 & T6)

T8

(M4/T1& T2)

T6

T5

(M2/T4)

T9

(M7/T 9)

T10
(M6/T7 & T8)

T11

(M8/T10 & T11)

T12

Start

Finish

(M3/T2 & T4)

Figure 23.6  Activity
bar chart

680    Chapter 23  ■  Project planning

	 23.4 	 Agile planning

Agile methods of software development are iterative approaches where the software
is developed and delivered to customers in increments. Unlike plan-driven
approaches, the functionality of these increments is not planned in advance but is
decided during the development. The decision on what to include in an increment
depends on progress and on the customer’s priorities. The argument for this approach
is that the customer’s priorities and requirements change, so it makes sense to have a
flexible plan that can accommodate these changes. Cohn’s book (Cohn 2005) is an
excellent introduction to agile planning.

Agile development methods such as Scrum (Rubin 2013) and Extreme
Programming (Beck and Andres 2004) have a two-stage approach to planning, corre-
sponding to the startup phase in plan-driven development and development planning:

1.	 Release planning, which looks ahead for several months and decides on the
features that should be included in a release of a system.

2.	 Iteration planning, which has a shorter term outlook and focuses on planning the next
increment of a system. This usually represents 2 to 4 weeks of work for the team.

I have already explained the Scrum approach to planning in Chapter 3, which is
based on project backlogs and daily reviews of work to be done. It is primarily geared

T1 T3 T9Jane

T3

T10Geetha

T7Hong

T5Mary

T4 T8Fred

T1 T8Ali

T12

T2

T6

Maya T8

T10

T6

T11 T12

T8

Week 0 1 2 3 4 5 6 7 8 9 10 11

T7

Figure 23.7  Staff
allocation chart

	 23.4  ■  Agile planning    681

to iteration planning. Another approach to agile planning, which was developed as
part of Extreme Programming, is based on user stories. The so-called planning game
can be used in both release planning and iteration planning.

The basis of the planning game (Figure 23.8) is a set of user stories (see Chapter 3)
that cover all of the functionality to be included in the final system. The development
team and the software customer work together to develop these stories. The team
members read and discuss the stories and rank them based on the amount of time they
think it will take to implement the story. Some stories may be too large to implement
in a single iteration, and these are broken down into smaller stories.

The problem with ranking stories is that people often find it difficult to estimate how
much effort or time is needed to do something. To make this easier, relative ranking
may be used. The team compares stories in pairs and decides which will take the most
time and effort, without assessing exactly how much effort will be required. At the end
of this process, the list of stories has been ordered, with the stories at the top of the list
taking the most effort to implement. The team then allocates notional effort points to all
of the stories in the list. A complex story may have 8 points and a simple story 2 points.

Once the stories have been estimated, the relative effort is translated into the first
estimate of the total effort required by using the idea of “velocity.” Velocity is the
number of effort points implemented by the team, per day. This can be estimated
either from previous experience or by developing one or two stories to see how
much time is required. The velocity estimate is approximate but is refined during the
development process. Once you have a velocity estimate, you can calculate the total
effort in person-days to implement the system.

Release planning involves selecting and refining the stories that will reflect the
features to be implemented in a release of a system and the order in which the stories
should be implemented. The customer has to be involved in this process. A release
date is then chosen, and the stories are examined to see if the effort estimate is con-
sistent with that date. If not, stories are added or removed from the list.

Iteration planning is the first stage in developing a deliverable system increment.
Stories to be implemented during that iteration are chosen, with the number of stories
reflecting the time to deliver an workable system (usually 2 or 3 weeks) and the team’s
velocity. When the delivery date is reached, the development iteration is complete,
even if all of the stories have not been implemented. The team considers the stories
that have been implemented and adds up their effort points. The velocity can then be
recalculated, and this measure is used in planning the next version of the system.

At the start of each development iteration, there is a task planning stage where the
developers break down stories into development tasks. A development task should
take 4–16 hours. All of the tasks that must be completed to implement all of the sto-
ries in that iteration are listed. The individual developers then sign up for the specific

Release
planning

Initial
estimation

Story
identification

Iteration
planning

Task
planning

Figure 23.8  The
“planning game”

682    Chapter 23  ■  Project planning

tasks that they will implement. Each developer knows their individual velocity and
so should not sign up for more tasks than they can implement in the time allotted.

This approach to task allocation has two important benefits:

1.	 The whole team gets an overview of the tasks to be completed in an iteration.
They therefore have an understanding of what other team members are doing
and who to talk to if task dependencies are identified.

2.	 Individual developers choose the tasks to implement; they are not simply allo-
cated tasks by a project manager. They therefore have a sense of ownership in
these tasks, and this is likely to motivate them to complete the task.

Halfway through an iteration, progress is reviewed. At this stage, half of the story
effort points should have been completed. So, if an iteration involves 24 story points
and 36 tasks, 12 story points and 18 tasks should have been completed. If this is not
the case, then there has to be discussions with the customer about which stories
should be removed from the system increment that is being developed.

This approach to planning has the advantage that a software increment is always
delivered at the end of each project iteration. If the features to be included in the
increment cannot be completed in the time allowed, the scope of the work is reduced.
The delivery schedule is never extended. However, this can cause problems as it
means that customer plans may be affected. Reducing the scope may create extra
work for customers if they have to use an incomplete system or change the way they
work between one release of the system and another.

A major difficulty in agile planning is that it relies on customer involvement and
availability. This involvement can be difficult to arrange, as customer representa-
tives sometimes have to prioritize other work and are not available for the planning
game. Furthermore, some customers may be more familiar with traditional project
plans and may find it difficult to engage in an agile planning process.

Agile planning works well with small, stable development teams that can get
together and discuss the stories to be implemented. However, where teams are large
and/or geographically distributed, or when team membership changes frequently, it
is practically impossible for everyone to be involved in the collaborative planning
that is essential for agile project management. Consequently, large projects are usu-
ally planned using traditional approaches to project management.

	 23.5 	 Estimation techniques

Estimating project schedules is difficult. You have to make initial estimates on the
basis of an incomplete user requirements definition. The software may have to run on
unfamiliar platforms or use new development technology. The people involved in the
project and their skills will probably not be known. There are so many uncertainties
that it is impossible to estimate system development costs accurately during the early

	 23.5  ■  Estimation techniques    683

stages of a project. Nevertheless, organizations need to make software effort and cost
estimates. Two types of techniques can be used for making estimates:

1.	 Experience-based techniques The estimate of future effort requirements is based
on the manager’s experience of past projects and the application domain.
Essentially, the manager makes an informed judgment of what the effort require-
ments are likely to be.

2.	 Algorithmic cost modeling In this approach, a formulaic approach is used to
compute the project effort based on estimates of product attributes, such as size,
process characteristics, and experience of staff involved.

In both cases, you need to use your judgment to estimate either the effort directly
or the project and product characteristics. In the startup phase of a project, these
estimates have a wide margin of error. Based on data collected from a large number
of projects, Boehm et al. (B. Boehm et al. 1995) discovered that startup estimates
vary significantly. If the initial estimate of effort required is x months of effort, they
found that the range may be from 0.25x to 4x of the actual effort as measured when
the system was delivered. During development planning, estimates become more
and more accurate as the project progresses (Figure 23.9).

Experience-based techniques rely on the manager’s experience of past projects
and the actual effort expended in these projects on activities that are related to soft-
ware development. Typically, you identify the deliverables to be produced in a pro-
ject and the different software components or systems that are to be developed. You
document these in a spreadsheet, estimate them individually, and compute the total
effort required. It usually helps to get a group of people involved in the effort esti-
mation and to ask each member of the group to explain their estimate. This often
reveals factors that others have not considered, and you then iterate toward an
agreed group estimate.

x

2x

4x

0.5x

0.25x

Feasibility Requirements Design Code Delivery

Figure 23.9  Estimate
uncertainty

684    Chapter 23  ■  Project planning

The difficulty with experience-based techniques is that a new software project
may not have much in common with previous projects. Software development
changes very quickly, and a project will often use unfamiliar techniques such as web
services, application system configuration, or HTML5. If you have not worked with
these techniques, your previous experience may not help you to estimate the effort
required, making it more difficult to produce accurate costs and schedule estimates.

It is impossible to say whether experience-based or algorithmic approaches are
more accurate. Project estimates are often self-fulfilling. The estimate is used to
define the project budget, and the product is adjusted so that the budget figure is real-
ized. A project that is within budget may have achieved this at the expense of fea-
tures in the software being developed.

To make a comparison of the accuracy of these techniques, a number of controlled
experiments would be required where several techniques were used independently to
estimate the project effort and costs. No changes to the project would be allowed, and the
final effort could them be compared. The project manager would not know the effort
estimates, so no bias would be introduced. However, this scenario is completely impos-
sible in real projects, so we will never have an objective comparison of these approaches.

	 23.5.1 	 Algorithmic cost modeling

Algorithmic cost modeling uses a mathematical formula to predict project costs
based on estimates of the project size, the type of software being developed, and
other team, process, and product factors. Algorithmic cost models are developed by
analyzing the costs and attributes of completed projects, then finding the closest-fit
formula to the actual costs incurred.

Algorithmic cost models are primarily used to make estimates of software devel-
opment costs. However, Boehm and his collaborators (B. W. Boehm et al. 2000)
discuss a range of other uses for these models, such as the preparation of estimates
for investors in software companies, alternative strategies to help assess risks and to
inform decisions about reuse, redevelopment, or outsourcing.

Most algorithmic models for estimating effort in a software project are based on a
simple formula:

Effort = A 3 SizeB 3 M

A: a constant factor, which depends on local organizational practices and the type
of software that is developed.

Size: an assessment of the code size of the software or a functionality estimate
expressed in function or application points.

B: represents the complexity of the software and usually lies between 1 and 1.5.

M: is a factor that takes into account process, product and development attributes,
such as the dependability requirements for the software and the experience of the
development team. These attributes may increase or decrease the overall diffi-
culty of developing the system.

	 23.5  ■  Estimation techniques    685

The number of lines of source code (SLOC) in the delivered system is the funda-
mental size metric that is used in many algorithmic cost models. To estimate the
number of lines of code in a system, you may use a combination of approaches:

1.	 Compare the system to be developed with similar systems and use their code
size as the basis for your estimate.

2.	 Estimate the number of function or application points in the system (see the fol-
lowing section) and formulaically convert these to lines of code in the program-
ming language used.

3.	 Rank the system components using judgment of their relative sizes and use a
known reference component to translate this ranking to code sizes.

Most algorithmic estimation models have an exponential component (B in the
above equation) that increases with the size and complexity of the system. This
reflects the fact that costs do not usually increase linearly with project size. As the
size and complexity of the software increase, extra costs are incurred because of the
communication overhead of larger teams, more complex configuration management,
more difficult system integration, and so on. The more complex the system, the more
these factors affect the cost.

The idea of using a scientific and objective approach to cost estimation is an
attractive one, but all algorithmic cost models suffer from two key problems:

1.	 It is practically impossible to estimate Size accurately at an early stage in a pro-
ject, when only the specification is available. Function-point and application-
point estimates (see later) are easier to produce than estimates of code size but
are also usually inaccurate.

2.	 The estimates of the complexity and process factors contributing to B and M are
subjective. Estimates vary from one person to another, depending on their back-
ground and experience of the type of system that is being developed.

Accurate code size estimation is difficult at an early stage in a project because the
size of the final program depends on design decisions that may not have been made
when the estimate is required. For example, an application that requires high-performance
data management may either implement its own data management system or use a
commercial database system. In the initial cost estimation, you are unlikely to know
if there is a commercial database system that performs well enough to meet the per-
formance requirements. You therefore don’t know how much data management
code will be included in the system.

The programming language used for system development also affects the number
of lines of code to be developed. A language like Java might mean that more lines of
code are necessary than if C (say) was used. However, this extra code allows more
compile-time checking, so validation costs are likely to be reduced. It is not clear
how this should be taken into account in the estimation process. Code reuse also

686    Chapter 23  ■  Project planning

makes a difference, and some models explicitly estimate the number of lines of code
reused. However, if application systems or external services are reused, it is very
difficult to compute the number of lines of source code that these replace.

Algorithmic cost models are a systematic way to estimate the effort required to
develop a system. However, these models are complex and difficult to use. There are
many attributes and considerable scope for uncertainty in estimating their values.
This complexity means that the practical application of algorithmic cost modeling
has been limited to a relatively small number of large companies, mostly working in
defense and aerospace systems engineering.

Another barrier that discourages the use of algorithmic models is the need for
calibration. Model users should calibrate their model and the attribute values
using their own historical project data, as this reflects local practice and experi-
ence. However, very few organizations have collected enough data from past pro-
jects in a form that supports model calibration. Practical use of algorithmic
models, therefore, has to start with the published values for the model parameters.
It is practically impossible for a modeler to know how closely these relate to his
or her organization.

If you use an algorithmic cost estimation model, you should develop a range of
estimates (worst, expected, and best) rather than a single estimate and apply the
costing formula to all of them. Estimates are most likely to be accurate when you
understand the type of software that is being developed and have calibrated the cost-
ing model using local data, or when programming language and hardware choices
are predefined.

	 23.6 	 COCOMO cost modeling

The best known algorithmic cost modeling technique and tool is the COCOMO II
model. This empirical model was derived by collecting data from a large number of
software projects of different sizes. These data were analyzed to discover the formu-
las that were the best fit to the observations. These formulas linked the size of the

Software productivity

Software productivity is an estimate of the average amount of development work that software engineers complete
in a week or a month. It is therefore expressed as lines of code/month, function points/month, and so forth.

However, while productivity can be easily measured where there is a tangible outcome (e.g., an administrator
processes N travel claims/day), software productivity is more difficult to define. Different people may implement
the same functionality in different ways, using different numbers of lines of code. The quality of the code is also
important but is, to some extent, subjective. Therefore, you can’t really compare the productivity of individual
engineers. It only makes sense to use productivity measures with large groups.

http://software-engineering-book.com/web/productivity/

http://software-engineering-book.com/web/productivity

	 23.6  ■  COCOMO cost modeling    687

system and product, project, and team factors to the effort to develop the system.
COCOMO II is a freely available model that is supported with open-source tools.

COCOMO II was developed from earlier COCOMO (Constructive Cost
Modeling) cost estimation models, which were largely based on original code devel-
opment (B. W. Boehm 1981; B. Boehm and Royce 1989). The COCOMO II model
takes into account modern approaches to software development, such as rapid devel-
opment using dynamic languages, development with reuse, and database program-
ming. COCOMO II embeds several submodels based on these techniques, which
produce increasingly detailed estimates.

The submodels (Figure 23.10) that are part of the COCOMO II model are:

1.	 An application composition model This models the effort required to develop
systems that are created from reusable components, scripting, or database pro-
gramming. Software size estimates are based on application points, and a simple
size/productivity formula is used to estimate the effort required.

2.	 An early design model This model is used during early stages of the system
design after the requirements have been established. The estimate is based on the
standard estimation formula that I discussed in the introduction of this chapter,
with a simplified set of seven multipliers. Estimates are based on function points,
which are then converted to number of lines of source code.

	 Function points are a language-independent way of quantifying program func-
tionality. You compute the total number of function points in a program by
measuring or estimating the number of external inputs and outputs, user interac-
tions, external interfaces, and files or database tables used by the system.

Number of
application points

Number of function
points

Based on Used for

Used for

Used for

Used for

Based on

Based on

Based on

Number of lines of
code reused or

generated

Number of lines of
source code

Application
composition model

Early design model

Reuse model

Post-architecture
model

Systems developed
using dynamic
languages, DB

programming etc.

Initial effort
estimation based on
system requirements
and design options

Effort to integrate
reusable components

or automatically
generated code

Development effort
based on system

design specification

Figure 23.10  COCOMO
estimation models

688    Chapter 23  ■  Project planning

3.	 A reuse model This model is used to compute the effort required to integrate
reusable components and/or automatically generated program code. It is nor-
mally used in conjunction with the post-architecture model.

4.	 A post-architecture model Once the system architecture has been designed, a
more accurate estimate of the software size can be made. Again, this model uses
the standard formula for cost estimation discussed above. However, it includes
a more extensive set of 17 multipliers reflecting personnel capability, product,
and project characteristics.

Of course, in large systems, different parts of the system may be developed using
different technologies, and you may not have to estimate all parts of the system to
the same level of accuracy. In such cases, you can use the appropriate submodel for
each part of the system and combine the results to create a composite estimate.

The COCOMO II model is a very complex model and, to make it easier to explain,
I have simplified its presentation. You could use the models as I have explained them
here for simple cost estimation. However, to use COCOMO properly, you should refer
to Boehm’s book and the manual for the COCOMO II model (B. W. Boehm et al.
2000; Abts et al. 2000).

	 23.6.1 	 The application composition model

The application composition model was introduced into COCOMO II to support
the estimation of effort required for prototyping projects and for projects where
the software is developed by composing existing components. It is based on an
estimate of weighted application points (sometimes called object points), divided
by a standard estimate of application point productivity (B. W. Boehm et al.
2000). The number of application points in a program is derived from four sim-
pler estimates:

■	 the number of separate screens or web pages that are displayed;

■	 the number of reports that are produced;

■	 the number of modules in imperative programming languages (such as Java); and

■	 the number of lines of scripting language or database programming code.

This estimate is then adjusted according to the difficulty of developing each
application point. Productivity depends on the developer’s experience and capability
as well as the capabilities of the software tools (ICASE) used to support develop-
ment. Figure 23.11 shows the levels of application-point productivity suggested by
the COCOMO model developers.

Application composition usually relies on reusing existing software and configur-
ing application systems. Some of the application points in the system will therefore
be implemented using reusable components. Consequently, you have to adjust the

	 23.6  ■  COCOMO cost modeling    689

estimate to take into account the percentage of reuse expected. Therefore, the final
formula for effort computation for system prototypes is:

PM 5 (NAP 3 (1 2 %reuse/100)) / PROD

PM: the effort estimate in person-months.

NAP: the total number of application points in the delivered system.

%reuse: an estimate of the amount of reused code in the development.

PROD: the application-point productivity as shown in Figure 23.11.

	 23.6.2 	 The early design model

This model may be used during the early stages of a project, before a detailed archi-
tectural design for the system is available. The early design model assumes that user
requirements have been agreed and initial stages of the system design process are
underway. Your goal at this stage should be to make a quick and approximate cost
estimate. Therefore, you have to make simplifying assumptions, such as the assump-
tion that there is no effort involved in integrating reusable code.

Early design estimates are most useful for option exploration where you need to
compare different ways of implementing the user requirements. The estimates pro-
duced at this stage are based on the standard formula for algorithmic models, namely:

Effort 5 A 3 SizeB 3 M

Based on his own large dataset, Boehm proposed that the co-efficient A should be
2.94. The size of the system is expressed in KSLOC, which is the number of thou-
sands of lines of source code. You calculate KSLOC by estimating the number of
function points in the software. You then use standard tables, which relate software
size to function points for different programming languages (QSM 2014) to compute
an initial estimate of the system size in KSLOC.

The exponent B reflects the increased effort required as the size of the project
increases. This can vary from 1.1 to 1.24 depending on the novelty of the project, the
development flexibility, the risk resolution processes used, the cohesion of the
development team, and the process maturity level (see web Chapter 26) of the organ-
ization. I discuss how the value of this exponent is calculated using these parameters
in the description of the COCOMO II post-architecture model.

Developer’s
experience and
capability

Very low Low Nominal High Very high

ICASE maturity and
capability

Very low Low Nominal High Very high

PROD (NAP/month) 4 7 13 25 50

Figure 23.11 
Application-
point productivity

690    Chapter 23  ■  Project planning

This results in an effort computation as follows:

PM 5 2.94 3 Size(1.1 to 1.24) 3 M

M 5 PERS 3 PREX 3 RCPX 3 RUSE 3 PDIF 3 SCED 3 FSIL

PERS: personnel capability

PREX: personnel experience

RCPX: product reliability and complexity

RUSE: reuse required

PDIF: platform difficulty

SCED: schedule

FSIL: support facilities

The multiplier M is based on seven project and process attributes that increase or
decrease the estimate. I explain these attributes on the book’s web pages. You esti-
mate values for these attributes using a six-point scale, where 1 corresponds to “very
low” and 6 corresponds to “very high”; for example, PERS = 6 means that expert
staff are available to work on the project.

	 23.6.3 	 The reuse model

The COCOMO reuse model is used to estimate the effort required to integrate reus-
able or generated code. As I have discussed in Chapter 15, software reuse is now the
norm in all software development. Most large systems include a significant amount
of code that has been reused from previous development projects.

COCOMO II considers two types of reused code. Black-box code is code that can be
reused without understanding the code or making changes to it. Examples of black-box
code are components that are automatically generated from UML models or application
libraries such as graphics libraries. It is assumed that the development effort for black-
box code is zero. Its size is not taken into account in the overall effort computation.

White-box code is reusable code that has to be adapted to integrate it with new
code or other reused components. Development effort is required for reuse because
the code has to be understood and modified before it can work correctly in the sys-
tem. White-box code could be automatically generated code that needs manual
changes or additions. Alternatively, it can be reused components from other systems
that have to be modified in the system that is being developed.

Three factors contribute to the effort involved in reusing white-box code components:

1.	 The effort involved in assessing whether or not a component could be reused in
a system that is being developed.

2.	 The effort required to understand the code that is being reused.

3.	 The effort required to modify the reused code to adapt it and integrate it with the
system being developed.

	 23.6  ■  COCOMO cost modeling    691

The development effort in the reuse model is calculated using the COCOMO
early design model and is based on the total number of lines of code in the system.
The code size includes new code developed for components that are not reused plus
an additional factor that allows for the effort involved in reusing and integrating
existing code. This additional factor is called ESLOC, the equivalent number of lines
of new source code. That is, you express the reuse effort as the effort that would be
involved in developing some additional source code.

The formula used to calculate the source code equivalence is:

ESLOC 5 (ASLOC 3 (1-AT/100) 3 AAM)

ESLOC: the equivalent number of lines of new source code.

ASLOC: an estimate of the number of lines of code in the reused components that
have to be changed.

AT: the percentage of reused code that can be modified automatically.

AAM: an Adaptation Adjustment Multiplier that reflects the additional effort
required to reuse components.

In some cases, the adjustments required to reuse code are syntactic and can be
implemented by an automated tool. These do not involve significant effort, so you
should estimate what fraction of the changes made to reused code can be automated
(AT). This reduces the total number of lines of code that have to be adapted.

The Adaptation Adjustment Multiplier (AAM) adjusts the estimate to reflect the
additional effort required to reuse code. The COCOMO model documentation (Abts
et al. 2000) discusses in detail how AAM should be calculated. Simplistically, AAM is
the sum of three components:

1.	 An assessment factor (referred to as AA) that represents the effort involved in
deciding whether or not to reuse components. AA varies from 0 to 8 depending
on the amount of time you need to spend looking for and assessing potential
candidates for reuse.

2.	 An understanding component (referred to as SU) that represents the costs of
understanding the code to be reused and the familiarity of the engineer with the
code that is being reused. SU ranges from 50 for complex, unstructured code to
10 for well-written, object-oriented code.

3.	 An adaptation component (referred to as AAF) that represents the costs of making
changes to the reused code. These include design, code, and integration changes.

Once you have calculated a value for ESLOC, you apply the standard estimation
formula to calculate the total effort required, where the Size parameter = ESLOC.
Therefore, the formula to estimate the reuse effort is:

Effort 5 A 3 ESLOCB 3 M

where A, B, and M have the same values as used in the early design model.

692    Chapter 23  ■  Project planning

	 23.6.4 	 The post-architecture level

The post-architecture model is the most detailed of the COCOMO II models. It is
used when you have an initial architectural design for the system. The starting point
for estimates produced at the post-architecture level is the same basic formula used
in the early design estimates:

PM 5 A 3 SizeB 3 M

By this stage in the process, you should be able to make a more accurate estimate
of the project size, as you know how the system will be decomposed into subsystems
and components. You make this estimate of the overall code size by adding three
code size estimates:

1.	 An estimate of the total number of lines of new code to be developed (SLOC).

2.	 An estimate of the reuse costs based on an equivalent number of source lines of
code (ESLOC), calculated using the reuse model.

3.	 An estimate of the number of lines of code that may be changed because of
changes to the system requirements.

The final component in the estimate—the number of lines of modified code—
reflects the fact that software requirements always change. This leads to rework and
development of extra code, which you have to take into account. Of course there will
often be even more uncertainty in this figure than in the estimates of new code to be
developed.

The exponent term (B) in the effort computation formula is related to the lev-
els of project complexity. As projects become more complex, the effects of
increasing system size become more significant. The value of the exponent B is
based on five factors, as shown in Figure 23.12. These factors are rated on a six-
point scale from 0 to 5, where 0 means “extra high” and 5 means “very low.” To
calculate B, you add the ratings, divide them by 100, and add the result to 1.01 to
get the exponent that should be used.

COCOMO cost drivers

COCOMO II cost drivers are attributes that reflect some of the product, team, process, and organizational factors
that affect the amount of effort needed to develop a software system. For example, if a high level of reliability is
required, extra effort will be needed; if there is a need for rapid delivery, extra effort will be required; if the team
members change, extra effort will be required.

There are 17 of these attributes in the COCOMO II model, which have been assigned estimated values by the
model developers.

http://software-engineering-book.com/web/cost-drivers/

http://software-engineering-book.com/web/cost-drivers

	 23.6  ■  COCOMO cost modeling    693

For example, imagine that an organization is taking on a project in a domain in which
it has little previous experience. The project client has not defined the process to be used or
allowed time in the project schedule for significant risk analysis. A new development team
must be put together to implement this system. The organization has recently put in place
a process improvement program and has been rated as a Level 2 organization according to
the SEI capability assessment, as discussed in Chapter 26 (web chapter). These character-
istics lead to estimates of the ratings used in exponent calculation as follows:

1.	 Precedentedness, rated low (4). This is a new project for the organization.

2.	 Development flexibility, rated very high (1). There is no client involvement in
the development process, so there are few externally imposed changes.

3.	 Architecture/risk resolution, rated very low (5). There has been no risk analysis
carried out.

4.	 Team cohesion, rated nominal (3). This is a new team, so there is no information
available on cohesion.

5.	 Process maturity, rated nominal (3). Some process control is in place.

The sum of these values is 16. You then calculate the final value of the exponent
by dividing this sum by 100 and adding 0.01 to the result. The adjusted value of B is
therefore 1.17.

The overall effort estimate is refined using an extensive set of 17 product, pro-
cess, and organizational attributes (see breakout box) rather than the seven attributes
used in the early design model. You can estimate values for these attributes because
you have more information about the software itself, its non-functional require-
ments, the development team, and the development process.

Scale factor Explanation

Architecture/risk resolution Reflects the extent of risk analysis carried out. Very low means little analysis;
extra-high means a complete and thorough risk analysis.

Development flexibility Reflects the degree of flexibility in the development process. Very low means
a prescribed process is used; extra-high means that the client sets only
general goals.

Precedentedness Reflects the previous experience of the organization with this type of project.
Very low means no previous experience; extra-high means that the
organization is completely familiar with this application domain.

Team cohesion Reflects how well the development team knows each other and works
together. Very low means very difficult interactions; extra-high means an
integrated and effective team with no communication problems.

Process maturity Reflects the process maturity of the organization as discussed in web
chapter 26. The computation of this value depends on the CMM Maturity
Questionnaire, but an estimate can be achieved by subtracting the CMM
process maturity level from 5.

Figure 23.12  Scale
factors used in the
exponent computation
in the post-architecture
model

694    Chapter 23  ■  Project planning

 Figure 23.13 shows how the cost driver attributes influence effort estimates.
Assume that the exponent value is 1.17 as discussed in the above example. Reliability
(RELY), complexity (CPLX), storage (STOR), tools (TOOL), and schedule (SCED) are
the key cost drivers in the project. All of the other cost drivers have a nominal value
of 1, so they do not affect the effort computation.

In Figure 23.13, I have assigned maximum and minimum values to the key cost
drivers to show how they influence the effort estimate. The values used are those
from the COCOMO II reference manual (Abts et al. 2000). You can see that high
values for the cost drivers lead an effort estimate that is more than three times the
initial estimate, whereas low values reduce the estimate to about one third of the
original. This highlights the significant differences between different types of
project and the difficulties of transferring experience from one application domain
to another.

	 23.6.5 	 Project duration and staffing

As well as estimating the overall costs of a project and the effort that is required to
develop a software system, project managers must also estimate how long the soft-
ware will take to develop and when staff will be needed to work on the project.
Increasingly, organizations are demanding shorter development schedules so that
their products can be brought to market before their competitor’s.

Exponent value 1.17

System size (including factors for reuse and
requirements volatility)

128 KLOC

Initial COCOMO estimate without cost drivers 730 person-months

Reliability Very high, multiplier = 1.39

Complexity Very high, multiplier = 1.3

Memory constraint High, multiplier = 1.21

Tool use Low, multiplier = 1.12

Schedule Accelerated, multiplier = 1.29

Adjusted COCOMO estimate 2306 person-months

Reliability Very low, multiplier = 0.75

Complexity Very low, multiplier = 0.75

Memory constraint None, multiplier = 1

Tool use Very high, multiplier = 0.72

Schedule Normal, multiplier = 1

Adjusted COCOMO estimate 295 person-months

Figure 23.13 
The effect of cost
drivers on effort
estimates

	 23.6  ■  COCOMO cost modeling    695

The COCOMO model includes a formula to estimate the calendar time required
to complete a project:

TDEV 5 3 3 (PM)(0.33 1 0.2*(B 2 1.01))

TDEV: the nominal schedule for the project, in calendar months, ignoring any mul-
tiplier that is related to the project schedule.

PM: the effort computed by the COCOMO model.

B: a complexity-related exponent, as discussed in section 23.5.2.

If B 5 1.17 and PM = 60 then

TDEV 5 3 3 (60)0.36 5 13 months

The nominal project schedule predicted by the COCOMO model does not neces-
sarily correspond with the schedule required by the software customer. You may
have to deliver the software earlier or (more rarely) later than the date suggested by
the nominal schedule. If the schedule is to be compressed (i.e., software is to be
developed more quickly), this increases the effort required for the project. This is
taken into account by the SCED multiplier in the effort estimation computation.

Assume that a project estimated TDEV as 13 months, as suggested above, but the
actual schedule required was 10 months. This represents a schedule compression of
approximately 25%. Using the values for the SCED multiplier as derived by Boehm’s
team, we see that the effort multiplier for this level of schedule compression is 1.43.
Therefore, the actual effort that will be required if this accelerated schedule is to be
met is almost 50% more than the effort required to deliver the software according to
the nominal schedule.

There is a complex relationship between the number of people working on a pro-
ject, the effort that will be devoted to the project. and the project delivery schedule.
If four people can complete a project in 13 months (i.e., 52 person-months of effort),
then you might think that by adding one more person, you could complete the work
in 11 months (55 person-months of effort). However, the COCOMO model suggests
that you will, in fact, need six people to finish the work in 11 months (66 person-
months of effort).

The reason for this is that adding people to a project reduces the productivity of
existing team members. As the project team increases in size, team members spend
more time communicating and defining interfaces between the parts of the system
developed by other people. Doubling the number of staff (for example) therefore
does not mean that the duration of the project will be halved.

Consequently, when you add an extra person, the actual increment of effort added
is less than one person as others become less productive. If the development team is
large, adding more people to a project sometimes increases rather than reduces the
development schedule because of the overall effect on productivity.

You cannot simply estimate the number of people required for a project team by
dividing the total effort by the required project schedule. Usually, a small number of
people are needed at the start of a project to carry out the initial design. The team then

696    Chapter 23  ■  Project planning

builds up to a peak during the development and testing of the system, and then declines
in size as the system is prepared for deployment. A very rapid build-up of project staff
has been shown to correlate with project schedule slippage. As a project manager, you
should therefore avoid adding too many staff to a project early in its lifetime.

K e y P o i n t s

■	 The price charged for a system does not just depend on its estimated development costs and
the profit required by the development company. Organizational factors may mean that the
price is increased to compensate for increased risk or decreased to gain competitive advantage.

■	 Software is often priced to gain a contract, and the functionality of the system is then adjusted
to meet the estimated price.

■	 Plan-driven development is organized around a complete project plan that defines the project
activities, the planned effort, the activity schedule, and who is responsible for each activity.

■	 Project scheduling involves the creation of various graphical representations of part of the
project plan. Bar charts, which show the activity duration and staffing timelines, are the most
commonly used schedule representations.

■	 A project milestone is a predictable outcome of an activity or set of activities. At each milestone,
a formal report of progress should be presented to management. A deliverable is a work product
that is delivered to the project customer.

■	 The agile planning game involves the whole team in project planning. The plan is developed
incrementally, and, if problems arise, it is adjusted so that software functionality is reduced
instead of delaying the delivery of an increment.

■	 Estimation techniques for software may be experience-based, where managers judge the effort
required, or algorithmic, where the effort required is computed from other estimated project
parameters.

■	 The COCOMO II costing model is a mature algorithmic cost model that takes project, product,
hardware, and personnel attributes into account when formulating a cost estimate.

F u r t h e r Rea d i n g

Further reading suggested in Chapter 22 is also relevant to this chapter.

“Ten Unmyths of Project Estimation.” A pragmatic article that discusses the practical difficulties of
project estimation and challenges some fundamental assumptions in this area. (P. Armour, Comm.
ACM, 45(11), November 2002). http://dx.doi.org/10.1145/581571.581582

http://dx.doi.org/10.1145/581571.581582

	 Chapter 23  ■  Exercises    697

 Agile Estimating and Planning. This book is a comprehensive description of story-based planning
as used in XP, as well as a rationale for using an agile approach to project planning. The book also
includes a good, general introduction to project planning issues. (M. Cohn, 2005, Prentice-Hall).

“Achievements and Challenges in COCOMO-based Software Resource Estimation.” This article
presents a history of the COCOMO models and influences on these models, and discusses the variants
of these models that have been developed. It also identifies further possible developments in the
COCOMO approach. (B. W. Boehm and R. Valeridi, IEEE Software, 25 (5), September/October 2008).
http://dx.doi.org/10.1109/MS.2008.133

All About Agile; Agile Planning. This website on agile methods includes an excellent set of articles
on agile planning from a number of different authors. (2007–2012). http://www.allaboutagile.com/
category/agile-planning/

Project Management Knowhow: Project Planning. This website has a number of useful articles on
project management in general. These are aimed at people who don’t have previous experience in
this area. (P. Stoemmer, 2009–2014). http://www.project-management-knowhow.com/project_
planning.html

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-management/

E x e r c i ses

23.1.	 Describe the factors that affect software pricing. Define the “pricing to win” approach in
software pricing.

23.2.	 Explain why the process of project planning is iterative and why a plan must be continually
reviewed during a software project.

23.3.	 Define project scheduling. What are the things to be considered while estimating schedules?

23.4.	 What is algorithmic cost modeling? What problems does it suffer from when compared with
other approaches to cost estimation?

23.5.	 Figure 23.14 sets out a number of tasks, their durations, and their dependencies. Draw a bar
chart showing the project schedule.

http://dx.doi.org/10.1109/MS.2008.133
http://www.allaboutagile.com/category/agile-planning
http://www.project-management-knowhow.com/project_planning.html
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-management
http://www.allaboutagile.com/category/agile-planning
http://www.project-management-knowhow.com/project_planning.html

23.6.	 Figure 23.14 shows the task durations for software project activities. Assume that a serious,
unanticipated setback occurs, and instead of taking 10 days, task T5 takes 40 days. Draw up
new bar charts showing how the project might be reorganized.

23.7.	 The planning game is based on the notion of planning to implement the stories that represent
the system requirements. Explain the potential problems with this approach when software
has high performance or dependability requirements.

23.8.	 A software manager is in charge of the development of a safety-critical software system,
which is designed to control a radiotherapy machine to treat patients suffering from cancer.
This system is embedded in the machine and must run on a special-purpose processor with a
fixed amount of memory (256 Mbytes). The machine communicates with a patient database
system to obtain the details of the patient and, after treatment, automatically records the
radiation dose delivered and other treatment details in the database.

		 The COCOMO method is used to estimate the effort required to develop this system, and an
estimate of 26 person-months is computed. All cost driver multipliers were set to 1 when
making this estimate.

Task Duration Dependencies

T1 10

T2 15 T1

T3 10 T1, T2

T4 20

T5 10

T6 15 T3, T4

T7 20 T3

T8 35 T7

T9 15 T6

T10 5 T5, T9

T11 10 T9

T12 20 T10

T13 35 T3, T4

T14 10 T8, T9

T15 20 T12, T14

T16 10 T15Figure 23.14 
Scheduling example

698    Chapter 23  ■  Project planning

		� Explain why this estimate should be adjusted to take project, personnel, product, and
organizational factors into account. Suggest four factors that might have significant effects
on the initial COCOMO estimate and propose possible values for these factors. Justify why
you have included each factor.

  23.9.	 �Some very large software projects involve writing millions of lines of code. Explain why the
effort estimation models, such as COCOMO, might not work well when applied to very large
systems.

23.10.	 �Is it ethical for a company to quote a low price for a software contract knowing that the
requirements are ambiguous and that they can charge a high price for subsequent changes
requested by the customer?

Refe r e n ces

Abts, C., B. Clark, S. Devnani-Chulani, and B. W. Boehm. 2000. “COCOMO II Model Definition Manual.”
Center for Software Engineering, University of Southern California. http://csse.usc.edu/csse/
research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf

Beck, K., and C. Andres. 2004. Extreme Programming Explained: 2nd ed. Boston: Addison-Wesley.

Boehm, B., B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. Selby. 1995. “Cost Models for
Future Software Life Cycle Processes: COCOMO 2.” Annals of Software Engineering: 1–31.
doi:10.1007/BF02249046.

Boehm, B., and W. Royce. 1989. “Ada COCOMO and the Ada Process Model.” In Proc. 5th COCOMO
Users’ Group Meeting. Pittsburgh: Software Engineering Institute. http://www.dtic.mil/dtic/tr/
fulltext/u2/a243476.pdf

Boehm, B. W. 1981. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall.

Boehm, B. W., C. Abts, A. W. Brown, S. Chulani, B K. Clark, E. Horowitz, R. Madachy, D. Reifer, and
B. Steece. 2000. Software Cost Estimation with COCOMO II. Englewood Cliffs, NJ: Prentice-Hall.

Cohn, M. 2005. Agile Estimating and Planning. Englewood-Cliffs, NJ: Prentice Hall.

QSM. 2014. “Function Point Languages Table.” http://www.qsm.com/resources/function-point-
languages-table

Rubin, K. S. 2013. Essential Scrum. Boston: Addison-Wesley.

	 Chapter 23  ■  References    699

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a243476.pdf
http://www.qsm.com/resources/function-point-languages-table
http://www.dtic.mil/dtic/tr/fulltext/u2/a243476.pdf
http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf
http://www.qsm.com/resources/function-point-languages-table

Quality management
24

Objectives
The objectives of this chapter are to introduce software quality
management and software measurement. When you have read the
chapter, you will:

■	 have been introduced to the quality management process and
know why quality planning is important;

■	 be aware of the importance of standards in the quality management
process and know how standards are used in quality assurance;

■	 understand how reviews and inspections are used as a mechanism
for software quality assurance;

■	 understand how quality management in agile methods is based on
the development of a team quality culture;

■	 understand how measurement may be helpful in assessing some
software quality attributes, the notion of software analytics, and
the limitations of software measurement.

Contents
24.1 	Software quality

24.2 	Software standards

24.3 	Reviews and inspections

24.4 	Quality management and agile development

24.5 	Software measurement

	 Chapter 24  ■  Quality management   701

Software quality management is concerned with ensuring that developed software
systems are “fit for purpose.” That is, systems should meet the needs of their users,
should perform efficiently and reliably, and should be delivered on time and within
budget. The use of quality management techniques along with new software tech-
nologies and testing methods has led to significant improvements in the level of
software quality over the past 20 years.

Formalized quality management (QM) is particularly important in teams that are
developing large, long-lifetime systems that take several years to develop. These systems
are developed for external clients, usually using a plan-based process. For these systems,
quality management is both an organizational and an individual project issue:

1.	 At an organizational level, quality management is concerned with establishing a
framework of organizational processes and standards that will lead to high-quality
software. The QM team should take responsibility for defining the software
development processes to be used and standards that should apply to the software
and related documentation, including the system requirements, design, and code.

2.	 At a project level, quality management involves the application of specific qual-
ity processes, checking that these planned processes have been followed, and
ensuring that the project outputs meet the defined project standards. Project
quality management may also involve defining a quality plan for a project. The
quality plan should set out the quality goals for the project and define what
processes and standards are to be used.

Software quality management techniques have their roots in methods and techniques
that were developed in manufacturing industries, where the terms quality assurance and
quality control are widely used. Quality assurance is the definition of processes and
standards that should lead to high-quality products and the introduction of quality pro-
cesses into the manufacturing process. Quality control is the application of these quality
processes to weed out products that are not of the required level of quality. Both quality
assurance and quality control are part of quality management.

In the software industry, some companies see quality assurance as the definition
of procedures, processes, and standards to ensure that software quality is achieved.
In other companies, quality assurance also includes all configuration management,
verification, and validation activities that are applied after a product has been handed
over by a development team.

Quality management provides an independent check on the software develop-
ment process. The QM team checks the project deliverables to ensure that they are
consistent with organizational standards and goals (Figure 24.1). They also check
process documentation, which records the tasks that have been completed by each
team working on this project. The QM team uses documentation to check that impor-
tant tasks have not been forgotten or that one group has not made incorrect assump-
tions about what other groups have done.

The QM team in large companies is usually responsible for managing the release
testing process. As I discussed in Chapter 8, this means that they manage the testing
of the software before it is released to customers. In addition, they are responsible

702   Chapter 24  ■  Quality management

for checking that the system tests provide coverage of the requirements and that
proper records of the testing process are maintained.

The QM team should be independent and not part of the software development
group so that they can take an objective view of the quality of the software. They can
report on software quality without being influenced by software development issues.
Ideally, the QM team should have organization-wide responsibility for quality man-
agement. They should report to management above the project manager level.

Because project managers have to maintain the project budget and schedule, they
may be tempted to compromise on product quality to meet that schedule. An independ-
ent QM team ensures that the organizational goals of quality are not influenced by
short-term budget and schedule considerations. In smaller companies, however, this is
practically impossible. Quality management and software development are inevitably
intertwined with people having both development and quality responsibilities.

Formalized quality planning is an integral part of plan-based development processes.
It is the process of developing a quality plan for a project. The quality plan should set
out the desired software qualities and describe how these qualities are to be assessed. It
defines what “high-quality” software actually means for a particular system. Engineers,
therefore, have a shared understanding of the most important software quality attributes.

Humphrey (Humphrey 1989), in his classic book on software management, sug-
gests an outline structure for a quality plan. This outline includes the following:

1.	 Product introduction A description of the product, its intended market, and the
quality expectations for the product.

2.	 Product plans The critical release dates and responsibilities for the product,
along with plans for distribution and product servicing.

3.	 Process descriptions The development and service processes and standards that
should be used for product development and management.

4.	 Quality goals The quality goals and plans for the product, including an identifi-
cation and justification of critical product quality attributes.

5.	 Risks and risk management The key risks that might affect product quality and
the actions to be taken to address these risks.

Software development
process

Quality management
process

D1 D2 D3 D4 D5

Standards and
procedures

Quality
plan

Quality review reports

Figure 24.1  Quality
management and
software development

	 24.1  ■  Software quality   703

Quality plans, which are developed as part of the general project planning process,
differ in detail depending on the size and type of system being developed. However, when
writing quality plans, you should try to keep them as short as possible. If the document is
too long, people will not read it, so defeating the purpose of producing the quality plan.

Traditional quality management is a formal process that relies on maintaining exten-
sive documentation about testing and system validation and on how processes have
been followed. In this respect, it is diametrically opposed to agile development, where
the aim is to spend as little time as possible in writing documents and formalizing how
the development work should be done. QM techniques have therefore had to evolve
when agile methods are used. I discuss QM and agile development in Section 24.4.

	 24.1 	 Software quality

The manufacturing industry established the fundamentals of quality management in
a drive to improve the quality of the products that were being made. As part of this
effort, the industry developed a definition of quality that was based on conformance
with a detailed product specification. The underlying assumption was that products
could be completely specified and procedures could be established that could check
a manufactured product against its specification. Of course, products will never
exactly meet a specification, so some tolerance was allowed. If the product was
“almost right,” it was classed as acceptable.

Software quality is not directly comparable with quality in manufacturing. The
idea of tolerances is applicable in analog systems but does not apply to software.
Furthermore, it is often impossible to come to an objective conclusion about whether
or not a software system meets its specification:

1.	 It is difficult to write complete and unambiguous software requirements.
Software developers and customers may interpret the requirements in different
ways, and it may be impossible to reach agreement on whether or not software
conforms to its specification.

2.	 Specifications usually integrate requirements from several classes of stake-
holder. These requirements are inevitably a compromise and may not include
the requirements of all stakeholder groups. The excluded stakeholders may
therefore perceive the system as a poor-quality system, even though it imple-
ments the agreed requirements.

3.	 It is impossible to measure certain quality characteristics (e.g., maintainability)
directly, and so they cannot be specified in an unambiguous way. I discuss the
difficulties of measurement in Section 24.4.

Because of these problems, the assessment of software quality is a subjective
process. The quality management team uses their judgment to decide if an acceptable
level of quality has been achieved. They decide whether or not the software is fit for

704   Chapter 24  ■  Quality management

its intended purpose. This decision involves answering questions about the system’s
characteristics. For example:

1.	 Has the software been properly tested, and has it been shown that all require-
ments have been implemented?

2.	 Is the software sufficiently dependable to be put into use?

3.	 Is the performance of the software acceptable for normal use?

4.	 Is the software usable?

5.	 Is the software well structured and understandable?

6.	 Have programming and documentation standards been followed in the develop-
ment process?

There is a general assumption in software quality management that the system
will be tested against its requirements. The judgment on whether or not it delivers
the required functionality should be based on the results of these tests. Therefore, the
QM team should review the tests that have been developed and examine the test
records to check that testing has been properly carried out. In some companies, the
QM group carries out final system testing; in others, a dedicated system testing team
reports to the system quality manager.

The subjective quality of a software system is largely based on its non-functional
characteristics. This reflects practical user experience—if the software’s functional-
ity is not what is expected, then users will often just work around this deficiency and
find other ways to do what they want to do. However, if the software is unreliable or
too slow, then it is practically impossible for them to achieve their goals.

Therefore, software quality is not just about whether the software functionality
has been correctly implemented, but also depends on non-functional system attrib-
utes as shown in Figure 24.2. These attributes reflect the software dependability,
usability, efficiency, and maintainability.

It is not possible for any system to be optimized for all of these attributes. For
example, improving security may lead to loss of performance. The quality plan
should therefore define the most important quality attributes for the software that is
being developed. It may be that efficiency is critical and other factors have to be
sacrificed to achieve it. If you have emphasized the importance of efficienty in the
quality plan, the engineers working on the development can work together to achieve
this. The plan should also include a definition of the quality assessment process.

Safety Understandability Portability

Security Testability Usability

Reliability Adaptability Reusability

Resilience Modularity Efficiency

Robustness Complexity LearnabilityFigure 24.2  Software
quality attributes

	 24.1  ■  Software quality   705

This process should be an agreed way of assessing whether some quality, such as
maintainability or robustness, is present in the product.

Traditional software quality management is based on the assumption that the qual-
ity of software is directly related to the quality of the software development process.
This assumption comes from manufacturing systems where product quality is inti-
mately related to the production process. A manufacturing process involves configur-
ing, setting up, and operating the machines involved in the process. Once the machines
are operating correctly, product quality naturally follows. You measure the quality of
the product and change the process until you achieve the quality level that you need.
Figure 24.3 illustrates this process-based approach to achieving product quality.

There is a clear link between process and product quality in manufacturing because
the process is relatively easy to standardize and monitor. Once manufacturing sys-
tems are calibrated, they can be run again and again to output high-quality products.
However, software is designed rather than manufactured, and the relationship
between process quality and product quality is more complex. Software design is a
creative process, so the influence of individual skills and experience is significant.
External factors, such as the novelty of an application or commercial pressure for an
early product release, also affect product quality irrespective of the process used.

Without doubt, the development process used has a significant influence on the qual-
ity of the software, and good processes are more likely to lead to good quality software.
Process quality management and improvement can result in fewer defects in the software
being developed. However, it is difficult to assess software quality attributes, such as reli-
ability and maintainability, without using the software for a long period. Consequently, it
is hard to tell how process characteristics influence these attributes. Furthermore, because
of the role of design and creativity in the software process, process standardization can
sometimes stifle creativity, which may lead to poorer rather than better quality software.

Defined processes are important, but quality managers should also aim to develop
a “quality culture” in which everyone responsible for software development is com-
mitted to achieving a high level of product quality. They should encourage teams to
take responsibility for the quality of their work and to develop new approaches to
quality improvement. While standards and procedures are the basis of quality man-
agement, good-quality managers recognize that there are intangible aspects to software
quality (elegance, readability, etc.) that cannot be embodied in standards. They
should support people who are interested in the intangible aspects of quality and
encourage professional behavior in all team members.

Define process
Develop
product

Assess product
quality

Standardize
process

Improve
process

Quality
OK

No Yes

Figure 24.3  Process-
based quality

706   Chapter 24  ■  Quality management

	 24.2 	 Software standards

Software standards play an important role in plan-based software quality management.
As I have discussed, an important part of quality assurance is the definition or selection
of standards that should apply to the software development process or software product.
As part of this process, tools and methods to support the use of these standards may also
be chosen. Once standards have been selected for use, project-specific processes have to
be defined to monitor the use of the standards and check that they have been followed.

Software standards are important for three reasons:

1.	 Standards capture wisdom that is of value to the organization. They are based on
knowledge about the best or most appropriate practice for the company. This
knowledge is often acquired only after a great deal of trial and error. Building it into
a standard helps the company reuse this experience and avoid previous mistakes.

2.	 Standards provide a framework for defining what quality means in a particular
setting. As I have discussed, software quality is subjective, and by using stand-
ards you establish a basis for deciding if a required level of quality has been
achieved. Of course, this depends on setting standards that reflect user expecta-
tions for software dependability, usability, and performance.

3.	 Standards assist continuity when work carried out by one person is taken up and
continued by another. Standards ensure that all engineers within an organization
adopt the same practices. Consequently, the learning effort required when start-
ing new work is reduced.

Two related types of software engineering standard may be defined and used in
software quality management:

1.	 Product standards These apply to the software product being developed. They
include document standards, such as the structure of requirements documents,
documentation standards, such as a standard comment header for an object class
definition, and coding standards, which define how a programming language
should be used.

Documentation standards

Project documents are a tangible way of describing the different representations of a software system
(requirements, UML, code, etc.) and its production process. Documentation standards define the organization
of different types of document as well as the document format. They are important because they make it easier
to check that important material has not been omitted from documents and ensure that project documents
have a common “look and feel.” Standards may be developed for the process of writing documents, for the
documents themselves and for document exchange.

http://software-engineering-book.com/web/documentation-standards/

http://software-engineering-book.com/web/documentation-standards

	 24.2  ■  Software standards   707

2.	 Process standards These define the processes that should be followed during
software development. They should encapsulate good development practice.
Process standards may include definitions of specification, design, and valida-
tion processes, process support tools, and a description of the documents that
should be written during these processes.

Examples of product and process standards that may be used are shown in
Figure 24.4.

Standards have to deliver value, in the form of increased product quality. There is no
point in defining standards that are expensive in terms of time and effort to apply that only
lead to marginal improvements in quality. Product standards have to be designed so that
they can be applied and checked in a cost-effective way, and process standards should
include the definition of processes that check if product standards have been followed.

The software engineering standards that are used within a company are usually
adapted from broader national or international standards. National and international
standards have been developed covering software engineering terminology, pro-
gramming languages such as Java and C++, notations such as charting symbols,
procedures for deriving and writing software requirements, quality assurance proce-
dures, and software verification and validation processes (IEEE 2003). More spe-
cialized standards have been developed for safety and security critical systems.

Software engineers sometimes consider standards to be overprescriptive and
irrelevant to the technical activity of software development. This is particularly
likely when project standards require tedious documentation and work recording.
Although they usually agree about the general need for standards, engineers often
find good reasons why standards are not necessarily appropriate to their particular
project. Quality managers who set the standards should therefore consider possible
actions to convince engineers of the value of standards:

1.	 Involve software engineers in the selection of product standards If developers
understand why standards have been selected, they are more likely to be com-
mitted to these standards. Ideally, the standards document should not just set out
the standard to be followed but should also include commentary explaining why
standardization decisions have been made.

Product standards Process standards

Design review form Design review conduct

Requirements document structure Submission of new code for system building

Method header format Version release process

Java programming style Project plan approval process

Project plan format Change control process

Change request form Test recording process

Figure 24.4  Product
and process
standards

708   Chapter 24  ■  Quality management

2.	 Review and modify standards regularly to reflect changing technologies
Standards are expensive to develop, and they tend to be enshrined in a company
standards handbook. Because of the costs and discussion required, there is often
a reluctance to change them. A standards handbook is essential, but it should
evolve to reflect changing circumstances and technology.

3.	 Make sure that tool support is available to support standards-based development
Developers often find standards to be a bugbear when conformance to them
involves tedious manual work that could be done by a software tool. If tool support
is available, standards can be followed without much extra effort. For example,
program layout standards can be defined and implemented by a syntax-directed
program editing system.

Different types of software need different development processes, so standards
have to be adaptable. There is no point in prescribing a particular way of working if
it is inappropriate for a project or project team. Each project manager should have
the authority to modify process standards according to individual circumstances.
However, when changes are made, it is important to ensure that these changes do not
lead to a loss of product quality.

The project manager and the quality manager can avoid the problems of inap-
propriate standards by careful quality planning early in the project. They should
decide which of the organizational standards should be used without change, which
should be modified, and which should be ignored. New standards may have to be
created in response to customer or project requirements. For example, standards
for formal specifications may be required if these standards have not been used in
previous projects.

	 24.2.1 	 The ISO 9001 standards framework

The international set of standards used in the development of quality manage-
ment systems in all industries is called ISO 9000. ISO 9000 standards can be
applied to a range of organizations from manufacturing through to service indus-
tries. ISO 9001, the most general of these standards, applies to organizations that
design, develop, and maintain products, including software. The ISO 9001
standard was originally developed in 1987. I explain the 2008 version of the
standard here, but the standard may change in 2015 when a new version is sched-
uled for release.

The ISO 9001 standard is not a standard for software development but rather is a
framework for developing software standards. It sets out general quality principles,
describes quality processes in general, and lays out the organizational standards and
procedures that should be defined. These should be documented in an organizational
quality manual.

A major revision of the ISO 9001 standard in 2000 reoriented the standard around
nine core processes (Figure 24.5). If an organization is to be ISO 9001 conformant,
it must document how its processes relate to these core processes. It must also define
and maintain records demonstrating that the defined organizational processes have

	 24.2  ■  Software standards   709

been followed. The company quality manual should describe the relevant processes
and the process data that has to be collected and maintained.

The ISO 9001 standard does not define or prescribe the specific quality processes
that a company should use. To be conformant with ISO 9001, a company must define
the types of process shown in Figure 24.5 and have procedures in place demonstrat-
ing that its quality processes are being followed. This allows flexibility across indus-
trial sectors and company sizes.

Quality standards can be defined that are appropriate for the type of software
being developed. Small companies can have simple processes without much docu-
mentation and still be ISO 9001 compliant. However, this flexibility means that you
cannot make assumptions about the similarities or differences between the processes
in different ISO 9001–compliant companies. Some companies may have very rigid
quality processes that keep detailed records while others may be much less formal,
with minimal additional documentation.

The relationships between ISO 9001, organizational quality manuals, and indi-
vidual project quality plans are shown in Figure 24.6. This diagram has been adapted
from a model given by Ince (Ince 1994), who explains how the general ISO 9001
standard can be used as a basis for software quality management processes. Bamford
and Deibler (Bamford and Deibler 2003) explain how the later ISO 9001: 2000
standard can be applied in software companies.

Some software customers demand that their suppliers be ISO 9001 certified. The
customers can then be confident that the software development company has an
approved quality management system in place. Independent accreditation authorities
examine the quality management processes and process documentation and decide if
these processes cover all of the areas specified in ISO 9001. If so, they certify that a
company’s quality processes, as defined in the quality manual, conform to the ISO
9001 standard.

Some people mistakenly think that ISO 9001 certification means that the quality
of the software produced by certified companies will always be better than that from

Business
acquisition

Design and
development

Test
Production and

delivery

Service and
support

Business
management

Inventory
management

Configuration
management

Supporting
processes

Supplier
management

Product
delivery processes

Figure 24.5  ISO 9001
core processes

710   Chapter 24  ■  Quality management

uncertified companies. The ISO 9001 standard focuses on ensuring that the organi-
zation has quality management procedures in place and that it follows these proce-
dures. There is no guarantee that ISO 9001 certified companies use the best software
development practices or that their processes lead to high-quality software.

The ISO 9001 certification is inadequate, in my view, because it defines quality
to be the conformance to standards. It takes no account of quality as experienced by
users of the software. For example, a company could define test coverage standards
specifying that all methods in objects must be called at least once. Unfortunately,
this standard can be met by incomplete software testing that does not include tests
with different method parameters. As long as the defined testing procedures are fol-
lowed and test records are maintained, the company could be ISO 9001 certified.

	 24.3 	 Reviews and inspections

Reviews and inspections are quality assurance activities that check the quality of
project deliverables. This involves checking the software, its documentation, and
records of the process to discover errors and omissions as well as standards viola-
tions. As I explained in Chapter 8, reviews and inspections are used alongside pro-
gram testing as part of the general process of software verification and validation.

During a review, several people examine the software and its associated docu-
mentation, looking for potential problems and nonconformance with standards. The
review team makes informed judgments about the level of quality of the software or
project documents. Project managers may then use these assessments to make plan-
ning decisions and allocate resources to the development process.

Quality reviews are based on documents that have been produced during the soft-
ware development process. As well as software specifications, designs, code, pro-
cess models, test plans, configuration management procedures, process standards,

Project 1
quality plan

Project 2
quality plan

Project 3
quality plan

Project quality
management

Organization
quality manual

ISO 9001
quality models

Organization
quality process

is used to develop instantiated as

instantiated as

documents

Supports

Figure 24.6  ISO 9001
and quality
management

	 24.3  ■  Reviews and inspections   711

and user manuals may all be reviewed. The review should check the consistency and
completeness of the documents or code under review and, if standards have been
defined, make sure that these quality standards have been followed.

Reviews are not just about checking conformance to standards. They are also
used to help discover problems and omissions in the software or project documenta-
tion. The conclusions of the review should be formally recorded as part of the qual-
ity management process. If problems have been discovered, the reviewers’ comments
should be passed to the author of the software or whoever is responsible for correct-
ing errors or omissions.

The purpose of reviews and inspections is to improve software quality, not to assess
the performance of people in the development team. Reviewing is a public process of
error detection, compared with the more private component-testing process. Inevitably,
mistakes that are made by individuals are revealed to the whole programming team. To
ensure that all developers engage constructively with the review process, project man-
agers have to be sensitive to individual concerns. They must develop a working culture
that provides support without blame when errors are discovered.

Quality reviews are not management progress reviews, although information about
the software quality may be used in making management decisions. Progress reviews
compare the actual progress in a software project against the planned progress. Their
prime concern is whether or not the project will deliver useful software on time and
on budget. Progress reviews take external factors into account, and changed circum-
stances may mean that software under development is no longer required or has to be
radically changed. Projects that have developed high-quality software may have to be
canceled because of changes to the business or its operating environment.

	 24.3.1 	 The review process

Although there are many variations in the details of reviews, review processes
(Figure 24.7) are structured into three phases:

1.	 Pre-review activities These are preparatory activities that are essential for the
review to be effective. Typically, pre-review activities are concerned with
review planning and review preparation. Review planning involves setting up
a review team, arranging a time and place for the review, and distributing
the documents to be reviewed. During review preparation, the team may meet to
get an overview of the software to be reviewed. Individual review team mem-
bers read and understand the software or documents and relevant standards.

Review
meeting

Individual
preparation

Group
preparation

Planning

Follow-up
checks

Improvement

Error
correction

 Pre-review activities Post-review activities

Figure 24.7  The
software review
process

712   Chapter 24  ■  Quality management

They work independently to find errors, omissions, and departures from stand-
ards. Reviewers may supply written comments on the software if they cannot
attend the review meeting.

2.	 The review meeting During the review meeting, an author of the document or
program being reviewed should “walk through” the document with the review
team. The review itself should be relatively short—two hours at most. One team
member should chair the review, and another should formally record all review
decisions and actions to be taken. During the review, the chair is responsible for
ensuring that all submitted comments are considered. The review chair should
sign a record of comments and actions agreed during the review.

3.	 Post-review activities After a review meeting has ended, the issues and prob-
lems raised during the review must be addressed. Actions may involve fixing
software bugs, refactoring software so that it conforms to quality standards, or
rewriting documents. Sometimes the problems discovered in a quality review
are such that a management review is also necessary to decide if more resources
should be made available to correct them. After changes have been made, the
review chair may check that all the review comments have been taken into
account. Sometimes a further review will be required to check that the changes
made cover all of the previous review comments.

Review teams should normally have a core of three to four people who are selected
as principal reviewers. One member should be an experienced designer who will take
the responsibility for making significant technical decisions. The principal reviewers
may invite other project members, such as the designers of related subsystems, to
contribute to the review. They may not be involved in reviewing the whole document
but should concentrate on those sections that affect their work. Alternatively, the
review team may circulate the document and ask for written comments from a broad
spectrum of project members. The project manager need not be involved in the
review, unless problems are anticipated that require changes to the project plan.

The processes suggested for reviews assume that the review team has a face-to-
face meeting to discuss the software or documents they are reviewing. However,
project teams are now often distributed, sometimes across countries or continents, so
it is impractical for team members to meet face to face. Remote reviewing can be
supported using shared documents where each review team member can annotate
the document with their comments. Face-to-face meetings may be impossible

Roles in the inspection process

When program inspection was established at IBM (Fagan, 1986), a number of formal roles were defined for
members of the inspection team. These included moderator, code reader, and scribe. Other users of inspections
have modified these roles, but it is generally accepted that an inspection should involve the code author, an
inspector, and a scribe and should be chaired by a moderator.

http://software-engineering-book.com/web/qm-roles

http://software-engineering-book.com/web/qm-roles

	 24.3  ■  Reviews and inspections   713

because of work schedules or the fact that people work in different time zones. The
review chair is responsible for coordinating comments and for discussing changes
individually with the review team members.

	 24.3.2 	 Program inspections

Program inspections are peer reviews where team members collaborate to find bugs
in the program that is being developed. As I discussed in Chapter 8, inspections may
be part of the software verification and validation processes. They complement test-
ing as they do not require the program to be executed. Incomplete versions of the
system can be verified, and representations such as UML models can be checked.
Program tests may be reviewed. Test reviews often find problems with tests and so
improve their effectiveness in detecting program bugs.

Program inspections involve team members from different backgrounds who
make a careful, line-by-line review of the program source code. They look for
defects and problems and describe them at an inspection meeting. Defects may be
logical errors, anomalies in the code that might indicate an erroneous condition or
features that have been omitted from the code. The review team examines the
design models or the program code in detail and highlights anomalies and problems
for repair.

During an inspection, a checklist of common programming errors is often used to
focus the search for bugs. This checklist may be based on examples from books or
from knowledge of defects that are common in a particular application domain. You
use different checklists for different programming languages because each language
has its own characteristic errors. Humphrey (Humphrey, 1989), in a comprehensive
discussion of inspections, gives a number of examples of inspection checklists.

Possible checks that might be made during the inspection process are shown in
Figure 24.8. Organizations should develop their own inspection checklists based on
local standards and practices. These checklists should be regularly updated, as new
types of defects are found. The items in the checklist vary according to programming
language because of the different levels of checking that are possible at compile-
time. For example, a Java compiler checks that functions have the correct number of
parameters; a C compiler does not.

Companies that use inspections have found that they are effective in finding bugs. In
early work, Fagan (Fagan 1986) reported that more than 60% of the errors in a program
were detected using informal program inspections. McConnell (McConnell 2004)
compares unit testing, where the defect detection rate is about 25%, with inspections,
where the defect detection rate was 60%. These comparisons were made before wide-
spread automated testing. We don’t know how inspections compare to this approach.

In spite of their well-publicized cost-effectiveness, many software development com-
panies are reluctant to use inspections or peer reviews. Software engineers with experi-
ence in program testing are sometimes unwilling to accept the fact that inspections can
be more effective for defect detection than testing. Managers may be suspicious because
inspections require additional costs during design and development. They may not want
to take the risk that there will be no corresponding savings in program testing costs.

714   Chapter 24  ■  Quality management

	 24.4 	 Quality management and agile development

Agile methods of software engineering focus on the development of code. They
minimize documentation and processes that are not directly concerned with code
development and emphasize the importance of informal communications among
team members rather than communications based on project documents. Quality, in
agile development, means code quality and practices such as refactoring, and test-
driven development are used to ensure that high-quality code is produced.

Quality management in agile development is informal rather than document-based. It
relies on establishing a quality culture, where all team members feel responsible for soft-
ware quality and take actions to ensure that quality is maintained. The agile community
is fundamentally opposed to what it sees as the bureaucratic overhead of standards-based
approaches and quality processes as embodied in ISO 9001. Companies that use agile
development methods are rarely concerned with ISO 9001 certification.

In agile development, quality management is based on shared good practice rather
than formal documentation. Some examples of this good practice are:

1.	 Check before check-in Programmers are responsible for organizing their own code
reviews with other team members before the code is checked in to the build system.

Fault class Inspection check

Data faults ■   Are all program variables initialized before their values are used?
■   Have all constants been named?
■   �Should the upper bound of arrays be equal to the size of the array or Size 21?
■   If character strings are used, is a delimiter explicitly assigned?
■   Is there any possibility of buffer overflow?

Control faults ■   For each conditional statement, is the condition correct?
■   Is each loop certain to terminate?
■   Are compound statements correctly bracketed?
■   In case statements, are all possible cases accounted for?
■   �If a break is required after each case in case statements, has it been included?

Input/output faults ■   Are all input variables used?
■   Are all output variables assigned a value before they are output?
■   Can unexpected inputs cause corruption?

Interface faults ■   �Do all function and method calls have the correct number of parameters?
■   Do formal and actual parameter types match?
■   Are the parameters in the right order?
■   �If components access shared memory, do they have the same model of

the shared memory structure?

Storage management faults ■   �If a linked structure is modified, have all links been correctly reassigned?
■   If dynamic storage is used, has space been allocated correctly?
■   Is space explicitly de-allocated after it is no longer required?

Exception management faults ■   Have all possible error conditions been taken into account?

Figure 24.8  An
inspection checklist

	 24.4  ■  Quality management and agile development   715

2.	 Never break the build It is not acceptable for team members to check in code
that causes the system as a whole to fail. Therefore, individuals have to test their
code changes against the whole system and be confident that these codes work
as expected. If the build is broken, the person responsible is expected to give top
priority to fixing the problem.

3.	 Fix problems when you see them The code of the system belongs to the team
rather than to individuals. Therefore, if a programmer discovers problems or
obscurities in code developed by someone else, he or she can fix these problems
directly rather than referring them back to the original developer.

Agile processes rarely use formal inspection or review processes. In Scrum, the
development team meets after each iteration to discuss quality issues and prob-
lems. The team may decide on changes to the way they work to avoid any quality
problems that have emerged. A collective decision may be made to focus on refac-
toring and quality improvement during a sprint rather than the addition of new
system functionality.

Code reviews may be the responsibility of individuals (check before check-in) or
may rely on the use of pair programming. As I discussed in Chapter 3, pair program-
ming is an approach in which two people are responsible for code development and
work together to achieve it. Code developed by an individual is therefore constantly
being examined and reviewed by another team member. Two people look at every
line of code and check it before it is accepted.

Pair programming leads to a deep knowledge of a program, as both program-
mers have to understand the program in detail to continue development. This depth
of knowledge is sometimes difficult to achieve in other inspection processes, and
so pair programming can find bugs that sometimes would not be discovered in
formal inspections. However, the two people involved cannot be as objective as an
external inspection team inasmuch as they are examining their own work. Potential
problems are:

1.	 Mutual misunderstandings Both members of a pair may make the same mistake
in understanding the system requirements. Discussions may reinforce these errors.

2.	 Pair reputation Pairs may be reluctant to look for errors because they do not
want to slow down the progress of the project.

3.	 Working relationships The pair’s ability to discover defects is likely to be com-
promised by their close working relationship that often leads to reluctance to
criticize work partners.

The informal approach to quality management adopted in agile methods is par-
ticularly effective for software product development where the company develop-
ing the software also controls its specification. There is no need to deliver quality
reports to an external customer, nor is there any need to integrate with other qual-
ity management teams. However, when a large system is being developed for an

716   Chapter 24  ■  Quality management

external customer, agile approaches to quality management with minimal docu-
mentation may be impractical:

1.	 If the customer is a large company, it may have its own quality management pro-
cesses and may expect the software development company to report on progress in a
way that is compatible with these processes. Therefore, the development team may
have to produce a formal quality plan and quality reports as required by the customer.

2.	 Where several geographically distributed teams are involved in development,
perhaps from different companies, then informal communications may be
impractical. Different companies may have different approaches to quality man-
agement, and you may have to agree to produce some formal documentation.

3.	 For long-lifetime systems, the team involved in development will change over
time. If there is no documentation, new team members may find it impossible to
understand why development decisions have been made.

Consequently, the informal approach to quality management in agile methods
may have to be adapted so that some quality documentation and processes are intro-
duced. Generally, this approach is integrated with the iterative development process.
Instead of developing software, one of the sprints or iterations should focus on pro-
ducing essential software documentation.

	 24.5 	 Software measurement

Software measurement is concerned with quantifying some attribute of a software
system such as its complexity or its reliability. By comparing the measured values to
each other and to the standards that apply across an organization, you may be able to
draw conclusions about the quality of software or assess the effectiveness of soft-
ware processes, tools, and methods. In an ideal world, quality management could
rely on measurements of attributes that affect the software quality. You could then
objectively assess process and tool changes that aim to improve software quality.

For example, say you work in a company that plans to introduce a new software-
testing tool. Before introducing the tool, you record the number of software defects
discovered in a given time. This is a baseline for assessing the effectiveness of the
tool. After using the tool for some time, you repeat this process. If more defects have
been found in the same amount of time, after the tool has been introduced, then you
may decide that it provides useful support for the software validation process.

The long-term goal of software measurement is to use measurement to make
judgments about software quality. Ideally, a system could be assessed using a range
of metrics to measure its attributes. From the measurements made, a value for the
quality of the system could be inferred. If the software had reached a required quality
threshold, then it could be approved without review. When appropriate, the measure-
ment tools might also highlight areas of the software that could be improved.

	 24.5  ■  Software measurement   717

However, we are still a long way from this ideal situation, and automated quality
assessment is unlikely to become a reality in the near future.

A software metric is a characteristic of a software system, system documentation,
or development process that can be objectively measured. Examples of metrics
include the size of a product in lines of code, the Fog index, which is a measure of
the readability of narrative text, the number of reported faults in a delivered software
product, and the number of person-days required to develop a system component.

Software metrics may be either control metrics or predictor metrics. As the names
imply, control metrics support process management, and predictor metrics help you
predict characteristics of the software. Control metrics are usually associated with soft-
ware processes. Examples of control or process metrics are the average effort and the
time required to repair reported defects. Three kinds of process metrics can be used:

1.	 The time taken for a particular process to be completed This can be the total
time devoted to the process, calendar time, the time spent on the process by
particular engineers, and so on.

2.	 The resources required for a particular process Resources might include total
effort in person-days, travel costs, or computer resources.

3.	 The number of occurrences of a particular event Examples of events that might
be monitored include the number of defects discovered during code inspection,
the number of requirements changes requested, the number of bug reports in a
delivered system, and the average number of lines of code modified in response
to a requirements change.

Predictor metrics (sometimes called product metrics) are associated with the soft-
ware itself. Examples of predictor metrics are the cyclomatic complexity of a module,
the average length of identifiers in a program, and the number of attributes and opera-
tions associated with object classes in a design. Both control and predictor metrics
may influence management decision making as shown in Figure 24.9. Managers use
process measurements to decide if process changes should be made and predictor met-
rics to decide if software changes are necessary and if the software is ready for release.

Management
decisions

Control metric
measurements

Software
process

Predictor metric
measurements

Software
product

Figure 24.9  Predictor
and control
measurements

718   Chapter 24  ■  Quality management

In this chapter, I focus on predictor metrics, whose values are automatically
assessed by analyzing code or documents. I discuss control metrics and how they are
used in process improvement in web Chapter 26.

Measurements of a software system may be used in two ways:

1.	 To assign a value to system quality attributes By measuring the characteristics
of system components and then aggregating these measurements, you may be
able to assess system quality attributes, such as maintainability.

2.	 To identify the system components whose quality is substandard Measurements
can identify individual components with characteristics that deviate from the norm.
For example, you can measure components to discover those with the highest com-
plexity. These components are most likely to contain bugs because the complexity
makes it more likely that the component developer has made mistakes.

It is difficult to make direct measurements of many of the software quality attrib-
utes shown in Figure 24.2. Quality attributes such as maintainability, understanda-
bility, and usability are external attributes that relate to how developers and users
experience the software. They are affected by subjective factors, such as user experi-
ence and education, and they cannot therefore be measured objectively. To make a
judgment about these attributes, you have to measure some internal attributes of the
software (such as its size and complexity) and assume that these are related to the
quality characteristics that you are concerned with.

 Figure 24.10 shows some external software quality attributes and internal attrib-
utes that could, intuitively, be related to them. The diagram suggests that there may
be relationships between external and internal attributes, but it does not say how
these attributes are related. Kitchenham (Kitchenham 1990) suggested that if the
measure of the internal attribute is to be a useful predictor of the external software
characteristic, three conditions must hold:

Reliability

Depth of inheritance tree

Cyclomatic complexity

Program size in lines
of code

Number of error
messages

Length of user manual

Maintainability

Usability

Reusability

External quality attributes Internal attributes

Figure 24.10 
Relationships between
internal and external
software attributes

	 24.5  ■  Software measurement   719

1.	 The internal attribute must be measured accurately. However, measurement is
not always straightforward and may require specially developed tools.

2.	 A relationship must exist between the attribute that can be measured and the exter-
nal quality attribute that is of interest. That is, the value of the quality attribute
must be related, in some way, to the value of the attribute than can be measured.

3.	 This relationship between the internal and external attributes must be understood,
validated, and expressed in terms of a formula or model. Model formulation
involves identifying the functional form of the model (linear, exponential, etc.)
by analysis of collected data, identifying the parameters that are to be included
in the model and calibrating these parameters using existing data.

Recent work in the area of software analytics (Zhang et al. 2013) has used data-
mining and machine-learning techniques to analyze repositories of software product
and process data. The idea behind software analytics (Menzies and Zimmermann
2013) is that we do not, in fact, need a model that reflects the relationships between
software quality and collected data. Rather, if there is enough data, correlations can
be discovered and predictions made about software attributes. I discuss software
analytics in Section 24.5.4.

We have very little published information about systematic software measure-
ment in industry. Many companies do collect information about their software,
such as the number of requirements change requests or the number of defects
discovered in testing. However, it is not clear if they then use these measurements
systematically to compare software products and processes or assess the impact
of changes to software processes and tools. There are several reasons why this
is difficult:

1.	 It is impossible to quantify the return on investment of introducing an organiza-
tional metrics or software analytics program. We have seen significant improve-
ments in software quality over the past few years without the use of metrics, so
it is difficult to justify the initial costs of introducing systematic software meas-
urement and assessment.

2.	 There are no standards for software metrics or standardized processes for meas-
urement and analysis. Many companies are reluctant to introduce measurement
programs until such standards and supporting tools are available.

3.	 Measurement may require the development and maintenance of specialized
software tools. It is difficult to justify the costs of tool development when the
returns from measurement are unknown.

4.	 In many companies, software processes are not standardized and are poorly
defined and controlled. As such, there is too much process variability within the
same company for measurements to be used in a meaningful way.

5.	 Much of the research on software measurement and metrics has focused on
code-based metrics and plan-driven development processes. However, more and
more software is now developed by reusing and configuring existing application

720   Chapter 24  ■  Quality management

systems, or by using agile methods. We don’t know how previous research on
metrics applies to these software development techniques.

6.	 Introducing measurement adds overhead to processes. This contradicts the aims
of agile methods, which recommend the elimination of process activities that
are not directly related to program development. Companies that have adopted
agile methods are therefore not likely to adopt a metrics program.

Software measurement and metrics are the basis of empirical software engineer-
ing. In this research area, experiments on software systems and the collection of data
about real projects have been used to form and validate hypotheses about software
engineering methods and techniques. Researchers working in this area argue that we
can be confident of the value of software engineering methods and techniques only
if we can provide concrete evidence that they actually provide the benefits their
inventors suggest.

However, research on empirical software engineering has not had a significant
impact on software engineering practice. It is difficult to relate generic research to an
individual project that differs from the research study. Many local factors are likely
to be more important than general empirical results. For this reason, researchers in
software analytics argue that analysts should not try to draw general conclusions but
should provide analyses of the data for specific systems.

	 24.5.1 	 Product metrics

Product metrics are predictor metrics used to quantify internal attributes of a soft-
ware system. Examples of product metrics include the system size, measured in lines
of code, or the number of methods associated with each object class. Unfortunately,
as I have explained earlier in this section, software characteristics that can be easily
measured, such as size and cyclomatic complexity, do not have a clear and consist-
ent relationship with quality attributes such as understandability and maintainability.
The relationships vary depending on the development processes and technology
used and the type of system that is being developed.

Product metrics fall into two classes:

1.	 Dynamic metrics, which are collected by measurements made of a program in
execution. These metrics can be collected during system testing or after the sys-
tem has gone into use. An example might be the number of bug reports or the
time taken to complete a computation.

2.	 Static metrics, which are collected by measurements made of representations of
the system, such as the design, program, or documentation. Examples of static
metrics are shown in Figure 24.11.

These types of metrics are related to different quality attributes. Dynamic metrics
help to assess the efficiency and reliability of a system. Static metrics help assess the
complexity, understandability, and maintainability of a system or its components.

	 24.5  ■  Software measurement   721

Software metric Description

Fan-in/Fan-out Fan-in is a measure of the number of functions or methods that call another
function or method (say X). Fan-out is the number of functions that are called by
function X. A high value for fan-in means that X is tightly coupled to the rest of the
design and changes to X will have extensive knock-on effects. A high value for
fan-out suggests that the overall complexity of X may be high because of the
complexity of the control logic needed to coordinate the called components.

Length of code This is a measure of the size of a program. Generally, the larger the size of the code
of a component, the more complex and error-prone that component is likely to be.
Length of code has been shown to be one of the most reliable metrics for
predicting error-proneness in components.

Cyclomatic complexity This is a measure of the control complexity of a program. This control complexity may
be related to program understandability. I discuss cyclomatic complexity in Chapter 8.

Length of identifiers This is a measure of the average length of identifiers (names for variables, classes,
methods, etc.) in a program. The longer the identifiers, the more likely they are to
be meaningful and hence the more understandable the program.

Depth of conditional
nesting

This is a measure of the depth of nesting of if-statements in a program. Deeply
nested if-statements are hard to understand and potentially error-prone.

Fog index This is a measure of the average length of words and sentences in documents.
The higher the value of a document’s Fog index, the more difficult the document is
to understand.

Figure 24.11  Static
software product
metrics

A clear relationship usually exists between dynamic metrics and software quality
characteristics. It is fairly easy to measure the execution time required for particular
functions and to assess the time required to start up a system. These functions relate
directly to the system’s efficiency. Similarly, the number of system failures and the
type of failure can be logged and related directly to the reliability of the software.
I have explained how reliability can be measured in Chapter 12.

Static metrics, as shown in Figure 24.11, have an indirect relationship with quality
attributes. A large number of different metrics have been proposed, and many exper-
iments have tried to derive and validate the relationships between these metrics and
attributes, such as system complexity and maintainability. None of these experiments
have been conclusive, but program size and control complexity appear be the most
reliable predictors of understandability, system complexity, and maintainability.

The metrics in Figure 24.11 are applicable to any program, but more specific
object-oriented metrics have also been proposed. Figure 24.12 summarizes
Chidamber and Kemerer’s suite (sometimes called the CK suite) of six object-
oriented metrics (Chidamber and Kemerer 1994). Although these metrics were orig-
inally proposed in the early 1990s, they are still the most widely used object-oriented
(OO) metrics. Some UML design tools automatically collect values for these
metrics as UML diagrams are created.

El-Amam’s review of object-oriented metrics discussed the CK metrics and other
OO metrics (El-Amam 2001). It concluded that there was insufficient evidence to
understand how these and other object-oriented metrics relate to external software

722   Chapter 24  ■  Quality management

Object-oriented metric Description

Weighted methods per
class (WMC)

This is the number of methods in each class, weighted by the complexity of
each method. Therefore, a simple method may have a complexity of 1, and a
large and complex method a much higher value. The larger the value for this
metric, the more complex the object class. Complex objects are more likely to
be difficult to understand. They may not be logically cohesive, so they cannot
be reused effectively as superclasses in an inheritance tree.

Depth of inheritance
tree (DIT)

This represents the number of discrete levels in the inheritance tree where
subclasses inherit attributes and operations (methods) from superclasses. The
deeper the inheritance tree, the more complex the design. Many object classes may
have to be understood to understand the object classes at the leaves of the tree.

Number of children (NOC) This is a measure of the number of immediate subclasses in a class. It
measures the breadth of a class hierarchy, whereas DIT measures its depth.
A high value for NOC may indicate greater reuse. It may mean that more effort
should be made in validating base classes because of the number of subclasses
that depend on them.

Coupling between object
classes (CBO)

Classes are coupled when methods in one class use methods or instance
variables defined in a different class. CBO is a measure of how much coupling
exists. A high value for CBO means that classes are highly dependent. Therefore,
it is more likely that changing one class will affect other classes in the program.

Response for a class (RFC) RFC is a measure of the number of methods that could potentially be executed
in response to a message received by an object of that class. Again, RFC is
related to complexity. The higher the value for RFC, the more complex a class,
and hence the more likely it is that it will include errors.

Lack of cohesion in
methods (LCOM)

LCOM is calculated by considering pairs of methods in a class. LCOM is the
difference between the number of method pairs without shared attributes and the
number of method pairs with shared attributes. The value of this metric has been
widely debated, and it exists in several variations. It is not clear if it really adds any
additional, useful information over and above that provided by other metrics.

Figure 24.12  The
CK object-oriented
metrics suite

qualities. This situation has not really changed since his analysis in 2001. We still
don’t know how to use measurements of object-oriented programs to draw reliable
conclusions about their quality.

	 24.5.2 	 Software component analysis

A measurement process that may be part of a software quality assessment process is
shown in Figure 24.13. Each system component can be analyzed separately using a
range of metrics. The values of these metrics may then be compared for different
components and, perhaps, with historical measurement data collected on previous
projects. Anomalous measurements, which deviate significantly from the norm, usu-
ally indicate problems with the quality of these components.

The key stages in this component measurement process are:

1.	 Choose measurements to be made The questions that the measurement is
intended to answer should be formulated and the measurements required to

	 24.5  ■  Software measurement   723

answer these questions defined. Measurements that are not directly relevant to
these questions need not be collected.

2.	 Select components to be assessed You may not need to assess metric values for
all of the components in a software system. Sometimes you can select a repre-
sentative selection of components for measurement, allowing you to make an
overall assessment of system quality. At other times, you may wish to focus on
the core components of the system that are in almost constant use. The quality
of these components is more important than the quality of components that are
infrequently executed.

3.	 Measure component characteristics The selected components are measured,
and the associated metric values are computed. This step normally involves pro-
cessing the component representation (design, code, etc.) using an automated
data collection tool. This tool may be specially written or may be a feature of
design tools that are already in use.

4.	 Identify anomalous measurements After the component measurements have
been made, you then compare them with each other and to previous measure-
ments that have been recorded in a measurement database. You should look for
unusually high or low values for each metric, as these suggest that there could
be problems with the component exhibiting these values.

5.	 Analyze anomalous components When you have identified components that
have anomalous values for your chosen metrics, you should examine them to
decide whether or not these anomalous metric values mean that the quality of
the component is compromised. An anomalous metric value for complexity
(say) does not necessarily mean a poor-quality component. There may be
some other reason for the high value, so there may not be any component
quality problems.

If possible, you should maintain all collected data as an organizational
resource and keep historical records of all projects even when data has not been
used during a particular project. Once a sufficiently large measurement database
has been established, you can then make comparisons of software quality across
projects and validate the relations between internal component attributes and
quality characteristics.

Measure
component

characteristics

Identify
anomalous

measurements

Analyze
anomalous

components

Select
components to

be assessed

Choose
measurements

to be made

Figure 24.13  The
process of product
measurement

724   Chapter 24  ■  Quality management

	 24.5.3 	 Measurement ambiguity

When you collect quantitative data about software and software processes, you have
to analyze that data to understand its meaning. It is easy to misinterpret data and to
make incorrect inferences. You cannot simply look at the data on its own. You must
also consider the context in which the data is collected.

To illustrate how collected data can be interpreted in different ways, consider the
following scenario, which is concerned with the number of change requests made by
a system’s users:

A manager decides to measure the number of change requests submitted by cus-
tomers based on an assumption that there is a relationship between these change
requests and product usability and suitability. She assumes that the higher the
number of change requests, the less the software meets the needs of the customer.

Handling change requests and changing the software are expensive. The organ-
ization therefore decides to modify its process with the aim of improving
customer satisfaction and, at the same time, reducing the costs of making
changes. The intent is that the process changes will result in better products and
fewer change requests. Processes are changed to increase customer involvement
in the software design process. Beta testing of all products is introduced, and
customer-requested modifications are incorporated in the delivered product.

After the process changes have been made, the measurement of change
requests continues. New versions of products, developed with the modified
process, are delivered. In some cases, the number of change requests is
reduced; in others, it is increased. The manager is baffled and finds it impos-
sible to understand the effects of the process changes on the product quality.

To understand why this kind of ambiguity can occur, you have to understand why
users might make change requests:

1.	 The software is not good enough and does not do what customers want it to do.
They therefore request changes to deliver the functionality they require.

2.	 Alternatively, the software may be very good, and so it is widely and heavily
used. Change requests may be generated because many software users crea-
tively think of new things that could be done with the software.

Increasing the customer’s involvement in the process may reduce the number of
change requests for products where the customers were unhappy. The process
changes have been effective and have made the software more usable and suitable.
Alternatively, however, the process changes may not have worked, and customers
may have decided to look for an alternative system. The number of change requests
might decrease because the product has lost market share to a rival product and there
are consequently fewer product users.

	 24.5  ■  Software measurement   725

On the other hand, the process changes might lead to many new, happy customers
who wish to participate in the product development process. They therefore generate
more change requests. Changes to the process of handling change requests may con-
tribute to this increase. If the company is more responsive to customers, they may
generate more change requests because they know that these requests will be taken
seriously. They believe that their suggestions will probably be incorporated in later
versions of the software. Alternatively, the number of change requests might have
increased because the beta-test sites were not typical of most usage of the program.

To analyze the change request data, you do not simply need to know the number
of change requests. You need to know who made the request, how the software is
used, and why the request was made. You also need information about external fac-
tors such as modifications to the change request procedure or market changes that
might have an effect. With this information, you are in a better position to find out if
the process changes have been effective in increasing product quality.

This illustrates the difficulties of understanding the effects of changes. The “sci-
entific” approach to this problem is to reduce the number of factors that might affect
the measurements made. However, processes and products that are being measured
are not insulated from their environment. The business environment is constantly
changing, and it is impossible to avoid changes to work practice just because they
may make comparisons of data invalid. As such, quantitative data about human
activities cannot always be taken at face value. The reasons a measured value
changes are often ambiguous. These reasons must be investigated in detail before
any conclusions can be drawn from any measurements.

	 24.5.4 	 Software analytics

Over the past few years, the notion of “big data analysis” has emerged as a means of
discovering insights by automatically mining and analyzing very large volumes of
automatically collected data. It is possible to discover relationships between data items
that could not be found by manual data analysis and modeling. Software analytics is
the application of such techniques to data about software and software processes.

Two factors have made software analytics possible:

1.	 The automated collection of user data by software product companies when their
product is used. If the software fails, information about the failure and the state of
the system can be sent over the Internet from the user’s computer to servers run by
the product developer. As a result, large volumes of data about individual prod-
ucts such as Internet Explorer or Photoshop have become available for analysis.

2.	 The use of open-source software available on platforms such as Sourceforge
and GitHub and open-source repositories of software engineering data (Menzies
and Zimmermann 2013). The source code of open-source software is available
for automated analysis and can sometimes be linked with data in the open-
source repository.

726   Chapter 24  ■  Quality management

Menzies and Zimmerman (Menzies and Zimmermann 2013) define software
analytics as:

Software analytics is analytics on software data for managers and software
engineers with the aim of empowering software development individuals and
teams to gain and share insight from their data to make better decisions.

Menzies and Zimmermann emphasize that the point of analytics is not to derive gen-
eral theories about software but to identify specific issues that are of interest to software
developers and managers. Analytics aims to provide information about these issues in real
time so that actions can be taken in response to the information provided by the analysis.
In a study of managers at Microsoft, Buse and Zimmermann (Buse and Zimmermann
2012) identified information needs such as how to target testing, inspections, and refactor-
ing, when to release software, and how to understand the needs of software customers.

A range of different data mining and analysis tools can be used for software ana-
lytics (Witten, Frank, and Hall 2011). In general, it is impossible to know what are
the best analysis tools to use in a particular situation. You have to experiment with
several tools to discover which are most effective. Buse and Zimmerman suggest a
number of guidelines for tool use:

■	 Tools should be easy to use, as managers are unlikely to have experience with analysis.

■	 Tools should run quickly and produce concise outputs rather than large volumes
of information.

■	 Tools should make many measurements using as many parameters as possible. It
is impossible to predict in advance what insights might emerge.

■	 Tools should be interactive and allow managers and developers to explore the
analyses. They should recognize that managers and developers are interested in
different things. They should not be predictive but should support decision mak-
ing based on the analysis of past and current data.

Zhang and her colleagues (Zhang et al. 2013) describe an excellent practical
application of software analytics for performance debugging. User software was
instrumented to collect data on response times and the associated system state. When
the response time was greater than expected, this data was sent for analysis. The
automated analysis highlighted performance bottlenecks in the software. The devel-
opment team could then improve the algorithms to eliminate the bottleneck so that
performance was improved in a later software release.

At the time of writing, software analytics is immature, and it is too early to say what
effect it will have. Not only are there general problems of “big data” processing (Harford
2013), but it will always be the case that our knowledge depends on collected data from
large companies. This data is primarily from software products, and it is unclear if the
tools and techniques that are appropriate for products can also be used with custom
software. Small companies are unlikely to invest in the data collection systems that are
required for automated analysis and so they may not be able to use software analytics.

	 24.5  ■  Software measurement   727

K e y P o i n t s

■	 Software quality management is concerned with ensuring that software has a low number of
defects and that it reaches the required standards of maintainability, reliability, portability, and
so forth. It includes defining standards for processes and products and establishing processes
to check that these standards have been followed.

■	 Software standards are important for quality assurance as they represent an identification of
best practice. When developing software, standards provide a solid foundation for building
good-quality software.

■	 Reviews of the software process deliverables involve a team of people who check that quality
standards are being followed. Reviews are the most widely used technique for assessing quality.

■	 In a program inspection or peer review, a small team systematically checks the code. They read
the code in detail and look for possible errors and omissions. The problems detected are then
discussed at a code review meeting.

■	 Agile quality management does not usually rely on a separate quality management team.
Instead, it relies on establishing a quality culture where the development team works together
to improve software quality.

■	 Software measurement can be used to gather quantitative data about software and the software
process. You may be able to use the values of the software metrics that are collected to make
inferences about product and process quality.

■	 Product quality metrics are particularly useful for highlighting anomalous components that may
have quality problems. These components should then be analyzed in more detail.

■	 Software analytics is the automated analysis of large volumes of software product and process
data to discover relationships that may provide insights for project managers and developers.

F u r t h e r R e a d i n g

Software Quality Assurance: From Theory to Implementation. An excellent, still relevant, book on
the principles and practice of software quality assurance. It includes a discussion of standards such
as ISO 9001. (D. Galin, Addison-Wesley, 2004).

“Misleading Metrics and Unsound Analyses.” An excellent article by leading metrics researchers that
discusses the difficulties of understanding what measurements really mean. (B. Kitchenham, R. Jeffrey
and C. Connaughton, IEEE Software, 24 (2), March–April 2007). http://dx.doi.org/10.1109/MS.2007.49

“A Practical Guide to Implementing an Agile QA Process on Scrum Projects.” This slide set presents
an overview of how to integrate software quality assurance with agile development using Scrum.
(S. Rayhan, 2008). https://www.scrumalliance.org/system/resource_files/0000/0459/agileqa.pdf

“Software Analytics: So What?” This is a good introductory article that explains what software analytics is
and why it is increasingly important. It is the introduction to a special issue on software analytics, and you
may find several other articles in that issue to be helpful in understanding software analytics. (T. Menzies
and T. Zimmermann, IEEE Software, 30 (4), July–August 2013). http://dx.doi.org/10.1109/MS.2013.86

	 Chapter 24  ■  Further Reading   727

http://dx.doi.org/10.1109/MS.2007.49
https://www.scrumalliance.org/system/resource_files/0000/0459/agileqa.pdf
http://dx.doi.org/10.1109/MS.2013.86

728   Chapter 24  ■  Quality management

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-management/

E x e rc i s e s

  24.1.	 �Define the terms quality assurance and quality control. List out the key points included in
Humphrey’s outline structure for software management.

  24.2.	 �Explain how standards may be used to capture organizational wisdom about effective
methods of software development. Suggest four types of knowledge that might be captured
in organizational standards.

  24.3.	 �Discuss the assessment of software quality according to the quality attributes shown in
Figure 24.2. You should consider each attribute in turn and explain how it might be assessed

  24.4.	 Briefly describe possible standards that might be used for:

■	 the use of control constructs in C, C#, or Java;

■	 reports that might be submitted for a term project in a university;

■	 the process of making and approving program changes (web Chapter 26); and

■	 the process of purchasing and installing a new computer.

  24.5.	 �Assume you work for an organization that develops database products for individuals and
small businesses. This organization is interested in quantifying its software development.
Write a report suggesting appropriate metrics and suggest how these can be collected.

  24.6.	 �Briefly explain what happens during the software quality review process and the software
quality inspection process.

  24.7.	 �What problems are likely to arise if formalized program inspections are introduced in a
company where some software is developed using agile methods.

  24.8.	 �What is a software metric? Define different types of software metrics with examples.

  24.9.	 �You work for a software product company and your manager has read an article on software
analytics. She asks you to do some research in this area. Survey the literature on analytics
and write a short report that summarizes work in software analytics and issues to be
considered if analytics is introduced.

24.10 	 �A colleague who is a very good programmer produces software with a low number of defects
but consistently ignores organizational quality standards. How should her managers react to
this behavior?

728   Chapter 24  ■  Quality management

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-management

	 24.5  ■  Exercises   729

R e f e r e n c e s

Bamford, R., and W. J. Deibler. 2003. “ISO 9001:2000 for Software and Systems Providers: An Engi-
neering Approach.” Boca Raton, FL: CRC Press.

Buse, R. P. L., and T. Zimmermann. 2012. “Information Needs for Software Development Analytics.”
In Int. Conf. on Software Engineering, 987–996. doi:10.1109/ICSE.2012.6227122.

Chidamber, S., and C. Kemerer. 1994. “A Metrics Suite for Object-Oriented Design.” IEEE Trans. on
Software Eng. 20 (6): 476–493. doi:10.1109/32.295895.

El-Amam, K. 2001. “Object-Oriented Metrics: A Review of Theory and Practice.” National Research
Council of Canada. http://seg.iit.nrc.ca/English/abstracts/NRC44190.html.

Fagan, M. E. 1986. “Advances in Software Inspections.” IEEE Trans. on Software Eng. SE-12 (7):
744–751. doi:10.1109/TSE.1986.6312976.

Harford, T. 2013. “Big Data: Are We Making a Big Mistake?” Financial Times, March 28. http://
timharford.com/2014/04/big-data-are-we-making-a-big-mistake/

Humphrey, W. 1989. Managing the Software Process. Reading, MA: Addison-Wesley.

IEEE. 2003. IEEE Software Engineering Standards Collection on CD-ROM. Los Alamitos, CA: IEEE
Computer Society Press.

Ince, D. 1994. ISO 9001 and Software Quality Assurance. London: McGraw-Hill.

Kitchenham, B. 1990. “Software Development Cost Models.” In Software Reliability Handbook,
edited by P. Rook, 487–517. Amsterdam: Elsevier.

McConnell, S. 2004. Code Complete: A Practical Handbook of Software Construction, 2nd ed. Seat-
tle, WA: Microsoft Press.

Menzies, T., and T. Zimmermann. 2013. “Software Analytics: So What?” IEEE Software 30 (4): 31–37.
doi:10.1109/MS.2013.86.

Witten, I. H., E. Frank, and M. A. Hall. 2011. Data Mining: Practical Machine Learning Tools and
Techniques. Burlington, MA: Morgan Kaufmann.

Zhang, D, S. Han, Y. Dang, J-G. Lou, H. Zhang, and T. Xie. 2013. “Software Analytics in Practice.” IEEE
Software 30 (5): 30–37. doi:10.1109/MS.2013.94.

	 Chapter 24  ■  References   729

http://seg.iit.nrc.ca/English/abstracts/NRC44190.html
http://timharford.com/2014/04/big-data-are-we-making-a-big-mistake
http://timharford.com/2014/04/big-data-are-we-making-a-big-mistake

Configuration
management

25

Objectives
The objective of this chapter is to introduce you to software configuration
management processes and tools. When you have read the chapter,
you will:

■	 know the essential functionality that should be provided by a
version control system, and how this is realized in centralized and
distributed systems;

■	 understand the challenges of system building and the benefits of
continuous integration and system building;

■	 understand why software change management is important and
the essential activities in the change management process;

■	 understand the basics of software release management and how it
differs from version management.

Contents
25.1	 Version management

25.2	 System building

25.3	 Change management

25.4	 Release management

Software systems are constantly changing during development and use. Bugs are
discovered and have to be fixed. System requirements change, and you have to
implement these changes in a new version of the system. New versions of hardware
and system platforms are released, and you have to adapt your systems to work with
them. Competitors introduce new features in their system that you have to match. As
changes are made to the software, a new version of a system is created. Most sys-
tems, therefore, can be thought of as a set of versions, each of which may have to be
maintained and managed.

Configuration management (CM) is concerned with the policies, processes, and
tools for managing changing software systems (Aiello and Sachs 2011). You need to
manage evolving systems because it is easy to lose track of what changes and compo-
nent versions have been incorporated into each system version. Versions implement
proposals for change, corrections of faults, and adaptations for different hardware
and operating systems. Several versions may be under development and in use at the
same time. If you don’t have effective configuration management procedures in
place, you may waste effort modifying the wrong version of a system, delivering the
wrong version of a system to customers, or forgetting where the software source code
for a particular version of the system or component is stored.

Configuration management is useful for individual projects as it is easy for one
person to forget what changes have been made. It is essential for team projects where
several developers are working at the same time on a software system. Sometimes
these developers are all working in the same place, but, increasingly, development
teams are distributed with members in different locations across the world. The con-
figuration management system provides team members with access to the system
being developed and manages the changes that they make to the code.

The configuration management of a software system product involves four
closely related activities (Figure 25.1):

1.	 Version control This involves keeping track of the multiple versions of system
components and ensuring that changes made to components by different devel-
opers do not interfere with each other.

2.	 System building This is the process of assembling program components, data,
and libraries, then compiling and linking these to create an executable system.

3.	 Change management This involves keeping track of requests for changes to
delivered software from customers and developers, working out the costs and
impact of making these changes, and deciding if and when the changes should
be implemented.

4.	 Release management This involves preparing software for external release and
keeping track of the system versions that have been released for customer use.

Because of the large volume of information to be managed and the relationships
between configuration items, tool support is essential for configuration manage-
ment. Configuration management tools are used to store versions of system compo-
nents, build systems from these components, track the releases of system versions to

	 Chapter 25  ■  Configuration management   731

732   Chapter 25  ■  Configuration management

customers, and keep track of change proposals. CM tools range from simple tools
that support a single configuration management task, such as bug tracking, to inte-
grated environments that support all configuration management activities.

Agile development, where components and systems are changed several times a
day, is impossible without using CM tools. The definitive versions of components
are held in a shared project repository, and developers copy them into their own
workspace. They make changes to the code and then use system-building tools to
create a new system on their own computer for testing. Once they are happy with the
changes made, they return the modified components to the project repository. This
makes the modified components available to other team members.

The development of a software product or custom software system takes place in
three distinct phases:

1.	 A development phase where the development team is responsible for managing
the software configuration and new functionality is being added to the software.
The development team decides on the changes to be made to the system.

2.	 A system testing phase where a version of the system is released internally for
testing. This may be the responsibility of a quality management team or an indi-
vidual or group within the development team. At this stage, no new functionality
is added to the system. The changes made at this stage are bug fixes, perfor-
mance improvements, and security vulnerability repairs. There may be some
customer involvement as beta testers during this phase.

3.	 A release phase where the software is released to customers for use. After
the release has been distributed, customers may submit bug reports and
change requests. New versions of the released system may be developed to
repair bugs and vulnerabilities and to include new features suggested by
customers.

For large systems, there is never just one “working” version of a system; there are
always several versions of the system at different stages of development. Several

Component
versions

Release
management

Change
proposals

System
releases

Change
management

System
versions

Version
management

System
building

Figure 25.1 
Configuration
management activities

teams may be involved in the development of different system versions. Figure 25.2
shows situations where three versions of a system are being developed:

1.	 Version 1.5 of the system has been developed to repair bug fixes and improve
the performance of the first release of the system. It is the basis of the second
system release (R1.1).

2.	 Version 2.4 is being tested with a view to it becoming release 2.0 of the system.
No new features are being added at this stage.

3.	 Version 3 is a development system where new features are being added in
response to change requests from customers and the development team. This
will eventually be released as release 3.0.

These different versions have many common components as well as components or
component versions that are unique to that system version. The CM system keeps track
of the components that are part of each version and includes them as required in the
system build.

In large software projects, configuration management is sometimes part of soft-
ware quality management (covered in Chapter 24). The quality manager is responsi-
ble for both quality management and configuration management. When a pre-release
version of the software is ready, the development team hands it over to the quality
management team. The QM team checks that the system quality is acceptable. If so,
it then becomes a controlled system, which means that all changes to the system
have to be agreed on and recorded before they are implemented.

Many specialized terms are used in configuration management. Unfortunately,
these are not standardized. Military software systems were the first systems in which
software CM was used, so the terminology for these systems reflected the processes
and terminology used in hardware configuration management. Commercial systems
developers did not know about military procedures or terminology and so often
invented their own terms. Agile methods have also devised new terminology in
order to distinguish the agile approach from traditional CM methods.

V1.0 V1.1 V1.2

Development
versions

V1.3 V1.4 V1.5

R1.0 R1.1

Releases

V2.1 V2.2 V2.3 V2.4

Pre-release
versions

Version 1

Version 2

Version 3

1

2

3

Figure 25.2 
Multiversion system
development

	 Chapter 25  ■  Configuration management   733

734   Chapter 25  ■  Configuration management

Term Explanation

Baseline A collection of component versions that make up a system. Baselines
are controlled, which means that the component versions used in the
baseline cannot be changed. It is always possible to re-create a baseline
from its constituent components.

Branching The creation of a new codeline from a version in an existing codeline.
The new codeline and the existing codeline may then develop
independently.

Codeline A set of versions of a software component and other configuration items
on which that component depends.

Configuration (version) control The process of ensuring that versions of systems and components are
recorded and maintained so that changes are managed and all versions
of components are identified and stored for the lifetime of the system.

Configuration item or software
configuration item (SCI)

Anything associated with a software project (design, code, test data,
document, etc.) that has been placed under configuration control.
Configuration items always have a unique identifier.

Mainline A sequence of baselines representing different versions of a system.

Merging The creation of a new version of a software component by merging
separate versions in different codelines. These codelines may have been
created by a previous branch of one of the codelines involved.

Release A version of a system that has been released to customers (or other
users in an organization) for use.

Repository A shared database of versions of software components and meta-
information about changes to these components.

System building The creation of an executable system version by compiling and linking
the appropriate versions of the components and libraries making up the
system.

Version An instance of a configuration item that differs, in some way, from other
instances of that item. Versions should always have a unique identifier.

Workspace A private work area where software can be modified without affecting
other developers who may be using or modifying that software.

Figure 25.3  CM
terminology

The definition and use of configuration management standards are essential for
quality certification in both ISO 9000 and the SEI’s capability maturity model (Bamford
and Deibler 2003; Chrissis, Konrad, and Shrum 2011). CM standards in a company
may be based on generic standards such as IEEE 828-2012, an IEEE standard for
configuration management. These standards focus on CM processes and the docu-
ments produced during the CM process (IEEE 2012). Using the external standards as a
starting point, companies may then develop more detailed, company-specific standards
that are tailored to their specific needs. However, agile methods rarely use these stand-
ards because of the documentation overhead involved.

	 25.1 	 Version management

Version management is the process of keeping track of different versions of software
components and the systems in which these components are used. It also involves
ensuring that changes made by different developers to these versions do not interfere
with each other. In other words, version management is the process of managing code-
lines and baselines.

Figure 25.4 illustrates the differences between codelines and baselines. A codeline is
a sequence of versions of source code, with later versions in the sequence derived from
earlier versions. Codelines normally apply to components of systems so that there are
different versions of each component. A baseline is a definition of a specific system. The
baseline specifies the component versions that are included in the system and identifies
the libraries used, configuration files, and other system information. In Figure 25.4, you
can see that different baselines use different versions of the components from each code-
line. In the diagram, I have shaded the boxes representing components in the baseline
definition to indicate that these are actually references to components in a codeline. The
mainline is a sequence of system versions developed from an original baseline.

Baselines may be specified using a configuration language in which you define
what components should be included in a specific version of a system. It is possible to
explicitly specify an individual component version (X.1.2, say) or simply to specify
the component identifier (X). If you simply include the component identifier in the
configuration description, the most recent version of the component should be used.

Baselines are important because you often have to re-create an individual version
of a system. For example, a product line may be instantiated so that there are specific
system versions for each system customer. You may have to re-create the version
delivered to a customer if they report bugs in their system that have to be repaired.

Version control (VC) systems identify, store, and control access to the different
versions of components. There are two types of modern version control system:

1.	 Centralized systems, where a single master repository maintains all versions of the
software components that are being developed. Subversion (Pilato, Collins-Sussman,
and Fitzpatrick 2008) is a widely used example of a centralized VC system.

2.	 Distributed systems, where multiple versions of the component repository exist
at the same time. Git (Loeliger and McCullough 2012), is a widely used exam-
ple of a distributed VC system.

Centralized and distributed VC systems provide comparable functionality but
implement this functionality in different ways. Key features of these systems include:

1.	 Version and release identification Managed versions of a component are
assigned unique identifiers when they are submitted to the system. These identi-
fiers allow different versions of the same component to be managed, without
changing the component name. Versions may also be assigned attributes, with
the set of attributes used to uniquely identify each version.

	 25.1  ■  Version management   735

736   Chapter 25  ■  Configuration management

2.	 Change history recording The VC system keeps records of the changes that have
been made to create a new version of a component from an earlier version. In
some systems, these changes may be used to select a particular system version.
This involves tagging components with keywords describing the changes made.
You then use these tags to select the components to be included in a baseline.

3.	 Independent development Different developers may be working on the same
component at the same time. The version control system keeps track of compo-
nents that have been checked out for editing and ensures that changes made to a
component by different developers do not interfere.

4.	 Project support A version control system may support the development of sev-
eral projects, which share components. It is usually possible to check in and
check out all of the files associated with a project rather than having to work
with one file or directory at a time.

5.	 Storage management Rather than maintain separate copies of all versions of a
component, the version control system may use efficient mechanisms to ensure
that duplicate copies of identical files are not maintained. Where there are only
small differences between files, the VC system may store these differences
rather than maintain multiple copies of files. A specific version may be auto-
matically re-created by applying the differences to a master version.

Most software development is a team activity, so several team members often
work on the same component at the same time. For example, let’s say Alice is mak-
ing some changes to a system, which involves changing components A, B, and C. At
the same time, Bob is working on changes that require making changes to compo-
nents X, Y, and C. Both Alice and Bob are therefore changing C. It’s important to
avoid situations where changes interfere with each other—Bob’s changes to C over-
writing Alice’s or vice versa.

To support independent development without interference, all version control
systems use the concept of a project repository and a private workspace. The project
repository maintains the “master” version of all components, which is used to create
baselines for system building. When modifying components, developers copy

A

L1 L2

A1.1

Ex1 Ex2

A1.2 A1.3

Codeline (A)

B B1.1 B1.2 B1.3

Codeline (B)

C C1.1 C1.2 C1.3

Codeline (C)

Libraries and external components

Baseline - V1

A B1.2 C1.1

L1 L2 Ex1

Baseline - V2

A1.3 B1.2 C1.2

L1 L2 Ex2

MainlineFigure 25.4  Codelines
and baselines

	 25.1  ■  Version management   737

(check-out) these from the repository into their workspace and work on these copies.
When they have completed their changes, the changed components are returned
(checked-in) to the repository. However, centralized and distributed VC systems
support independent development of shared components in different ways.

In centralized systems, developers check out components or directories of com-
ponents from the project repository into their private workspace and work on these
copies in their private workspace. When their changes are complete, they check-in
the components back to the repository. This creates a new component version that
may then be shared. For an illustration, see Figure 25.5.

Here, Alice has checked out versions A1.0, B1.0, and C1.0. She has worked on these
versions and has created new versions A1.1, B1.1, and C1.1. She checks these new ver-
sions into the repository. Bob checks out X1.0, Y1.0, and C1.0. He creates new versions
of these components and checks them back in to the repository. However, Alice has
already created a new version of C, while Bob has been working on it. His check-in
therefore creates another version C1.2, so that Alice’s changes are not overwritten.

If two or more people are working on a component at the same time, each must
check out the component from the repository. If a component has been checked out,
the version control system warns other users wanting to check out that component that
it has been checked out by someone else. The system will also ensure that when the
modified components are checked in, the different versions are assigned different
version identifiers and are stored separately.

In a distributed VC system, such as Git, a different approach is used. A “master”
repository is created on a server that maintains the code produced by the development
team. Instead of simply checking out the files that they need, a developer creates a
clone of the project repository that is downloaded and installed on his or her computer.

Developers work on the files required and maintain the new versions on their
private repository on their own computer. When they have finished making
changes, they “commit” these changes and update their private server repository.
They may then “push” these changes to the project repository or tell the integra-
tion manager that changed versions are available. He or she may then “pull” these
files to the project repository (see Figure 25.6). In this example, both Bob and
Alice have cloned the project repository and have updated files. They have not yet
pushed these back to the project repository.

Version management system

Alice Bob

Workspace (Alice) Workspace (Bob)

check_incheck_out

A1.0

A1.1 B1.1

B1.0 C1.0

C1.1 X1.1

X1.0 Y1.0

Y1.1 Q1.0

P1.0

C1.2

Z1.0

R1.0

A1.0

A1.1 B1.1

B1.0 C1.0

C1.1

X1.0

X1.1 Y1.1

Y1.0 C1.0

C1.1

check_incheck_out

Figure 25.5  Check-in
and check-out from a
centralized version
repository

738   Chapter 25  ■  Configuration management

This model of development has a number of advantages:

1.	 It provides a backup mechanism for the repository. If the repository is corrupted,
work can continue and the project repository can be restored from local copies.

2.	 It allows for offline working so that developers can commit changes if they do
not have a network connection.

3.	 Project support is the default way of working. Developers can compile and test
the entire system on their local machines and test the changes they have made.

Distributed version control is essential for open-source development where several
people may be working simultaneously on the same system without any central coordina-
tion. There is no way for the open-source system “manager” to know when changes will
be made. In this case, as well as a private repository on their own computer, developers
also maintain a public server repository to which they push new versions of components
that they have changed. It is then up to the open-source system “manager” to decide when
to pull these changes into the definitive system. This organization is shown in Figure 25.7.

In this example, Charlie is the integration manager for the open-source system.
Alice and Bob work independently on system development and clone the definitive
project repository (1). As well as their private repositories, both Alice and Bob
maintain a public repository on a server than can be accessed by Charlie. When
they have made and tested changes, they push the changed versions from their pri-
vate repositories to their personal public repositories and tell Charlie that these
repositories are available (2). Charlie pulls these from their repositories into his

Master repository

Alice

Bob

A1.0 B1.0 C1.0 X1.0 Y1.0

Q1.0 P1.0Z1.0 R1.0

Alice’s repository

A1.0 B1.0 C1.0 X1.0 Y1.0

Q1.0 P1.0Z1.0 R1.0

Bob’s repository

A1.0 B1.0 C1.0 X1.0 Y1.0

Q1.0 P1.0Z1.0 R1.0

A1.1 B1.1 C1.1

C1.1 X1.1 Y1.1

clone

clone

Figure 25.6  Repository
cloning

	 25.1  ■  Version management   739

own private repository for testing (3). Once he is satisfied that the changes are
acceptable, he then updates the definitive project repository (4).

A consequence of the independent development of the same component is that
codelines may branch. Rather than a linear sequence of versions that reflect changes
to the component over time, there may be several independent sequences, as shown
in Figure 25.8. This is normal in system development, where different developers
work independently on different versions of the source code and change it in differ-
ent ways. It is generally recommended when working on a system that a new branch
should be created so that changes do not accidentally break a working system.

At some stage, it may be necessary to merge codeline branches to create a new version
of a component that includes all changes that have been made. This is also shown in
Figure 25.8, where component versions 2.1.2 and 2.3 are merged to create version 2.4. If
the changes made involve completely different parts of the code, the component versions
may be merged automatically by the version control system by combining the code
changes. This is the normal mode of operation when new features have been added. These
code changes are merged into the master copy of the system. However, the changes made
by different developers sometimes overlap. The changes may be incompatible and inter-
fere with each other. In this case, a developer has to check for clashes and make changes
to the components to resolve the incompatibilities between the different versions.

When version control systems were first developed, storage management was one
of their most important functions. Disk space was expensive, and it was important to

Alice Bob

Definitive project
repository

Charlie

Alice’s public
repository

Alice’s private
repository

Bob’s public
repository

Bob’s private
repository

Charlie’s private
repository

1

22

33

4

Figure 25.7  Open-
source development

V1.0 V1.1 V1.2

V2.2 V2.3

V2.0

V2.1.1 V2.1.2

V2.1 V2.4

Codeline 1

Codeline 2

<branch>

<branch>

<merge>

Codeline 2.1

Figure 25.8  Branching
and merging

740   Chapter 25  ■  Configuration management

minimize the disk space used by the different copies of components. Instead of keeping
a complete copy of each version, the system stores a list of differences (deltas) between
one version and another. By applying these to a master version (usually the most recent
version), a target version can be re-created. This is illustrated in Figure 25.9.

When a new version is created, the system simply stores a delta, a list of differ-
ences, between the new version and the older version used to create that new ver-
sion. In Figure 25.9, the shaded boxes represent earlier versions of a component that
are automatically re-created from the most recent component version. Deltas are
usually stored as lists of changed lines, and, by applying these automatically, one
version of a component can be created from another. As the most recent version of a
component will most likely be the one used, most systems store that version in full.
The deltas then define how to re-create earlier system versions.

One of the problems with a delta-based approach to storage management is that it can
take a long time to apply all of the deltas. As disk storage is now relatively cheap, Git
uses an alternative, faster approach. Git does not use deltas but applies a standard com-
pression algorithm to stored files and their associated meta-information. It does not store
duplicate copies of files. Retrieving a file simply involves decompressing it, with no need
to apply a chain of operations. Git also uses the notion of packfiles where several smaller
files are combined into an indexed single file. This reduces the overhead associated with
lots of small files. Deltas are used within packfiles to further reduce their size.

	 25.2 	 System building

System building is the process of creating a complete, executable system by compiling
and linking the system components, external libraries, configuration files, and other
information. System-building tools and version control tools must be integrated as the
build process takes component versions from the repository managed by the version
control system.

System building involves assembling a large amount of information about the soft-
ware and its operating environment. Therefore, it always makes sense to use an auto-
mated build tool to create a system build (Figure 25.10). Notice that you don’t just need
the source code files that are involved in the build. You may have to link these with
externally provided libraries, data files (such as a file of error messages), and configu-
ration files that define the target installation. You may have to specify the versions of

Version
1.0

Version
1.1

Version
1.2

Version
1.3

D1 D2 D3

Creation date
Version sequence

Most recent

V1.3 source
code

Storage structure

Figure 25.9  Storage
management using
deltas

	 25.2  ■  System building   741

the compiler and other software tools that are to be used in the build. Ideally, you
should be able to build a complete system with a single command or mouse click.

Tools for system integration and building include some or all of the following features:

1.	 Build script generation The build system should analyze the program that is
being built, identify dependent components, and automatically generate a build
script (configuration file). The system should also support the manual creation
and editing of build scripts.

2.	 Version control system integration The build system should check out the
required versions of components from the version control system.

3.	 Minimal recompilation The build system should work out what source code
needs to be recompiled and set up compilations if required.

4.	 Executable system creation The build system should link the compiled object
code files with each other and with other required files, such as libraries and
configuration files, to create an executable system.

5.	 Test automation Some build systems can automatically run automated tests
using test automation tools such as JUnit. These check that the build has not
been “broken” by changes.

6.	 Reporting The build system should provide reports about the success or failure
of the build and the tests that have been run.

7.	 Documentation generation The build system may be able to generate release
notes about the build and system help pages.

The build script is a definition of the system to be built. It includes information about
components and their dependencies, and the versions of tools used to compile and link
the system. The configuration language used to define the build script includes constructs
to describe the system components to be included in the build and their dependencies.

Building is a complex process, which is potentially error-prone, as three different
system platforms may be involved (Figure 25.11):

 1.	 The development system, which includes development tools such as compilers and
source code editors. Developers check out code from the version control system into

Automated
build system

Source
code files

Data files

Libraries

Configuration
files

Executable
tests

Executable
target system

Test resultsCompilers
and toolsFigure 25.10  System

building

742   Chapter 25  ■  Configuration management

a private workspace before making changes to the system. They may wish to build a
version of a system for testing in their development environment before committing
changes that they have made to the version control system. This involves using local
build tools that use checked-out versions of components in the private workspace.

2.	 The build server, which is used to build definitive, executable versions of the
system. This server maintains the definitive versions of a system. All of the
system developers check in code to the version control system on the build
server for system building.

3.	 The target environment, which is the platform on which the system executes. This
may be the same type of computer that is used for the development and build sys-
tems. However, for real-time and embedded systems, the target environment is often
smaller and simpler than the development environment (e.g., a cell phone). For large
systems, the target environment may include databases and other application systems
that cannot be installed on development machines. In these situations, it is not possi-
ble to build and test the system on the development computer or on the build server.

Agile methods recommend that very frequent system builds should be carried
out, with automated testing used to discover software problems. Frequent builds are
part of a process of continuous integration as shown in Figure 25.12. In keeping with
the agile methods notion of making many small changes, continuous integration
involves rebuilding the mainline frequently, after small source code changes have
been made. The steps in continuous integration are:

1.	 Extract the mainline system from the VC system into the developer’s private
workspace.

2.	 Build the system and run automated tests to ensure that the built system passes
all tests. If not, the build is broken, and you should inform whoever checked in
the last baseline system. He or she is responsible for repairing the problem.

3.	 Make the changes to the system components.

4.	 Build the system in a private workspace and rerun system tests. If the tests fail,
continue editing.

Development system

Development
tools

Private workspace

Build server
Version

management
system

co

Version management and build server

Target system

Executable system

Target platform

Check-out
(co)

Check-in

Figure 25.11 
Development, build, and
target platforms

	 25.2  ■  System building   743

5.	 Once the system has passed its tests, check it into the build system server but do
not commit it as a new system baseline in the VC system.

6.	 Build the system on the build server and run the tests. Alternatively, if you are
using Git, you can pull recent changes from the server to your private work-
space. You need to do this in case others have modified components since you
checked out the system. If this is the case, check out the components that have
failed and edit these so that tests pass on your private workspace.

7.	 If the system passes its tests on the build system, then commit the changes you
have made as a new baseline in the system mainline.

Tools such as Jenkins (Smart 2011) are used to support continuous integration.
These tools can be set up to build a system as soon as a developer has completed a
repository update.

The advantage of continuous integration is that it allows problems caused by the
interactions between different developers to be discovered and repaired as soon as
possible. The most recent system in the mainline is the definitive working system.
However, although continuous integration is a good idea, it is not always possible to
implement this approach to system building:

1.	 If the system is very large, it may take a long time to build and test, especially if
integration with other application systems is involved. It may be impractical to
build the system being developed several times per day.

2.	 If the development platform is different from the target platform, it may not be
possible to run system tests in the developer’s private workspace. There may be
differences in hardware, operating system, or installed software. Therefore,
more time is required for testing the system.

For large systems or for systems where the execution platform is not the same as
the development platform, continuous integration is usually impossible. In those
circumstances, frequent system building is supported using a daily build system:

Check-out
mainline

Build and
test system

Build and
test system

Make
changes

Check-in to
build server

Build and
test system

Commit
changes to VM

Version
management

system

Version
management

system
Build server

Private
workspace

Tests fail

Tests OK

OK

Tests fail

Figure 25.12 
Continuous integration

744   Chapter 25  ■  Configuration management

1.	 The development organization sets a delivery time (say 2 p.m.) for system com-
ponents. If developers have new versions of the components that they are writ-
ing, they must deliver them by that time. Components may be incomplete but
should provide some basic functionality that can be tested.

2.	 A new version of the system is built from these components by compiling and
linking them to form a complete system.

3.	 This system is then delivered to the testing team, which carries out a set of pre-
defined system tests.

4.	 Faults that are discovered during system testing are documented and returned to the
system developers. They repair these faults in a subsequent version of the component.

The advantages of using frequent builds of software are that the chances of
finding problems stemming from component interactions early in the process are
increased. Frequent building encourages thorough unit testing of components.
Psychologically, developers are put under pressure not to “break the build”; that
is, they try to avoid checking in versions of components that cause the whole sys-
tem to fail. They are therefore reluctant to deliver new component versions that
have not been properly tested. Consequently, less time is spent during system
testing discovering and coping with software faults that could have been found by
the developer.

As compilation is a computationally intensive process, tools to support system
building may be designed to minimize the amount of compilation that is required.
They do this by checking if a compiled version of a component is available. If so, there
is no need to recompile that component. Therefore, there has to be a way of unam-
biguously linking the source code of a component with its equivalent object code.

This linking is accomplished by associating a unique signature with each file
where a source code component is stored. The corresponding object code, which has
been compiled from the source code, has a related signature. The signature identifies
each source code version and is changed when the source code is edited. By compar-
ing the signatures on the source and object code files, it is possible to decide if the
source code component was used to generate the object code component.

Two types of signature may be used, as shown in Figure 25.13:

1.	 Modification timestamps The signature on the source code file is the time and
date when that file was modified. If the source code file of a component has
been modified after the related object code file, then the system assumes that
recompilation to create a new object code file is necessary.

	 For example, say components Comp.java and Comp.class have modification
signatures of 17:03:05:02:14:2014 and 16:58:43:02:14:2014, respectively. This
means that the Java code was modified at 3 minutes and 5 seconds past 5 on the
14th of February 2014 and the compiled version was modified at 58 minutes
and 43 seconds past 4 on the 14th of February 2014. In this case, the system
would automatically recompile Comp.java because the compiled version has an
earlier modification date than the most recent version of the component.

	 25.3  ■  Change management   745

2.	 Source code checksums The signature on the source code file is a checksum calcu-
lated from data in the file. A checksum function calculates a unique number using
the source text as input. If you change the source code (even by one character), this
will generate a different checksum. You can therefore be confident that source code
files with different checksums are actually different. The checksum is assigned to
the source code just before compilation and uniquely identifies the source file. The
build system then tags the generated object code file with the checksum signature.
If there is no object code file with the same signature as the source code file to be
included in a system, then recompilation of the source code is necessary.

As object code files are not normally versioned, the first approach means that only
the most recently compiled object code file is maintained in the system. This is nor-
mally related to the source code file by name; that is, it has the same name as the
source code file but with a different suffix. Therefore, the source file Comp.Java may
generate the object file Comp.class. Because source and object files are linked by
name, it is not usually possible to build different versions of a source code component
into the same directory at the same time. The compiler would generate object files
with the same name, so only the most recently compiled version would be available.

The checksum approach has the advantage of allowing many different versions of
the object code of a component to be maintained at the same time. The signature
rather than the filename is the link between source and object code. The source code
and object code files have the same signature. Therefore, when you recompile a
component, it does not overwrite the object code, as would normally be the case
when the timestamp is used. Rather, it generates a new object code file and tags it
with the source code signature. Parallel compilation is possible, and different ver-
sions of a component may be compiled at the same time.

	 25.3 	 Change management

Change is a fact of life for large software systems. Organizational needs and require-
ments change during the lifetime of a system, bugs have to be repaired, and systems
have to adapt to changes in their environment. To ensure that the changes are applied

Comp.java
(V1.0)

16583102142014
Timestamp

Comp.java
(V1.1)

Comp.class

17030502142014 16584302142014
Timestamp Timestamp

Compile

Comp.java
(V1.0)

Comp.class

24374509887231 24374509887231
Checksum Checksum

Comp.java
(V1.1)

Comp.class

37650812555734 37650812555734
Checksum Checksum

Compile

Compile

Time-based identification Checksum-based identification

Figure 25.13  Linking
source and object
code

746   Chapter 25  ■  Configuration management

to the system in a controlled way, you need a set of tool-supported, change manage-
ment processes. Change management is intended to ensure that the evolution of the
system is controlled and that the most urgent and cost-effective changes are prioritized.

Change management is the process of analyzing the costs and benefits of pro-
posed changes, approving those changes that are cost-effective, and tracking which
components in the system have been changed. Figure 25.14 is a model of a change
management process that shows the main change management activities. This pro-
cess should come into effect when the software is handed over for release to custom-
ers or for deployment within an organization.

Many variants of this process are in use depending on whether the software is a cus-
tom system, a product line, or an off-the-shelf product. The size of the company also
makes a difference—small companies use a less formal process than large companies
that are working with corporate or government customers. However, all change manage-
ment processes should include some way of checking, costing, and approving changes.

Tools to support change management may be relatively simple issue or bug track-
ing systems or software that is integrated with a configuration management package
for large-scale systems, such as Rational Clearcase. Issue tracking systems allow any-
one to report a bug or make a suggestion for a system change, and they keep track of
how the development team has responded to the issues. These systems do not impose
a process on the users and so can be used in many different settings. More complex
systems are built around a process model of the change management process. They

Change
requests

Submit
CR

Check CR

Close CR

Implementation
analysis

Cost/impact
analysisAssess CRs

Select CRs Modify
software

Test software

Close CR

Close CRs

ValidInvalid

Pass
Fail

Customer
Customer support

Development

Product development/CCB

Register CR

Figure 25.14  The
change management
process

	 25.3  ■  Change management   747

automate the entire process of handling change requests from the initial customer
proposal to final change approval and change submission to the development team.

The change management process is initiated when a system stakeholder completes and
submits a change request describing the change required to the system. This could be a
bug report, where the symptoms of the bug are described, or a request for additional func-
tionality to be added to the system. Some companies handle bug reports and new require-
ments separately, but, in principle, both are simply change requests. Change requests may
be submitted using a change request form (CRF). Stakeholders may be system owners
and users, beta testers, developers, or the marketing department of a company.

Electronic change request forms record information that is shared between all
groups involved in change management. As the change request is processed, infor-
mation is added to the CRF to record decisions made at each stage of the process. At
any time, it therefore represents a snapshot of the state of the change request. In
addition to recording the change required, the CRF records the recommendations
regarding the change, the estimated costs of the change, and the dates when the
change was requested, approved, implemented, and validated. The CRF may also
include a section where a developer outlines how the change may be implemented.
Again, the degree of formality in the CRF varies depending on the size and type of
organization that is developing the system.

 Figure 25.15 is an example of a type of CRF that might be used in a large com-
plex systems engineering project. For smaller projects, I recommend that change
requests should be formally recorded; the CRF should focus on describing the

Change Request Form

Project: SICSA/AppProcessing	 Number: 23/02
Change requester: I. Sommerville	 Date: 20/07/12
Requested change: The status of applicants (rejected, accepted, etc.) should be shown
visually in the displayed list of applicants.

Change analyzer: R. Looek	 Analysis date: 25/07/12
Components affected: ApplicantListDisplay, StatusUpdater

Associated components: StudentDatabase

Change assessment: Relatively simple to implement by changing the display color
according to status. A table must be added to relate status to colors. No changes to
associated components are required.

Change priority: Medium
Change implementation:
Estimated effort: 2 hours
Date to SGA app. team: 28/07/12	 CCB decision date: 30/07/12
Decision: Accept change. Change to be implemented in Release 1.2
Change implementor:	 Date of change:
Date submitted to QM:	 QM decision:
Date submitted to CM:
Comments:

Figure 25.15  A partially
completed change
request form

748   Chapter 25  ■  Configuration management

change required, with less emphasis on implementation issues. System developers
decide how to implement the change and estimate the time required to complete
the change implementation.

After a change request has been submitted, it is checked to ensure that it is valid.
The checker may be from a customer or application support team or, for internal
requests, may be a member of the development team. The change request may be
rejected at this stage. If the change request is a bug report, the bug may have already
been reported and repaired. Sometimes, what people believe to be problems are actu-
ally misunderstandings of what the system is expected to do. On occasions, people
request features that have already been implemented but that they don’t know about.
If any of these features are true, the issue is closed and the form is updated with the
reason for closure. If it is a valid change request, it is then logged as an outstanding
request for subsequent analysis.

For valid change requests, the next stage of the process is change assessment and
costing. This function is usually the responsibility of the development or mainte-
nance team as they can work out what is involved in implementing the change. The
impact of the change on the rest of the system must be checked. To do this, you have
to identify all of the components affected by the change. If making the change means
that further changes elsewhere in the system are needed, this will obviously increase
the cost of change implementation. Next, the required changes to the system mod-
ules are assessed. Finally, the cost of making the change is estimated, taking into
account the costs of changing related components.

Following this analysis, a separate group decides if it is cost-effective for the
business to make the change to the software. For military and government systems,
this group is often called the change control board (CCB). In industry, it may be
called something like a “product development group” responsible for making deci-
sions about how a software system should evolve. This group should review and
approve all change requests, unless the changes simply involve correcting minor
errors on screen displays, web pages, or documents. These small requests should be
passed to the development team for immediate implementation.

The CCB or product development group considers the impact of the change from
a strategic and organizational rather than a technical point of view. It decides whether
the change in question is economically justified, and it prioritizes accepted changes
for implementation. Accepted changes are passed back to the development group;

Customers and changes

Agile methods emphasize the importance of involving customers in the change prioritization process. The
customer representative helps the team decide on the changes that should be implemented in the next devel-
opment iteration. While this can be effective for systems that are in development for a single customer, it can be
a problem in product development where no real customer is working with the team. In those cases, the team
has to make its own decisions on change prioritization.

http://software-engineering-book.com/web/agile-changes/

http://software-engineering-book.com/web/agile-changes

	 25.3  ■  Change management   749

rejected change requests are closed and no further action is taken. The factors that
influence the decision on whether or not to implement a change include:

1.	 The consequences of not making the change When assessing a change request,
you have to consider what will happen if the change is not implemented. If the
change is associated with a reported system failure, the seriousness of that fail-
ure has to be taken into account. If the system failure causes the system to crash,
this is very serious, and failure to make the change may disrupt the operational
use of the system. On the other hand, if the failure has a minor effect, such as
incorrect colors on a display, then it is not important to fix the problem quickly.
The change should therefore have a low priority.

2.	 The benefits of the change Will the change benefit many users of the system, or
will it only benefit the change proposer?

3.	 The number of users affected by the change If only a few users are affected, then
the change may be assigned a low priority. In fact, making the change may be
inadvisable if it means that the majority of system users have to adapt to it.

4.	 The costs of making the change If making the change affects many system com-
ponents (hence increasing the chances of introducing new bugs) and/or takes a
lot of time to implement, then the change may be rejected.

5.	 The product release cycle If a new version of the software has just been released
to customers, it may make sense to delay implementation of the change until the
next planned release (see Section 25.4).

Change management for software products (e.g., a CAD system product), rather than
custom systems specifically developed for a certain customer, are handled in a different
way. In software products, the customer is not directly involved in decisions about sys-
tem evolution, so the relevance of the change to the customer’s business is not an issue.
Change requests for these products come from the customer support team, the company
marketing team, and the developers themselves. These requests may reflect suggestions
and feedback from customers or analyses of what is offered by competing products.

The customer support team may submit change requests associated with bugs that
have been discovered and reported by customers after the software has been released.
Customers may use a web page or email to report bugs. A bug management team then
checks that the bug reports are valid and translates them into formal system change
requests. Marketing staff may meet with customers and investigate competitive products.
They may suggest changes that should be included to make it easier to sell a new version
of a system to new and existing customers. The system developers themselves may have
some good ideas about new features that can be added to the system.

The change request process shown in Figure 25.14 is initiated after a system has
been released to customers. During development, when new versions of the system
are created through daily (or more frequent) system builds, there is no need for a
formal change management process. Problems and requested changes are recorded
in an issue tracking system and discussed in daily meetings. Changes that only affect
individual components are passed directly to the system developer, who either
accepts them or makes a case for why they are not required. However, an independent

750   Chapter 25  ■  Configuration management

authority, such as the system architect, should assess and prioritize changes that cut
across system modules that have been produced by different development teams.

In some agile methods, customers are directly involved in deciding whether a change
should be implemented. When they propose a change to the system requirements, they
work with the team to assess the impact of that change and then decide whether the
change should take priority over the features planned for the next increment of the sys-
tem. However, changes that involve software improvement are left to the discretion of
the programmers working on the system. Refactoring, where the software is continually
improved, is not seen as an overhead but as a necessary part of the development process.

As the development team changes software components, they should maintain a
record of the changes made to each component. This is sometimes called the derivation
history of a component. A good way to keep the derivation history is in a standardized
comment at the beginning of the component source code (Figure 25.16). This com-
ment should reference the change request that triggered the software change. These
comments can be processed by scripts that scan all components for the derivation his-
tories and then generate component change reports. For documents, records of changes
incorporated in each version are usually maintained in a separate page at the front of
the document. I discuss this in the web chapter on documentation (Chapter 30).

	 25.4 	 Release management

A system release is a version of a software system that is distributed to customers.
For mass-market software, it is usually possible to identify two types of release:
major releases, which deliver significant new functionality, and minor releases,
which repair bugs and fix customer problems that have been reported. For example,
this book is being written on an Apple Mac computer where the operating system is
OS 10.9.2. This means minor release 2 of major release 9 of OS 10. Major releases
are very important economically to the software vendor, as customers usually have
to pay for them. Minor releases are usually distributed free of charge.

// SICSA project (XEP 6087)
//
// APP-SYSTEM/AUTH/RBAC/USER_ROLE
//
// Object: currentRole
// Author: R. Looek
// Creation date: 13/11/2012
//
// © St Andrews University 2012
//
// Modification history
// Version	 Modifier	 Date	 Change	 Reason
// 1.0	 J. Jones	 11/11/2009	 Add header	 Submitted to CM
// 1.1	 R. Looek	 13/11/2009	 New field	 Change req. R07/02Figure 25.16 

Derivation history

	 25.4  ■  Release management   751

A software product release is not just the executable code of the system. The
release may also include:

■	 configuration files defining how the release should be configured for particular
installations;

■	 data files, such as files of error messages in different languages, that are needed
for successful system operation;

■	 an installation program that is used to help install the system on target hardware;

■	 electronic and paper documentation describing the system;

■	 packaging and associated publicity that have been designed for that release.

Preparing and distributing a system release for mass-market products is an expensive
process. In addition to the technical work involved in creating a release distribution,
advertising and publicity material have to be prepared. Marketing strategies may have
to be designed to convince customers to buy the new release of the system. Careful
thought must be given to release timing. If releases are too frequent or require hardware
upgrades, customers may not move to the new release, especially if they have to pay for
it. If system releases are infrequent, market share may be lost as customers move to
alternative systems.

The various technical and organizational factors that you should take into account
when deciding on when to release a new version of a software product are shown in
Figure 25.17.

Release creation is the process of creating the collection of files and documentation
that include all components of the system release. This process involves several steps:

1.	 The executable code of the programs and all associated data files must be identi-
fied in the version control system and tagged with the release identifier.

2.	 Configuration descriptions may have to be written for different hardware and
operating systems.

3.	 Updated instructions may have to be written for customers who need to config-
ure their own systems.

4.	 Scripts for the installation program may have to be written.

5.	 Web pages have to be created describing the release, with links to system
documentation.

6.	 Finally, when all information is available, an executable master image of the
software must be prepared and handed over for distribution to customers or
sales outlets.

For custom software or software product lines, the complexity of the system release
management process depends on the number of system customers. Special releases
of the system may have to be produced for each customer. Individual customers
may be running several different releases of the system at the same time on differ-
ent hardware. Where the software is part of a complex system of systems, several

752   Chapter 25  ■  Configuration management

different variants of the individual systems may have to be created. For example, in
specialized fire-fighting vehicles, each type of vehicle may have its own version of
a software system that is adapted to the equipment in that vehicle.

A software company may have to manage tens or even hundreds of different
releases of their software. Their configuration management systems and processes
have to be designed to provide information about which customers have which
releases of the system and the relationship between releases and system versions. In
the event of a problem with a delivered system, you have to be able to recover all of
the component versions used in that specific system.

Therefore, when a system release is produced, it must be documented to ensure
that it can be re-created exactly in the future. This is particularly important for cus-
tomized, long-lifetime embedded systems, such as military systems and those that
control complex machines. These systems may have a long lifetime—30 years in
some cases. Customers may use a single release of these systems for many years and
may require specific changes to that release long after it has been superseded.

To document a release, you have to record the specific versions of the source
code components that were used to create the executable code. You must keep cop-
ies of the source code files, corresponding executables, and all data and configura-
tion files. It may be necessary to keep copies of older operating systems and other
support software because they may still be in operational use. Fortunately, this no
longer means that old hardware always has to be maintained. The older operating
systems can run in a virtual machine.

You should also record the versions of the operating system, libraries, compilers,
and other tools used to build the software. These tools may be required in order to
build exactly the same system at some later date. Accordingly, you may have to store
copies of the platform software and the tools used to create the system in the version
control system, along with the source code of the target system.

When planning the installation of new system releases, you cannot assume that cus-
tomers will always install new system releases. Some system users may be happy with

Factor Description

Competition For mass-market software, a new system release may be necessary because a
competing product has introduced new features and market share may be lost if
these are not provided to existing customers.

Marketing requirements The marketing department of an organization may have made a commitment for
releases to be available at a particular date. For marketing reasons, it may be
necessary to include new features in a system so that users can be persuaded to
upgrade from a previous release.

Platform changes You may have to create a new release of a software application when a new
version of the operating system platform is released.

Technical quality of the
system

If serious system faults are reported that affect the way in which many customers
use the system, it may be necessary to correct them in a new system release.
Minor system faults may be repaired by issuing patches, distributed over the
Internet, which can be applied to the current release of the system.

Figure 25.17  Factors
influencing system
release planning

an existing system and may not consider it worthwhile to absorb the cost of changing
to a new release. New releases of the system cannot, therefore, rely on the installation
of previous releases. To illustrate this problem, consider the following scenario:

1.	 Release 1 of a system is distributed and put into use.

2.	 Release 2 requires the installation of new data files, but some customers do not
need the facilities of release 2 and so remain with release 1.

3.	 Release 3 requires the data files installed in release 2 and has no new data files
of its own.

The software distributor cannot assume that the files required for release 3 have
already been installed in all sites. Some sites may go directly from release 1 to
release 3, skipping release 2. Some sites may have modified the data files associated
with release 2 to reflect local circumstances. Therefore, the data files must be distrib-
uted and installed with release 3 of the system.

One benefit of delivering software as a service (SaaS) is that it avoids all of these
problems. It simplifies both release management and system installation for customers.
The software developer is responsible for replacing the existing release of a system
with a new release, which is made available to all customers at the same time. However,
this approach requires that all servers running the services be updated at the same time.
To support server updates, specialized distribution management tools such as Puppet
(Loope 2011) have been developed for “pushing” new software to servers.

K e y P o i n t s

■	 Configuration management is the management of an evolving software system. When maintain-
ing a system, a CM team is put in place to ensure that changes are incorporated into the system
in a controlled way and that records are maintained with details of the changes that have been
implemented.

■	 The main configuration management processes are concerned with version control, system
building, change management, and release management. Software tools are available to
support all of these processes.

■	 Version control involves keeping track of the different versions of software components that are
created as changes are made to them.

■	 System building is the process of assembling system components into an executable program
to run on a target computer system.

■	 Software should be frequently rebuilt and tested immediately after a new version has been built. This
makes it easier to detect bugs and problems that have been introduced since the last build.

■	 Change management involves assessing proposals for changes from system customers and
other stakeholders and deciding if it is cost-effective to implement these changes in a new
release of a system.

	 Chapter 25  ■  Key Points   753

754   Chapter 25  ■  Configuration management

■	 System releases include executable code, data files, configuration files, and documentation.
Release management involves making decisions on system release dates, preparing all
information for distribution and documenting each system release.

F u r t h e r R e a d i n g

Software Configuration Management Patterns: Effective Teamwork, Practical Integration. A relatively
short, easy-to-read book that gives good practical advice on configuration management practice,
especially for agile methods of development. (S. P. Berczuk with B. Appleton, Addison-Wesley, 2003).

“Agile Configuration Management for Large Organizations.” This web article describes configuration
management practices that can be used in agile development processes, with a particular emphasis
on how these can scale to large projects and companies. (P. Schuh, 2007). http://www.ibm.com/
developerworks/rational/library/mar07/schuh/index.html

Configuration Management Best Practices This is a nicely written book that presents a broader
view of configuration management than I have discussed here, including hardware configuration
management. It’s geared to large systems projects and does not really cover agile development
issues. (Bob Aiello and Leslie Sachs, Addison-Wesley, 2011).

“A Behind the Scenes Look at Facebook Release Engineering.” This is an interesting article that covers the
problems of releasing new versions of large systems in the cloud, something that I haven’t discussed in
this chapter. The challenge here is to make sure that all of the servers are updated at the same time so
that users don’t see different versions of the system. (P. Ryan, arstechnica.com, 2012). http://arstechnica.
com/business/2012/04/exclusive-a-behind-the-scenes-look-at-facebook-release-engineering/

“Git SVn Comparison.” This wiki compares the Git and Subversion version control systems. (2013,
https://git.wiki.kernel.org/index.php/GitSvnComparsion).

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-management/

E x e rc i s e s

25.1. 	Suggest five possible problems that could arise if a company does not develop effective
configuration management policies and processes.

25.2. 	In version management, what do codeline and baseline terminologies stand for? List the features
included in a version control system.

754   Chapter 25  ■  Configuration management

http://www.ibm.com/developerworks/rational/library/mar07/schuh/index.html
http://arstechnica.com/business/2012/04/exclusive-a-behind-the-scenes-look-at-facebook-release-engineering/
https://git.wiki.kernel.org/index.php/GitSvnComparsion
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-management
http://www.ibm.com/developerworks/rational/library/mar07/schuh/index.html
http://arstechnica.com/business/2012/04/exclusive-a-behind-the-scenes-look-at-facebook-release-engineering

	 25.4  ■  Release management   755

25.3. 	Imagine a situation where two developers are simultaneously modifying three different software
components. What difficulties might arise when they try to merge the changes they have made?

25.4. 	Software is now often developed by distributed teams, with team members working at
different locations and in different time zones. Suggest features in a version control system
that could be included to support distributed software development.

25.5. 	Describe the difficulties that may arise when building a system from its components. What
particular problems might occur when a system is built on a host computer for some target
machine?

25.6. 	With reference to system building, explain why you may sometimes have to maintain obsolete
computers on which large software systems were developed.

25.7. 	A common problem with system building occurs when physical filenames are incorporated
in system code and the file structure implied in these names differs from that of the target
machine. Write a set of programmer’s guidelines that helps avoid this and any other system-
building problems that you can think of.

25.8. 	What are the factors that influence the decision on whether or not a change should be
implemented?

25.9. 	Describe six essential features that should be included in a tool to support change management
processes.

25.10. � Explain why preparing and distributing a system release for mass-market products is an
expensive process.

R e f e r e n c e s

Aiello, B., and L. Sachs. 2011. Configuration Management Best Practices. Boston: Addison-Wesley.

Bamford, R., and W. J. Deibler. 2003. “ISO 9001:2000 for Software and Systems Providers: An
Engineering Approach.” Boca Raton, FL: CRC Press.

Chrissis, M. B., M. Konrad, and S. Shrum. 2011. CMMI for Development: Guidelines for Process
Integration and Product Improvement, 3rd ed. Boston: Addison-Wesley.

IEEE. 2012. “IEEE Standard for Configuration Management in Systems and Software Engineering”
(IEEE Std 828-2012).” doi:10.1109/IEEESTD.2012.6170935.

Loeliger, J., and M. McCullough. 2012. Version Control with Git: Powerful Tools and Techniques for
Collaborative Software Development. Sebastopol, CA: O’Reilly and Associates.

Loope, J. 2011. Managing Infrastructure with Puppet. Sebastopol, CA: O’Reilly and Associates.

Pilato, C., B. Collins-Sussman, and B. Fitzpatrick. 2008. Version Control with Subversion.
Sebastopol, CA: O’Reilly and Associates.

Smart, J. F. 2011. Jenkins: The Definitive Guide. Sebastopol, CA: O’Reilly and Associates.

	 Chapter 25  ■  References   755

This page intentionally left blank

abstract data type

A type that is defined by its operations rather than its representation. The represen-
tation is private and may only be accessed by the defined operations.

acceptance testing

Customer tests of a system to decide if it is adequate to meet their needs and so
should be accepted from a supplier.

activity chart

A chart used by project managers to show the dependencies between tasks that have
to be completed. The chart shows the tasks, the time expected to complete these tasks
and the task dependencies. The critical path is the longest path (in terms of the time
required to complete the tasks) through the activity chart. The critical path defines the
minimum time required to complete the project. Sometimes called a PERT chart.

Ada

A programming language that was developed for the US Department of Defense in
the 1980s as a standard language for developing military software. It is based on
programming language research from the 1970s and includes constructs such as
abstract data types and support for concurrency. It is still used for large, complex
military and aerospace systems.

agile manifesto

A set of principles encapsulating the ideas underlying agile methods of software
development.

agile methods

Methods of software development that are geared to rapid software delivery. The
software is developed and delivered in increments, and process documentation and

Glossary

758    Glossary

bureaucracy are minimized. The focus of development is on the code itself, rather
than supporting documents.

algorithmic cost modeling

An approach to software cost estimation where a formula is used to estimate the project
cost. The parameters in the formula are attributes of the project and the software itself.

application family

A set of software application programs that have a common architecture and
generic functionality. These can be tailored to the needs of specific customers by
modifying components and program parameters.

application framework

A set of reusable concrete and abstract classes that implement features common to
many applications in a domain (e.g. user interfaces). The classes in the application
framework are specialized and instantiated to create an application.

application program interface (API)

An interface, generally specified as a set of operations, that allows access to an
application program’s functionality. This means that this functionality can be called
on directly by other programs and not just accessed through the user interface.

architectural pattern (style)

An abstract description of a software architecture that has been tried and tested in a
number of different software systems. The pattern description includes information
about where it is appropriate to use the pattern and the organization of the compo-
nents of the architecture.

architectural view

A description of a software architecture from a particular perspective.

availability

The readiness of a system to deliver services when requested. Availability is usu-
ally expressed as a decimal number, so an availability of 0.999 means that the sys-
tem can deliver services for 999 out of 1000 time units.

B

A formal method of software development that is based on implementing a system
by systematic transformation of a formal system specification.

bar chart (Gantt chart)

A chart used by project managers to show the project tasks, the schedule associated
with these tasks and the people who will work on them. It shows the tasks’ start and
end dates and the staff allocations against a timeline.

black-box testing

An approach to testing where the testers have no access to the source code of a
system or its components. The tests are derived from the system specification.

	 Glossary    759

BPMN

Business Process Modeling Notation. A notation for defining workflows that
describe business processes and service composition.

brownfield software development

The development of software for an environment where there are several existing
systems that the software being developed must integrate with.

C

A programming language that was originally developed to implement the Unix sys-
tem. C is a relatively low-level system implementation language that allows access
to the system hardware and which can be compiled to efficient code. It is widely
used for low-level systems programming and embedded systems development.

C++

An object-oriented programming language that is a superset of C.

C#

An object-oriented programming language, developed by Microsoft, that has much
in common with C++, but which includes features that allow more compile-time
type checking.

Capability Maturity Model (CMM)

The Software Engineering Institute’s Capability Maturity Model, which is used to
assess the level of software development maturity in an organization. It has now
been superseded by CMMI, but is still widely used.

Computer-Aided Software Engineering (CASE)

The term that was invented in the 1980s to describe process of developing software
using automated tool support. Virtually all software development is now reliant on
tool support so the term ’CASE is no longer widely used.

CASE tool

A software tool, such as a design editor or a program debugger, used to support an
activity in the software development process.

CASE workbench

An integrated set of CASE tools that work together to support a major process
activity such as software design or configuration management. Now often called a
programming environment.

change management

A process to record, check, analyze, estimate and implement proposed changes to a
software system.

class diagram

A UML diagram types that shows the object classes in a system and their
relationships.

760    Glossary

client–server architecture

An architectural model for distributed systems where the system functionality is
offered as a set of services provided by a server. These are accessed by client com-
puters that make use of the services. Variants of this approach, such as three-tier
client–server architectures, use multiple servers.

cloud computing

The provision of computing and/or application services over the Internet using a
‘cloud’ of servers from an external provider. The ‘cloud’ is implemented using a
large number of commodity computers and virtualization technology to make
effective use of these systems.

CMMI

An integrated approach to process capability maturity modeling based on the adop-
tion of good software engineering practice and integrated quality management. It
supports discrete and continuous maturity modeling and integrates systems and
software engineering process maturity models. Developed from the original Capa-
bility Maturity Model.

COCOMO II

See Constructive Cost Modeling.

code of ethics and professional practice

A set of guidelines that set out expected ethical and professional behavior for
software engineers. This was defined by the major US professional societies (the
ACM and the IEEE) and defines ethical behavior under eight headings: public,
client and employer, product, judgment, management, colleagues, profession
and self.

Common Request Broker Architecture (CORBA)

A set of standards proposed by the Object Management Group (OMG) that defines
distributed component models and communications. Influential in the development
of distributed systems but no longer widely used.

component

A deployable, independent unit of software that is completely defined and accessed
through a set of interfaces.

component model

A set of standards for component implementation, documentation and deploy-
ment. These cover the specific interfaces that may be provided by a compo-
nent, component naming, component interoperation and component
composition. Component models provide the basis for middleware to support
executing components.

component-based software engineering (CBSE)

The development of software by composing independent, deployable software
components that are consistent with a component model.

	 Glossary    761

conceptual design

The development of a high-level vision of a complex system and a description of
its essential capabilities. Designed to be understood by people who are not
systems engineers.

configurable application system

An application system product, developed by a system vendor, that offers function-
ality that may be configured for use in different companies and environments.

configuration item

A machine-readable unit, such as a document or a source code file, that is subject to change
and where the change has to be controlled by a configuration management system.

configuration management

The process of managing the changes to an evolving software product. Configura-
tion management involves version management, system building, change manage-
ment and release management.

Constructive Cost Modeling (COCOMO)

A family of algorithmic cost estimation models. COCOMO was first proposed in
the early-1980s and has been modified and updated since then to reflect new tech-
nology and changing software engineering practice. COCOMO II is its latest
instantiation and is a freely available algorithmic cost estimation model that is sup-
ported by open source software tools.

CORBA

See Common Request Broker Architecture.

control metric

A software metric that allows managers to make planning decisions based on infor-
mation about the software process or the software product that is being developed.
Most control metrics are process metrics.

critical system

A computer system whose failure can result in significant economic, human or
environmental losses.

COTS system

A Commercial Off-the-Shelf system. The term COTS is now mostly used in
military systems. See configurable application system.

CVS

A widely used, open-source software tool used for version management.

data processing system

A system that aims to process large amounts of structured data. These systems usually
process the data in batches and follow an input-process-output model. Examples of
data processing systems are billing and invoicing systems, and payment systems.

762    Glossary

denial of service attack

An attack on a web-based software system that attempts to overload the system so
that it cannot provide its normal service to users.

dependability

The dependability of a system is an aggregate property that takes into account the
system’s safety, reliability, availability, security, resilience and other attributes. The
dependability of a system reflects the extent to which it can be trusted by its users.

dependability requirement

A system requirement that is included to help achieve the required dependability for
a system. Non-functional dependability requirements specify dependability attribute
values; functional dependability requirements are functional requirements that
specify how to avoid, detect, tolerate or recover from system faults and failures.

dependability case

A structured document that is used to back up claims made by a system developer
about the dependability of a system. Specific types of dependability case are safety
cases and security cases.

design pattern

A well-tried solution to a common problem that captures experience and good prac-
tice in a form that can be reused. It is an abstract representation than can be instan-
tiated in a number of ways.

digital learning environment

An integrated set of software tools, educational applications and content that is
geared to support learning.

distributed system

A software system where the software sub-systems or components execute on
different processors.

domain

A specific problem or business area where software systems are used. Examples of
domains include real-time control, business data processing and telecommunica-
tions switching.

domain model

A definition of domain abstractions, such as policies, procedures, objects, relation-
ships and events. It serves as a base of knowledge about some problem area.

DSDM

Dynamic System Development Method. Claimed to be one of the first agile devel-
opment methods.

embedded system

A software system that is embedded in a hardware device e.g. the software system
in a cell phone. Embedded systems are usually real-time systems and so have to
respond in a timely way to events occurring in their environment.

	 Glossary    763

emergent property

A property that only becomes apparent once all of the components of the system
have been integrated to create the system.

Enterprise Java Beans (EJB)

A Java-based component model.

enterprise resource planning (ERP) system

A large-scale software system that includes a range of capabilities to support the
operation of business enterprises and which provides a means of sharing informa-
tion across these capabilities. For example, an ERP system may include support for
supply chain management, manufacturing and distribution. ERP systems are con-
figured to the requirements of each company using the system.

ethnography

An observational technique that may be used in requirements elicitation and analy-
sis. The ethnographer immerses him or herself in the users’ environment and
observes their day-to-day work habits. Requirements for software support can be
inferred from these observations.

event-based systems

Systems where the control of operation is determined by events that are generated
in the system’s environment. Most real-time systems are event-based systems.

extreme programming (XP)

A widely-used agile method of software development that includes practices such
as scenario-based requirements, test-first development and pair programming.

fault avoidance

Developing software in such a way that faults are not introduced into that software.

fault detection

The use of processes and run-time checking to detect and remove faults in a
program before these result in a system failure.

fault tolerance

The ability of a system to continue in execution even after faults have occurred.

fault-tolerant architectures

System architectures that are designed to allow recovery from software faults.
These are based on redundant and diverse software components.

formal methods

Methods of software development where the software is modeled using formal math-
ematical constructs such as predicates and sets. Formal transformation converts this
model to code. Mostly used in the specification and development of critical systems.

Gantt chart

See bar chart.

764    Glossary

Git

A distributed version management and system building tool where developers take
complete copies of the project repository to allow concurrent working.

GitHub

A server that maintains a large number of Git repositories. Repositories may be private
or public. The repositories for many open-source projects are maintained on GitHub.

hazard

A condition or state in a system that has the potential to cause or contribute to
an accident.

host-target development

A mode of software development where the software is developed on a separate
computer from where it is executed. The normal approach to development for
embedded and mobile systems.

iLearn system

A digital learning environment to support learning in schools. Used as a case study
in this book.

incremental development

An approach to software development where the software is delivered and deployed
in increments.

information hiding

Using programming language constructs to conceal the representation of data struc-
tures and to control external access to these structures.

inspection

See program inspection.

insulin pump

A software-controlled medical device that can deliver controlled doses of insulin to
people suffering from diabetes. Used as a case study in this book.

integrated application system

An application system that is created by integrating two or more configurable
application systems or legacy systems.

interface

A specification of the attributes and operations associated with a software compo-
nent. The interface is used as the means of accessing the component’s functionality.

ISO 9000/9001

A set of standards for quality management processes that is defined by the Interna-
tional Standards Organization (ISO). ISO 9001 is the ISO standard that is most
applicable to software development. These may be used to certify the quality
management processes in an organization.

	 Glossary    765

iterative development

An approach to software development where the processes of specification, design,
programming and testing are interleaved.

J2EE

Java 2 Platform Enterprise Edition. A complex middleware system that supports
the development of component-based web applications in Java. It includes a
component model for Java components, APIs, services, etc.

Java

A widely used object-oriented programming language that was designed by Sun
(now Oracle) with the aim of platform independence.

language processing system

A system that translates one language into another. For example, a compiler is a
language-processing system that translates program source code to object code.

legacy system

A socio-technical system that is useful or essential to an organization but which has
been developed using obsolete technology or methods. Because legacy systems
often perform critical business functions, they have to be maintained.

Lehman’s Laws

A set of hypotheses about the factors that influence the evolution of complex
software systems.

maintenance

The process of making changes to a system after it has been put into operation.

mean time to failure (MTTF)

The average time between observed system failures. Used in reliability specification.

Mentcare system

Mental Health Care Patient Management System. This is a system used to record
information about consultations and treatments prescribed for people suffering
from mental health problems. Used as a case study in this book.

middleware

The infrastructure software in a distributed system. It helps manage interactions
between the distributed entities in the system and the system databases. Examples
of middleware are an object request broker and a transaction management system.

misuse case

A description of a possible attack on a system that is associated with a system use case.

model-driven architecture (MDA)

An approach to software development based on the construction of a set of system
models, which can be automatically or semi-automatically processed to generate an
executable system.

766    Glossary

model checking

A method of static verification where a state model of a system is exhaustively ana-
lyzed in an attempt to discover unreachable states.

model-driven development (MDD)

An approach to software engineering centered around system models that are expressed
in the UML, rather than programming language code. This extends MDA to consider
activities other than development such as requirements engineering and testing.

multi-tenant databases

Databases where information from several different organizations is stored in the
same database. Used in the implementation of software as a service.

mutual exclusion

A mechanism to ensure that a concurrent process maintains control of memory until
updates or accesses have been completed.

.NET

A very extensive framework used to develop applications for Microsoft Windows
systems. Includes a component model that defines standards for components in
Windows systems and associated middleware to support component execution.

object class

An object class defines the attributes and operations of objects. Objects are created
at run-time by instantiating the class definition. The object class name can be used
as a type name in some object-oriented languages.

object model

A model of a software system that is structured and organized as a set of object
classes and the relationships between these classes. Various different perspectives
on the model may exist such as a state perspective and a sequence perspective.

object-oriented (OO) development

An approach to software development where the fundamental abstractions in the
system are independent objects. The same type of abstraction is used during
specification, design and development.

object constraint language (OCL)

A language that is part of the UML, used to define predicates that apply to object
classes and interactions in a UML model. The use of the OCL to specify compo-
nents is a fundamental part of model-driven development.

Object Management Group (OMG)

A group of companies formed to develop standards for object-oriented develop-
ment. Examples of standards promoted by the OMG are CORBA, UML and MDA.

open source

An approach to software development where the source code for a system is made public
and external users are encouraged to participate in the development of the system.

	 Glossary    767

operational profile

A set of artificial system inputs that reflect the pattern of inputs that are processed
in an operational system. Used in reliability testing.

pair programming

A development situation where programmers work in pairs, rather than individually,
to develop code. A fundamental part of extreme programming.

peer-to-peer system

A distributed system where there is no distinction between clients and servers.
Computers in the system can act as both clients and servers. Peer-to-peer applications
include file sharing, instant messaging and cooperation support systems.

People Capability Maturity Model (P-CMM)

A process maturity model that reflects how effective an organization is at managing
the skills, training and experience of the people in that organization.

plan-driven process

A software process where all of the process activities are planned before the soft-
ware is developed.

planning game

An approach to project planning based on estimating the time required to imple-
ment user stories. Used in some agile methods.

predictor metric

A software metric that is used as a basis for making predictions about the character-
istics of a software system, such as its reliability or maintainability.

probability of failure on demand (POFOD)

A reliability metric that is based on the likelihood of a software system failing
when a demand for its services is made.

process improvement

Changing a software development process with the aim of making that process
more efficient or improving the quality of its outputs. For example, if your aim is
to reduce the number of defects in the delivered software, you might improve a
process by adding new validation activities.

process model

An abstract representation of a process. Process models may be developed from
various perspectives and can show the activities involved in a process, the artifacts
used in the process, constraints that apply to the process, and the roles of the people
enacting the process.

process maturity model

A model of the extent to which a process includes good practice and reflective and
measurement capabilities that are geared to process improvement.

768    Glossary

program evolution dynamics

The study of the ways in which an evolving software system changes. It is claimed
that Lehman’s Laws govern the dynamics of program evolution.

program generator

A program that generates another program from a high-level, abstract specification.
The generator embeds knowledge that is reused in each generation activity.

program inspection

A review where a group of inspectors examine a program, line by line, with the aim
of detecting program errors. A checklist of common programming errors often
drives inspections.

Python

A programming language with dynamic types, which is particularly well-suited to
the development of web-based systems.

quality management (QM)

The set of processes concerned with defining how software quality can be achieved
and how the organization developing the software knows that the software has met
the required level of quality.

quality plan

A plan that defines the quality processes and procedures that should be used. This
involves selecting and instantiating standards for products and processes and defin-
ing the system quality attributes that are most important.

rapid application development (RAD)

An approach to software development aimed at rapid delivery of the software. It
often involves the use of database programming and development support tools
such as screen and report generators.

rate of occurrence of failure (ROCOF)

A reliability metric that is based on the number of observed failures of a system in a
given time period.

Rational Unified Process (RUP)

A generic software process model that presents software development as a four-
phase iterative activity, where the phases are inception, elaboration, construction
and transition. Inception establishes a business case for the system, elaboration
defines the architecture, construction implements the system, and transition deploys
the system in the customer’s environment.

real-time system

A system that has to recognize and process external events in ’real-time’. The
correctness of the system does not just depend on what it does but also on how quickly
it does it. Real-time systems are usually organized as a set of concurrent processes.

	 Glossary    769

reductionism

An engineering approach that relies on breaking down a problem to sub-problems,
solving these sub-problems independently then integrating these solutions to create
the solution to the larger problem.

reengineering

The modification of a software system to make it easier to understand and change.
Reengineering often involves software and data restructuring and organization,
program simplification and redocumentation.

reengineering, business process

Changing a business process to meet a new organizational objective such as
reduced cost and faster execution.

refactoring

Modifying a program to improve its structure and readability without changing its
functionality.

reference architecture

A generic, idealized architecture that includes all the features that systems might
incorporate. It is a way of informing designers about the general structure of that
class of system rather than a basis for creating a specific system architecture.

release

A version of a software system that is made available to system customers.

reliability

The ability of a system to deliver services as specified. Reliability can be specified
quantitatively as a probability of failure on demand or as the rate of occurrence
of failure.

reliability growth modeling

The development of a model of how the reliability of a system changes (improves)
as it is tested and program defects are removed.

requirement, functional

A statement of some function or feature that should be implemented in a system.

requirement, non-functional

A statement of a constraint or expected behavior that applies to a system. This
constraint may refer to the emergent properties of the software that is being
developed or to the development process.

requirements management

The process of managing changes to requirements to ensure that the changes made
are properly analyzed and tracked through the system.

resilience

A judgement of how well a system can maintain the continuity of its critical services
in the presence of disruptive events, such as equipment failure and cyberattacks.

770    Glossary

REST

REST (Representational State Transfer) is a style of development based around
simple client/server interaction which uses the HTTP protocol for communications.
REST is based around the idea of an identifiable resource, which has a URI. All
interaction with resources is based on HTTP POST, GET, PUT and DELETE.
Widely used for implementing low overhead web services (RESTful services).

revision control systems

See version control systems.

risk

An undesirable outcome that poses a threat to the achievement of some objective. A
process risk threatens the schedule or cost of a process; a product risk is a risk that
may mean that some of the system requirements may not be achieved. A safety risk
is a measure of the probability that a hazard will lead to an accident.

risk management

The process of identifying risks, assessing their severity, planning measures to
put in place if the risks arise and monitoring the software and the software process
for risks.

Ruby

A programming language with dynamic types that is particularly well-suited to web
application programming.

SaaS

See software as a service.

safety

The ability of a system to operate without behavior that may injure or kill people or
damage the system’s environment.

safety case

A body of evidence and structured argument from that evidence that a system is
safe and/or secure. Many critical systems must have associated safety cases that
are assessed and approved by external regulators before the system is certified
for use.

SAP

A German company that has developed a well-known and widely-used ERP
system. It also refers to the name given to the ERP system itself.

scenario

A description of one typical way in which a system is used or a user carries out
some activity.

scenario testing

An approach to software testing where test cases are derived from a scenario of
system use.

	 Glossary    771

Scrum

An agile method of development, which is based on sprints – short development,
cycles. Scrum may be used as a basis for agile project management alongside other
agile methods such as XP.

security

The ability of a system to protect itself against accidental or deliberate intrusion.
Security includes confidentiality, integrity and availability.

SEI

Software Engineering Institute. A software engineering research and technology
transfer center, founded with the aim of improving the standard of software
engineering in US companies.

sequence diagram

A diagram that shows the sequence of interactions required to complete some
operation. In the UML, sequence diagrams may be associated with use cases.

server

A program that provides a service to other (client) programs.

service

See web service.

socio-technical system

A system, including hardware and software components, that has defined operational
processes followed by human operators and which operates within an organization.
It is therefore influenced by organizational policies, procedures and structures.

software analytics

Automated analysis of static and dynamic data about software systems to discover
relationships between these data. These relationships may provide insights about
possible ways to improve the quality of the software.

software architecture

A model of the fundamental structure and organization of a software system.

software as a service (SaaS)

Software applications that are accessed remotely through a web browser rather than
installed on local computers. Increasingly used to deliver application services to
end-users.

software development life cycle

Often used as another name for the software process. Originally coined to refer to
the waterfall model of the software process.

software metric

An attribute of a software system or process that can be expressed numerically and
measured. Process metrics are attributes of the process such as the time taken to
complete a task; product metrics are attributes of the software itself such as size
or complexity.

772    Glossary

software process

The activities and processes that are involved in developing and evolving a soft-
ware system.

software product line

See application family.

spiral model

A model of a development process where the process is represented as a spiral,
with each round of the spiral incorporating the different stages in the process. As
you move from one round of the spiral to another, you repeat all of the stages of
the process.

state diagram

A UML diagram type that shows the states of a system and the events that trigger a
transition from one state to another.

static analysis

Tool-based analysis of a program’s source code to discover errors and anomalies.
Anomalies, such as successive assignments to a variable with no intermediate use
may be indicators of programming errors.

structured method

A method of software design that defines the system models that should be devel-
oped, the rules and guidelines that should apply to these models and a process to be
followed in developing the design.

Structured Query Language (SQL)

A standard language used for relational database programming.

Subversion

A widely-used, open source version control and system building tool that is avail-
able on a range of platforms.

Swiss cheese model

A model of system defenses against operator failure or cyberattack that takes vul-
nerabilities in these defenses into account.

system

A system is a purposeful collection of interrelated components, of different kinds,
which work together to deliver a set of services to the system owner and users.

system building

The process of compiling the components or units that make up a system and link-
ing these with other components to create an executable program. System building
is normally automated so that recompilation is minimized. This automation may be
built in to the language processing system (as in Java) or may involve software
tools to support system building.

systems engineering

A process that is concerned with specifying a system, integrating its components
and testing that the system meets its requirements. System engineering is concerned

	 Glossary    773

with the whole socio-technical system—software, hardware and operational
processes—not just the system software.

system of systems

A system that is created by integrating two or more existing systems.

system testing

The testing of a completed system before it is delivered to customers.

test coverage

The effectiveness of system tests in testing the code of an entire system. Some
companies have standards for test coverage e.g. the system tests shall ensure that all
program statements are executed at least once.

test-driven development

An approach to software development where executable tests are written before
the program code. The set of tests are run automatically after every change to
the program.

TOGAF

An architectural framework, supported by the Object Management Group, that
is intended to support the development of enterprise architectures for systems
of systems.

transaction

A unit of interaction with a computer system. Transactions are independent and
atomic (they are not broken down into smaller units) and are a fundamental unit of
recovery, consistency and concurrency.

transaction processing system

A system that ensures that transactions are processed in such a way so that they do
not interfere with each other and so that individual transaction failure does not
affect other transactions or the system’s data.

Unified Modeling Language (UML)

A graphical language used in object-oriented development that includes several
types of system model that provide different views of a system. The UML has
become a de facto standard for object-oriented modeling.

unit testing

The testing of individual program units by the software developer or development team.

use case

A specification of one type of interaction with a system.

use-case diagram

A UML diagram type that is used to identify use-cases and graphically depict the
users involved. It must be supplemented with additional information to completely
describe use-cases.

774    Glossary

user interface design

The process of designing the way in which system users can access system
functionality, and the way that information produced by the system is displayed.

user story

A natural language description of a situation that explains how a system or systems
might be used and the interactions with the systems that might take place.

validation

The process of checking that a system meets the needs and expectations of the customer.

verification

The process of checking that a system meets its specification.

version control

The process of managing changes to a software system and its components so
that it is possible to know which changes have been implemented in each version
of the component/system, and also to recover/recreate previous versions of the
component/system.

version control (VC) systems

Software tools that have been developed to support the processes of version control.
These may be based on either centralized or distributed repositories.

waterfall model

A software process model that involves discrete development stages: specification,
design, implementation, testing and maintenance. In principle, one stage must be
complete before progress to the next stage is possible. In practice, there is signifi-
cant iteration between stages.

web service

An independent software component that can be accessed through the Internet
using standard protocols. It is completely self-contained without external
dependencies. XML-based standards such as SOAP (Standard Object Access
Protocol), for web service information exchange, and WSDL (Web Service
Definition Language), for the definition of web service interfaces, have been
developed. However, the REST approach may also be used for web service
implementation.

white-box testing

An approach to program testing where the tests are based on knowledge of the
structure of the program and its components. Access to source code is essential for
white-box testing.

wicked problem

A problem that cannot be completely specified or understood because of the
complexity of the interactions between the elements that contribute to the problem.

	 Glossary    775

wilderness weather system

A system to collect data about the weather conditions in remote areas. Used as a
case study in this book.

workflow

A detailed definition of a business process that is intended to accomplish a
certain task. The workflow is usually expressed graphically and shows the
individual process activities and the information that is produced and consumed
by each activity.

WSDL

An XML-based notation for defining the interface of web services.

XML

Extended Markup Language. XML is a text markup language that supports the
interchange of structured data. Each data field is delimited by tags that give
information about that field. XML is now very widely used and has become the
basis of protocols for web services.

XP

See Extreme Programming.

Z

A model-based, formal specification language developed at the University of
Oxford in England.

This page intentionally left blank

A

abstraction level (reuse), 213
acceptability, 22, 347–48
acceptance testing, 77, 82, 249, 250–51, 252
accidents (mishaps), 343–44, 347
ACM/IEEE-CS Joint Task Force on Software

Engineering Ethics and Professional Practices,
29–30

acquisition (procurement), 473, 553–54, 566–70
activities (software engineering activities), 20, 23,

44, 47–48, 54–61, 142, 298, 643–44. See also
development; evolution; specification;
validation

activity charts (planning), 678–80
activity diagrams (UML), 33–34, 47, 50, 56, 141,

143–44, 163
actuators, 218, 502, 613–14, 615
Ada programming language, 359
adaptors, 469, 482–83
additive composition, 481
Adobe Creative Suite, 27
aggregation, 153
agile methods, 45, 66, 72–100

architectural design and, 168, 175
change and, 76, 78, 91, 131–32
change management and, 97, 748, 750
configuration management (CM) for, 732, 742–43,

748, 750
critical systems and, 75, 92, 96

continuous integration, 742–43
custom systems and, 90, 732
customer involvement and, 76, 77, 91, 748, 750
development team, 85, 90, 92–93
documentation and, 73–75, 86, 89–90, 92–93, 175
evolution and, 90, 261
extreme programming (XP), 73, 77–84
incremental development and, 45, 50, 73–74, 77
large system complexity and, 93–96
manifesto, 75–76, 77–78
model-driven architecture (MDA) and, 162
organizations and, 91, 97
pair programming, 78, 83–84
‘people, not process’ and, 76, 77, 91
plan-driven approach v., 45, 74–75, 91–93, 98
principles of, 76
process improvement and, 66
project management and, 84–88, 643, 647, 661
project planning, 91–93, 670, 680–83, 696
quality management (QM), 714–16, 727
refactoring, 51, 80–81
risk management and, 647
scaling, 88–97, 98
simplicity of, 76, 78, 91
Scrum approach and, 73, 78, 85–88, 96
test first development, 59, 78, 81–83
user stories for, 681–82
user testing, 251

agile modeling, 50
Agile Scaling Model (ASM), 95
air traffic management (ATC) systems, 554–55, 569

Subject Index

778    Subject Index

distributed component systems, 501, 506–09, 517
distributed systems, 175–84, 192, 501–12, 517
embedded software and, 620–26, 634
environmental control, 620, 623–25
layered architecture, 177–79
master-slave architecture, 501–02
model-view-controller (MVC), 176–77
multi-tier client-server architecture, 501, 505–06
observe and react, 620, 621–23
peer-to-peer (p2p) architecture, 501, 509–12, 517
pipe and filter architecture, 182–84
process pipeline, 620, 625–26
real-time software, 620–26, 634
repository architecture, 179–80
security and, 172, 388, 392–95
systems of systems (SoS), 602–606, 607
trading systems, 605–06
two-tier client-server architecture, 501, 503–05

Architecture Development Method (ADM), 601
architectures (software architectures)

application, 184–91, 192
architecture in the large, 169
architecture in the small, 169
defined, 192
distributed, 171, 182
fault-tolerant, 318–25
industrial practice v., 170
pipe and filter compiler, 190–91
reference, 191
self-monitoring, 320–22

Ariane 5 explosion, 296, 479, 480
arithmetic error, 351
as low as reasonably practical (ALARP) risks, 347
aspect-oriented software development, 442
Assertion checking, 360
assessment

hazards for safety requirements, 345, 346–349
security risk, 381–82

assets, 377, 378, 413, 414–415
assurance

safety processes, 353–56
security testing and, 402–04

ATMs (automated teller machines), 186–87, 315–16
attacks, 377, 378–79, 389, 413, 414–15, 494–95
attributes of software, 20, 22, 40
authentication, 413, 414, 416
automated management, 423–24
automated testing, 78, 81–83, 233–34, 242, 252
automatic static analysis, 359–60

Airbus 340 flight control system, 321–22, 340
AJAX programming, 28, 445, 512
algorithm error, 351–52
algorithmic cost modeling, 683, 684–86
alpha testing, 249
analysis systems, 25
Android, 219
Apache web server, 219
aperiodic stimuli, 613
Apollo 13 mission resilience, 409, 411, 416
application assessment (legacy systems), 269
application data, 262
application frameworks, 442, 443–46, 460
application layer, 292
application-level protection, 393–394
application programming interfaces (APIs), 39,

595–96
application security, 374–375
application software, 262
application system, 53, 438, 453–60

COTS systems, 453
ERP systems, 454–457
reuse, 438, 442, 453–60

architectural description languages
(ADLs), 175

architectural design, 57, 149, 167–195, 570–71, 595,
599–606

block diagrams for, 170
Booch’s architecture catalog and, 170
decisions, 171–73, 192
4+1 view model, 173–74
levels of abstraction, 169
maintenance and, 172–73, 178
model-driven architecture (MDA), 159–62
non-functional requirements for, 169, 172–73
object-oriented systems, 201–02
patterns, 175–84, 192
refactoring and, 168
security and, 172, 388, 392–395
structural models for, 149
system development and, 570–71
systems of systems (SoS), 595, 599–606
views, 173–75, 192

architectural frameworks, 600–02
architectural patterns (styles), 172

client-server architecture, 180–82, 501,
503–06, 517

container systems, 603–05
data-feed systems, 602–03

	 Subject Index    779

modeling workflow, 67–68
open-source software and, 221
policies (rules), 262
process maturity models, 67–68
process reengineering, 276–78
processes, 262
rapid software development and, 73–74
requirements changes, 131
resilience and, 426–27
security and, 380–382
services, 534, 541–47, 548
social change and, 24
software systems, 24, 27, 45, 68, 267–68
system construction by composition, 543–44
system values, 267–68, 280
web-based applications, 27
workflow, 542, 543, 544–46

C

C and C++ programming languages, 197, 327, 330,
359, 360, 401, 444, 619

callbacks, 445
catalog interface design, 537–538
centralized systems, version management of,

735, 737
certification (software dependability), 294, 299, 302,

354, 355–56, 474, 477, 709–10
change, 61–65. See also process change

agile methods and, 73–74, 78, 90–91, 97
business and social needs, 24
cost effectiveness of, 133
cultural (social), 24, 97
customers and, 748–49
effects on software engineering, 27–28
extreme programming (XP) and, 78
implementation, 134, 259–60, 280
incremental delivery, 62, 64–65
plan-driven process and, 73
problem analysis and, 133
prototyping, 62–63
rapid software development for, 73–74
requirements management for, 111, 130–34
reuse, 27–28
rework for, 61, 73

availability
security and, 374, 375, 413
system availability, 172, 288, 309–12

availability metric (AVAIL), 313–314
avoidance

error discovery and, 300–01
fault, 308
hazard, 342, 351
strategies (risk management), 650
vulnerability, 378

B

B method, 49, 300, 301, 357
banking system, Internet, 505
baselines, 734, 735, 736
batch processing systems, 25
behavioral models, 154–59, 163
beta testing, 58, 60, 249–250
bidding (projects), 669, 671–72
bindings, 527–28
blackboard model, 180
block diagrams, 170, 199
Boehm’s spiral process model, 48
Booch’s software architecture catalog, 170
boundaries (system models), 141–42, 163,

199, 556–57
branching, 734, 739
broadcast (listener) models, 202
Brownfield systems, 94, 256
BSD (Berkeley Standard Distribution)

license, 220
Bugzilla, 216
build system, 741–42
burglar alarm system, 614, 622, 629–31
business-critical system, 287
business process layer, 292
Business Process Modeling Notation (BPMN),

544–46
business process models, 544–46
businesses

activity diagrams (UML) for processes, 143–44
interrelated 4 R’s approach, 426–27
legacy system evolution, 261–68
maintenance costs, 274–76, 279

780    Subject Index

change anticipation, 61
change control board (CCB), 748–49
change management, 97, 731, 745–50, 753

agile methods and, 97, 748, 750
change requests, 747–50
dependability and, 299
development environments and, 217
requirements and, 111, 130–34

change proposals, 90, 258–59
change request form (CRF), 747–48
change tolerance, 61
characteristic error checking, 359–60
check array bounds, 330
checking requirements, 317
checklists, 403, 713–714
checksums, 745
circular buffer, 616–17
class diagrams, 141, 149–51, 163
class identification, 202–04
Cleanroom process, 230, 332
client-server architecture, 180–82, 428, 501,

503–06, 517
client-server systems, 499–501, 517
clouds, 25, 27, 532
COBOL code, 263
COCOMO II modeling, 276, 476, 686–96

application composition model, 688–89
cost drivers, 692
early design model, 689–90
post-architectural level, 692–94
project duration and staffing, 694–96
reuse model, 690–92

code coverage, 243–44, 252
code inspection and review, 83, 715
Code of Ethics and Professional Practice (software

engineering), 29–30
codelines, 734, 735, 736, 739
collaborative systems, 588
collective ownership, 78
COM platform, 466
Common Intermediate Language (CIL),

470–71
communication

data management layer and, 292
message exchange, 496–97, 526–29, 537
stakeholder, 169

communication latency, 218
compartmentalization, 399
competence, 28

completeness, 107, 129
complexity, 18, 93–96, 274–75, 278, 584–87, 606

governance, 586–87, 588–90, 606
large systems, 93–96
maintenance prediction and, 274–75
management, 585, 586–87, 587–90, 606
reductionism for systems, 590–93, 606
refactoring, 278
scaling agile methods and, 93–96
system releases, 751–52
systems of systems (SoS), 584–87, 606
technical, 585, 586–87, 590

compliance to software regulation, 294–95
component-based software engineering (CBSE), 442,

464–489
component certification, 474, 477
component management, 474, 476
development for reuse, 473, 474–77
development with reuse, 473, 477–80
middleware and, 465, 472–73
service-oriented software v., 466–67

component level (reuse), 214
components (software), 52–53, 188, 190, 295, 424,

465–73, 487, 526–29
architectural design and, 172
communications, 172, 218, 526–29
composition, 480–86, 487
defined, 465, 467, 487
deployment, 471, 472–73
design and selection of, 57, 424, 452
external, 330–31
implementation, 465, 466, 471–72, 475, 487
incompatibility, 481–83
interfaces, 208–209, 237–239, 465, 468–69
measurement (analysis), 722–23
models, 470–73, 487
open-source, 220–21
platforms for, 466–67
remote procedure calls (RPCs)

for, 470, 471
reuse, 52–53, 212, 214, 221, 438–439,

452, 468, 487
services v., 521
service-oriented architectures (SOA), 526–29
testing, 59, 232, 237–239
timeouts, 330–31
timing errors, 238–239

components (system), procurement (acquisition) of,
567–68

	 Subject Index    781

composition
of components, 480–86, 487
service systems and, 541–47

computation independent model (CIM), 159–61
computer science, software engineering v., 20, 23
concept reuse, 439
conceptual system design, 553, 563–66, 577, 594
conceptual views, 174, 192
concurrency, 491
confidence levels (verification), 228–29
confidentiality, 28, 374, 413
configurable application systems, 442, 454–457
configuration management (CM), 213,

215–216, 222, 730–55. See also change
management

activities of, 215–16
agile methods and, 732, 742–43, 748, 750
architectural patterns, 175
change management, 731, 745–50, 753
design implementation and, 213, 215–16, 222
problem tracking, 216
release management, 216, 731, 750–53, 754
system building, 731, 740–45, 753
system integration and, 215–16
terminology for, 734
version management (VM), 215, 216,

731, 735–40, 753
configuration, software product lines, 451–52
ConOps document standard, 563
consistency, 107, 129, 652
constants, naming of, 331
construction phase (RUP), 46
consumer/producer processes (circular buffer),

616–17
container systems, 603–05
context models, 141–44, 163, 199–200
contingency plans, 650–51
continuous integration, 78, 742–43
control

application frameworks and, 445
cybersecurity, 413–414
inversion of, 445
safety-critical systems, 341–42
security, 377, 378–79
visibility of information, 325–26

control metrics, 717
controlled systems, 319
cooperative interaction patterns, 175
coordination services, 534, 548

CORBA (Common Object Request Broker
Architecture), 466, 493, 507

cost/dependability curve, 290–91
cost drivers, 692
costs. See also estimation techniques

change analysis and, 133
COCOMO II modeling, 686–96
dependability and, 290–91
distributed systems, 495
effort, 669
fault removal, 308–09
formal verification, 357
maintenance/development, 274–76, 279, 280
overhead, 669
project planning, 669
safety engineering and, 357, 362–63
software engineering, 20
software reuse and, 214, 439
system failure, 286

COTS (commercial-off-the-shelf) systems, 453. See
also application system reuse

critical systems, 287. See also safety-critical
systems

agile methods and, 75
dependable processes for, 297
documentation for, 92, 96
failure of, 287, 303
formal methods for dependability of, 302
redundancy and, 295
types of, 287, 424
verification and validation costs, 290

cultural change, 97
customer involvement (agile methods), 76, 77, 91,

748, 750
customer testing, 59
customization, 471, 732–33
cybersecurity, 376, 412–416, 432

D

damage limitation, 342, 351
data clumping, 279
data collection systems, 25, 202
data flow diagrams (DFD), 154–55
data reengineering, 277
database design, 57

782    Subject Index

data-driven modeling, 154–55
data-feed systems, 602–03
data-mining system, 508
deadlines (real-time systems), 627
debugging, 58, 216, 232, 244
decentralized systems, 510–11, 517
Decorator pattern, 212
defect testing, 58, 227–28, 232

debugging v., 58, 232
performance, 248
release testing, 248

deltas (storage management), 740
denial-of-service attacks, 289–90, 389, 423
Department of Defense Architecture Framework

(DODAF), 601
dependability (software dependability), 26, 285–305

activities for, 298
assurance, 353–56, 402–04
costs of, 290–91
critical systems, 287, 290, 297, 302
design considerations, 287, 295
formal methods and, 299–302, 303
functionality v., 286
properties, 288–91
redundancy and diversity, 295–97, 303
reliability and, 288–90, 297, 303
safety and, 288, 299
security and, 22, 26, 288, 376–79
sociotechnical systems, 291–95, 303
specification and, 300–02
system, 268, 286–91, 303

dependable programming guidelines, 325–31
deployment

component model, 471, 472–73
design for, 399–400
service implementation and, 540–41
system development and, 570
systems of systems (SoS), 595, 597–99
UML diagrams, 149, 218

deployment-time configuration, 451–52
derivation history, 750
design (software design), 44, 56–58, 69, 78,

196–225. See also architectural design;
system design

activity model (diagram), 56
configuration management, 212, 215–16, 222
for deployment, 399–400
engineering programming and, 23, 44, 58
guidelines, 396–401, 405

implementation and, 47, 56–58, 69, 196–225
interface, 57, 208–09, 222
life-cycle phase, 47
models, 123–208, 222
object-oriented, 198–209, 222
open-source development, 219–21, 222
patterns, 209–12
for recovery, 400–01
for resilience, 424–32
reuse and, 57, 212, 213–15
service interfaces, 533, 536–40
test-case, 234–37
UML documentation, 197, 198–209
user interface, 62

design-time configuration, 451–52
‘desk’ testing, 428
development

agile techniques, 77–84, 88, 732
customization stages, 732–33
configuration management (CM)

phases, 732–33
engineering design and programming, 23, 44
evolution and, 23, 60–61, 256–57, 280
implementation stage, 56–58
maintenance costs, 274–76, 279
maintenance v., 60–61
pair programming, 83–84
plan-driven process, 59–60, 570
professional software, 19–28
refactoring, 51, 62, 80–81
regulators for safety, 353
reuse and, 52–54
reuse for (CBSE process), 473, 474–77
reuse with (CBSE process), 473, 477–80
safety cases, 362–63
safety-critical systems, 352–53
services and, 541–47, 548
sociotechnical systems, 291–295, 303
software dependability and, 290
spiral model for, 256–57
system processes, 554, 570–74
testing, 58–60, 81–83, 230–32

development team, 85, 90, 92–93
development testing, 231–42, 252
development view, 174, 192
digital art, 566
digital learning environment (iLearn), 38–39

application programming interface (API), 39
architecture (diagram), 38–39

	 Subject Index    783

elicitation of requirements, 118–20
layered architecture of, 179
photo sharing story, 118–20
services, 38–39
Virtual Learning Environment (VLE), 38

directed systems, 588
distributed architectures, 171
distributed component systems, 501, 506–09, 517
distributed development (Scrum), 88
distributed systems (software engineering), 490–519

advantages of, 491, 517
architectural design of, 171–72, 182
architectural patterns for, 175–84, 501–12, 517
attack defense, 494–95
client-server architecture, 180–82, 501,

503–06, 517
client-server systems, 499–501, 517
CORBA (Common Object Request Broker

Architecture), 493, 507
design issues, 492–96, 517
interaction models, 496–97
middleware, 498–99, 517
openness, 491, 492, 493
quality of service (QoS), 492, 495
scalability, 491, 492, 494, 514, 515–16
software as service (SaS), 512–16, 517
version management of, 735, 737–39

diversity (software diversity)
application types, 24–25
dependability and, 295–97, 303
fault-tolerant architecture, 318, 322, 323–25
redundancy and, 318, 398
reliability and, 318, 322, 323–25, 336
risk reduction and, 398
software engineering, 24–27

documentation, 19, 40, 49, 56, 73–75, 92–93, 273
agile methods and, 73–75, 86, 89–90, 92–93, 126
architectural design and, 175
certification and, 294, 299, 302
change implementation, 260
maintenance and, 92, 273
organization of, 127–28
reader requirements, 103–04
safety cases, 361–67
software requirements (SRS), 126–29, 135
standards, 129, 706
system release, 741, 752–53
TDD and, 244
user requirements, 73, 126–27

domain-specific application systems, 438, 441, 446
duplicate code, 279
dynamic metrics, 720–21
dynamic model, 199, 205, 206, 222
dynamic perspective (RUP), 46
dynamic systems development method (DSDM), 73

E

e-commerce systems, 188–89
early design model, 689–90
Eclipse environment, 32, 216, 218, 219
efficiency, 22, 422–23
effort cost, 669
effort distribution, 272
egoless programming, 83
elaboration phase (RUP), 46
elicit stakeholder requirements, 450
elicitation/analysis for requirements, 55,

112–20, 134
embedded software systems, 25, 32, 634. See also

real-time systems
architectural patterns and, 620–26, 634
design of, 217–18, 613–20
host-target development and, 217
real-time software engineering, 218, 610–37
simulators for, 217
stimulus/response model, 613–14, 634
timing analysis, 626–31
user testing, 251

emergency call log, 422–23
emergency repair process, 260–61
emergent properties, 558, 559–61, 577
encryption, 413
enduring requirements, 132
engineering, see software engineering; systems

engineering
Enterprise Java Beans (EJB), 446, 466, 470, 507
Enterprise systems, 422, 552. See also

ERP systems
entertainment systems, 25
environment assessment (legacy systems), 269
environmental adaptation, 271
environmental control pattern, 620, 623–25
environmental specialization (software product

lines), 450

784    Subject Index

environments. See also IDEs
architectural patterns and, 176
business requirements changes, 131
context model for, 142–43
marketing, 229
software interaction and system failure, 293–94
work, 663

equipment layer, 292
equity trading system, 394–95
equivalence partitioning, 235–236
ERP (Enterprise Resource Planning) systems, 21,

184, 438, 442, 454–457
application frameworks, 446
architecture of, 455–456
configurable application reuse, 454–457
customer adaptation of, 438
system procurement and adaptation, 569

error-prone constructs, 308, 328–29
error tolerance, 289
errors

algorithmic, 351–52
arithmetic, 351
avoidance and discovery, 300–01
checking, 359–61
correction, 48
failure and fault v., 308
human, 307, 351–52, 418–21
safety engineering and, 359–61
specification, 324–25
static analysis for, 359–61
system, 307–09
timing, 238–39

estimation techniques (project planning), 682–86,
696

algorithmic cost modeling, 683, 684–86
COCOMO II model, 686–96
experience-based techniques, 683–84
software productivity and, 686

ethical/professional responsibility, 28–31, 40
ethnography technique, 116–18
evaluation, prototype phase of, 63
event-driven modeling, 156–58
evolution (software evolution), 69, 255–82

activity model (diagram), 61
agile technique and, 261
business costs and, 274–76, 279
development v., 60, 256–57, 280
engineer activities for, 20, 23, 44
legacy systems, 261–70, 280

life cycle, 257–58, 266
maintenance, 22, 60–61, 270–79, 280
processes, 258–61
program evolution dynamics, 271
refactoring and, 61, 78, 273,

278–79, 280
requirements changes, 131
servicing v., 257–58
software lifetime and, 256–57
software reengineering, 273, 276–78
spiral model of, 256–57
system evolution v., 575–76

exceptions
CBSE for reuse, 476–77
handlers for, 327–28

Executable UML (xUML), 162
execution time (real-time systems), 627
experience-based estimation, 683–84
experience-based testing, 403
explicitly defined process, 297
exposure, 377, 378, 379
external components, 330–31
external requirements, 109
extreme programming (XP), 73, 77–84

acceptance testing and, 77, 82
agile methods and, 73, 77–79
continuous integration and, 78, 96
pair programming, 78, 83–84
release cycle in, 77
story cards, 79–80
test first development, 78, 81–83, 242
user requirements, 73, 99

F

façade pattern, 211
failure propagation, 560–61
failures, see also system failure

definition v. judgment, 310
error and fault v., 308
hardware, 287
human errors and, 307, 351–52, 418–21
information loss, 286
operational, 287
safe state solutions to, 351–52
server safety v. privacy, 36

	 Subject Index    785

software, 18, 22, 26, 287, 308, 310,
340–41, 351–52

system failure costs, 286
fault (system faults), 307–09

avoidance, 308
costs of removal, 308–09
detection and correction, 308
error and failure v., 308
repair, 271
tolerance, 308

fault-tolerant architectures, 318–25, 491
distributed systems, 491
diversity of software, 323–25
N-version programming, 322–23
protection systems, 319–20
self-monitoring, 320–22

fault tree analysis, 349–51
feasibility studies, 54, 104
Federal Aviation Administration, 92, 290
federated systems, 589
film library, client-server architecture for, 182
firewalls, 413–14
flight control software, 296, 321–22, 340, 341
floating-point numbers, 329
formal (mathematical) models, 139
formal methods (software development), 49, 139,

299–302, 303, 356–58
B method, 49
dependability and, 299–302, 303
error avoidance and discovery from, 300–01
mathematical approach, 300, 301
model-checking, 300, 358–59
safety engineering, 356–59
security testing, 404
system models and, 139, 299–301
verification and, 300, 356–58

formal specifications, 109, 300–02
Fortify tool, 404
4 Rs model, 410–11, 414–15, 432
4+1 view model, 173–74
frameworks, 443–46, 600–02, 708–10
Free Software Foundation, 219
frequency (real-time systems), 627
fuel delivery system, 618–19
functional requirements, 105–07, 134, 312, 317–18,

335, 344
functional specialization (software product lines),

450
functionality, 286

G

‘Gang of Four,’ 209–12
General Public License (GPL), 220
generalization of structural models, 152–53, 205
generator-based reuse, 443
Git system, 216, 737, 740
GitHub, 476, 478
‘glue code,’ 466, 481, 487
GNU build system, 216
GNU General Public License (GPL), 220
Google Apps, 27
Google Code, 478
governance complexity, SoS, 586–87,

588–90, 606
graphical models, 140
graphical notations, 121
groups, see teamwork
growth modeling, 334
guideline-based testing, 234
guidelines

hiring, 661
dependable programming, 325–31
system security, 401–02, 405

H

handlers, exceptions, 327–28
hardware (system), 262
hardware failure, 287, 560–61
hazard-driven approaches, 342, 349–51, 368
hazards, 342, 343, 345–51

analysis of, 345, 349–51
assessment, 345, 346–49
avoidance, 342, 351
damage limitation, 342, 351
detection and removal, 342, 351
fault tree analysis, 349–51
identification of, 345–46
probability, 343
safety-critical system development, 342, 368
severity, 343

heterogeneity, software development and, 24
hierarchical composition, 480
hierarchical groups, 661–62

786    Subject Index

high-availability systems, 172, 218
honesty (people management), 653
host-target development, 213, 216–18, 222
HTML5 programming, 28, 445
http and https protocols, 530–31
human error, 307, 351–52, 418–21
human needs hierarchy, 653–54

I

IDEs (Interactive Development Environments),
53, 217

ECLIPSE environment and, 218
general-purpose, 218
host-target development and, 216, 217–18, 222
repository architecture for, 180

iLearn, 38–39, 567. See also digital learning
environment

implementation (system implementation), 28, 47,
56–58, 69, 196–225

components, 465, 466, 471–72, 475, 487
configuration management, 212, 215–16
design and, 56–58, 69, 196–225
interface specification, 208–09
life-cycle phase, 47
host-target development, 213, 216–18
open-source development, 219–21
reuse and, 212, 213–215
service deployment and, 540–41
service-oriented software for, 28
UML documentation, 197, 198–209
unit testing and, 47

in-car information system, 522–24
inception phase (RUP), 46
inclusion (people management), 653, 657
incompatibility, component composition

and, 481–83
incremental delivery, 46, 51, 62, 64–65,

76, 91
incremental development, 46, 50–51, 73–74, 77
incremental testing, 59, 242
incremental integration, 242
incremental planning, 78
information loss, 286
information systems, 32, 185–86, 187–89, 522–24
infrastructure security, 374, 375–76

inheritance, 152, 204, 209, 233, 722. See also
generalization

input/output mapping, 310–11
inputs, validity checks of, 326–27, 399
inspections, 229–30, 239, 710–714. See

also reviews
insulin pump control system, 32–34

activity model of, 33, 155
data-flow model (DMD) for, 155
dependability properties for, 288–89
failure in, 316–17
functional reliability requirements, 317
hardware components (diagram), 33
hazards in, 346
natural language specification for, 122
non-functional reliability requirements, 316–17
permanent software failure, 316
risk classification for, 347–49
risk reduction for, 351–52
safety-critical system control, 341
safety requirements for, 346–349, 351–52
safe state, 351
sequence diagrams for, 155
software control of, 341
software failure solutions, 351–52
structured language specification for, 123–24
tabular specification for, 124
transient software failure, 316

issue-tracking systems, 746–47
integrated application systems, 442, 454
integration

configuration and, 46, 52–54
continuous, 78, 742–43
system development and, 570
system testing and, 48
systems of systems (SoS), 595, 597–99

integrity, security and, 374, 413
intellectual property rights, 28
interacting workflows, 545–46
interaction models, 144–49, 163, 199–200,

496–97
distributed systems, 496–97
object-oriented design and, 199–200
sequence diagrams, 146–49, 163
use cases, 144–46, 163, 200

interactive applications, 25
interface design, 57, 208–09
interface misunderstanding, 238
interface misuse, 238

	 Subject Index    787

interfaces
application programming interfaces (APIs),

595–96
component, 208–09, 222, 237–239, 465, 468–69,

470–71
model specifications, 470–71
service design for, 533, 536–40, 596
specification, 208–09
systems of systems (SoS), 595–97
unified user interface (UI), 596–97

Internet banking system, 505
interviewing techniques, 115–16
intolerable risks, 347
inversion of control, 445
ISO 9001 standards framework, 708–10, 734
iteration planning, 680
iterative development/delivery, 65, 77, 98. See also

agile methods
Iterator pattern, 212

J

Java programming language, 82, 152, 161, 197, 208,
218, 219, 327, 330, 359, 444

embedded systems development and, 619–20
interfaces, 208
program testing, 243
real-time systems development and, 619

Java Virtual Machine, 217
JavaMail library, 214
Jenkins, 743
JSON (Javascript Object Notation), 531
J2EE platform, 161, 466
JUnit, 59, 82, 217, 233, 243

L

language processing systems, 186, 189–91, 192
large-scale systems, 556
layered architecture, 177–79, 187–88, 192
layers

legacy systems, 262–64
sociotechnical systems, 292–93, 557–58

legacy systems, 261–70, 280, 540, 576
assessments, 269
business value of, 267–68, 280
component integration, 567
elements of, 262–63
management, 266–70
maintenance of, 263–64, 280
reengineering and, 276, 278
refactoring and, 279
replacement problems, 264–65
system evolution of, 546
wrapping, 278, 442, 540

Lehman’s laws, 271
Lesser General Public License, GNU, 220
licensing, 220–21, 356
life cycles

application system reuse problems,
459–60

project planning stages, 668
software evolution, 257–58, 266
software model process, 45, 47–49

lifetimes, system evolution and, 575–76
Linux, 219, 398
logging user actions, 398
logical view, 174, 192
long methods, 279

M

maintainability, 22, 104, 169, 173, 198, 230, 266,
274, 275, 289, 494

maintenance (software maintenance),
22, 270

agile methods and, 90, 92
architectural design and, 172–73, 178
costs, 274–76, 279
development v., 60–61
documentation and, 92, 273
legacy systems, 263–64
life-cycle phase, 48
prediction, 274–76
reengineering, 273, 276–78
refactoring, 278–79
software evolution and, 22, 263–64,

270–79
types of, 271, 280

788    Subject Index

management (software management), 26, 66–68,
84–88. See also configuration management;
process improvement; project management;
project planning; quality management;
version management

agile methods, 84–88
automated, 423–24
CBSE process, 474, 476
coping with change, 63
planning, 132–33
process maturity method and, 66–68
real-time system processes, 632–34
requirements change, 130–34
resilience and, 421–24, 432

management complexity (SoS), 585, 586–87,
587–90, 606

manifesto, agile, 75–76, 77–78
marketing environment, 229
Mars exploration, 358
mathematical specifications, 121. See also formal

methods
mean time to failures (MTTF), 313, 314
measurement. See also metrics

ambiguity in, 724–25
component analysis, 722–23
controller/predictor metrics, 717
quality management (QM) and, 716–26, 727
software analysis, 725–26, 727
software quality, 716–26, 727

mental health care system (Mentcare), 34–36
administrative reporting, 36
aggregation association in, 153
authentication procedures, 416
class diagrams for, 149–151
client-server architecture of, 428
context model of, 141–42
design risk assessment, 390–91
dose checking test case, 80
fail-secure approach, 397
functional requirements in, 106–07
generalization hierarchy and, 153
goals of, 35
individual care management, 35
key features of, 35–36
layered architecture pattern in, 179, 188
non-functional requirements in,

109–10
organization (diagram) of, 34
passwords, 400–101, 416

patient monitoring, 35
privacy and, 36
process model of involuntary detention, 143
release testing, 246, 247
requirements-based testing and, 246
resilience of, 289, 428–30
safety and, 36
safety-critical system control, 342
scenario in, 124–25
scenario testing and, 247
security of, 289, 377, 400–01
sequence diagrams for, 146–49
sociotechnical system for, 562–63
story cards and, 79–80
success criteria for, 562–63
system boundaries, 141–42
task cards and, 79–80
use case modeling and, 145–46
use cases for, 125–26

merging, 734, 739
message exchange, 496–97, 526–29, 537
message passing interfaces, 238
metrics

AVAIL, 243–314
control/predictor, 717
dynamic, 720–21
events, 717
non-functional requirements, 110
process measurement, 717–20
probability of failure on demand (POFOD),

313–14, 316
product, 720–22, 727
rate of occurrence of failures (ROCOF), 313–314
reliability, 313–14, 316
resource utilization, 717
software measurement and, 716–26, 727
static, 720–21
time, 717

Microsoft Office 360, 27
microwave oven scenario, 156–58
middleware, 217, 218, 446, 465, 472–73,

498–99
milestones (projects), 673, 674, 677–78, 696
minimization strategies (risk management), 650–51
mission-critical system, 287
MODAF, 600, 601
model checking, 300, 358–59, 368
model-driven architecture (MDA), 159–62
model-driven engineering (MDE), 158–59, 442

	 Subject Index    789

modeling systems, 25, 138–66
models, 45–54, 138–66. See also spiral models;

UML (Unified modeling Language)
activity diagrams (UML) for, 33–34, 141,

143–44, 163
activity stages, 47–48, 142
agile approach and, 50, 162
algorithmic cost modeling, 683, 684–86
application architecture, 185
behavioral, 154–59, 163
class diagrams for, 149–50
COCOMO II, 276, 476, 686–96
component, 470–73, 487
context, 141–44, 163, 199–200
data-driven, 154–55
dynamic, 199, 205, 206, 222
event-driven, 156–57
formal (mathematical), 139, 300
generalization, 152–53, 205
incremental development, 46, 49–51
integration and configuration, 46, 52–54
interaction, 144–49, 163, 199–200, 496–97
ISO 9000 standards framework,

708–10, 734
object-oriented design, 199–200, 204–08
open-source licensing, 220–21
processes, 45–54, 68
project estimation, 682–96, 696
quality management (QM) and, 709–10, 719
real-time system design, 617–19
reliability growth, 334
RUP (Rational Unified Process), 46–47
reuse-based development, 52–54
sequence, 144, 146–49, 155, 163, 205, 206–07
spiral, 63, 256–57
state machine, 205, 207–08, 222, 617–18, 634
state-based, 156–158, 163
static, 205, 222
stimulus/response, 613–14, 634
structural, 149–54, 163, 199, 205
subsystem, 205–06
‘Swiss cheese,’ 420–21
of testing process, 230–31
UML (Unified Modeling Language), 33–34, 139,

140–41, 144–49, 713
use case, 125–26, 141, 144–46, 163, 200–01

model-view-controller (MVC) pattern, 176–77,
179, 444

monitoring projects, 651–52, 673

motivation (people management), 653–56
multi-tenancy, 514, 515, 516
multi-tier client-server architecture, 501, 505–06
MySQL, 219, 445

N

N-version programming, 322–23
namespaces, 528–29
natural language requirements, 121–22
nested technical and sociotechnical

systems, 416–17
.NET framework, 161, 443, 446, 466, 470–71,

478, 507
non-deterministic properties, 561–62
non-functional requirements, 105, 107–11, 134, 169,

172–73, 312, 314–18, 547

O

object and function reuse, 438
object classes, 149–50, 202–04, 470
object constraint language (OCL), 208, 484–85
object level (reuse), 214
Object Management Group (OMG), 159
object-oriented metrics, 721–22
object-oriented systems

architectural design and, 201–02
class diagrams for, 149–50
class identification, 202–04
design, 198–209, 222
frameworks in, 444
interface specification, 208–09
system (design) models, 204–08
Unified Modeling Language (UML) and, 140,

198–209
use case model, 200–01

Objectory method, 125
observe and react pattern, 620, 621–23
Observer pattern, 210–11
on-site customer, 78
openness, distributed software, 491, 492, 493
open-source development, 219–21, 222, 738–39

790    Subject Index

operating system layer, 292
operating systems (real-time), 631–34, 635
operation and maintenance, 48
operation incompatibility, 481
operation incompleteness, 481
operation stage (systems), 554
operational failure, 287
operational processes, 421–24, 432
operational profiles, 334–35
operational security, 374, 376
operator reliability, 287, 560–61
Oracle, 21, 219
organizational design patterns, 175
organizational layers, 292, 557
organizational requirements, 108–09
organizational systems, 589
organizations and security, 380–82
overhead costs, 669
overspecification of reliability, 315

P

packing robot control system, 168
pair programming, 78, 83–84, 715
parameter definition, 452
parameter incompatibility, 481
parameter interfaces, 237
partition testing, 234–36
partner company software systems, 49
password checker, 392
passwords, 400–01, 413, 414, 416
path testing, 237
patient records system (PRS), 148–49
patterns, 175–84, 209–12, 442, 444

application frameworks and, 444
architectural, 175–84
design, 209–12, 442

payment models, 547
peer-to-peer (p2p) architecture, 501, 509–12, 517
penetration testing, 403–04
People Capability Maturity Model

(P-CMM), 656
people management, 652–56, 664
performance, 172, 248
periodic stimuli, 613
photo library, 483–85

physical view, 174, 192
pipe and filter architecture, 182–84, 191
plan-driven process, 45, 47, 50, 73, 570

agile methods v., 45, 74–75, 91–93, 98
changing environment and, 73
incremental development and, 50
model processes, 47, 50
project planning and, 672–75, 696
scheduling and, 675–76
system development and, 570
testing (validation) phases, 59–60
waterfall model, 47–48

planning game, 681–82
planning. See also project planning

incremental, 78
requirements management, 132–33
risk, 650–51
Scrum product backlog, 85, 86, 98
test, 231

platform-independent model (PIM), 159–61
platform-level protection, 393–394
platform services, 472
platform specialization (software product

lines), 450
platform-specific models (PSM), 160–61
plug-in architecture, 218
pointers, 308, 329
post-architectural level, 692–94
power supply failure, 627–28
practice perspective (RUP), 46
prediction, maintenance and, 274–76
predictor metrics, 717
PRISM model checker, 358
probability of failure on demand (POFOD),

313–14, 316
probability values, hazards, 343
problem tracking, 216
procedural interfaces, 238
process (software processes), 23, 26, 43–71

activities, 40, 54–61
agile approach, 45, 66
analysis, 67, 112–20, 626–31
assurance, 353–56
design and implementation, 56–58
emergency repair, 260–61
engineer activities for, 20, 23, 44, 54–61
evolution, 44, 60–61, 258–61
improvement of, 65–68
life cycles, 45, 47–49

	 Subject Index    791

management, 421–24, 432
maturity approach, 66–68
measurement, 66–67, 717–20
models, 45–54, 68
operational, 421–24, 432
plan-driven, 47–48
professional, 19–28, 45
prototype development, 62–63
quality (process-based), 65–68, 705
quality metrics, 717–20
review phases, 711–13
RUP (Rational Unified Process), 46–47
specification, 44, 54–56
standards, 45, 707, 708
validation, 44, 58–60

process change, 45, 69
agile manifesto and, 75–76
CBSE, 473–480
coping with, 61–65
evolution, 258–61
implementation, 259–60
for safety assurance, 353–56
software processes, 61–65, 67
urgent changes, 260

process improvement, 69
agile approach, 66
business values, 267–68
legacy system management, 266–70
process maturity approach, 66–68
reengineering, 276–78
refactoring, 278–79
software quality and, 65–68
software evolution and, 266–70, 276–79

process management, real-time systems, 632–34
process maturity approach, 66–68
process pipeline pattern, 620, 625–26
process requirements, 317
process specialization (software product lines), 450
process view, 174, 192
procurement (acquisition), 473, 553–54, 566–70, 577
producer/consumer pattern, 202
producer/consumer processes (circular buffer),

616–17
product

instance development, 450
quality metrics, 720–22, 727
requirements, 108–09
software types, 20–21, 24–26
standards, 706, 707

product architects (Scrum), 96
product backlog (Scrum), 85, 86
product owner (Scrum), 85
product risk management, 644–75, 646
professional software development, see

development
program evolution dynamics, 271
program generators, 442
program inspections, 229–30, 239, 713–14. See

also reviews
program libraries, 442
program modularization, 277
program structure improvement, 277
programmer/tester pairs, 231–32
programming. See also extreme programming

dependable guidelines, 325–31
egoless, 83
engineering design and, 23, 44, 58
real-time systems, 619–20
secure system guidelines, 401–02
techniques/activities, 26, 54–56

project management, 84–88, 641–66
activities, 643–44
agile methods and, 84–88, 643, 647, 661
differences from engineering, 642–43, 664
motivation and, 653–56
relationships with people, 652–56, 664
risk management, 644–52, 664
teamwork, 656–64

project planning, 92–93, 667–99
agile methods and, 670, 680–83, 696
bidding, 669, 671–72
COCOMO II cost modeling, 686–96
development team effectiveness, 92–93
duration and staffing, 694–96
estimation techniques, 682–86, 696
life cycle stages of, 668
milestones, 673, 674, 677–78, 696
plan-driven development and,

672–75, 696
process, 673–75
project costs, 669, 696
scaling agile methods for, 91–93
scheduling and, 675–80, 696
software pricing for, 670–72, 696
supplements, 673
user stories for, 681–82

project risk management, 644–45
Promela, 358

792    Subject Index

protection, 383
assets, 380, 384, 390
cybersecurity, 376, 414
fault-tolerant architecture, 319–20
layered architecture design, 393–95
systems, 319–20, 414

prototyping (system prototyping), 62–63, 69, 117, 130
Python, 190, 197, 198, 327, 444

Q

quality management (QM), 299, 700–29
agile development and, 714–16, 727
configuration management (CM) and, 733
documentation standards, 706
reviews and inspections, 710–14, 727
software development and, 701–02
software measurement/metrics and, 716–26, 727
software quality and, 703–05, 727
software standards and, 706–10, 727

quality of service (QoS), 492, 495
quantitative reliability specifications, 314–15

R

range checks, 326
rapid software development, 73–74
rate of occurrence of failure (ROCOF), 313–14
reactive systems, 612
realism checks, 129
real-time systems, 205, 218, 610–37

architectural patterns for, 620–26, 634
design, 205, 613–20
embedded systems, 218, 610–637
modeling, 617–19, 634
operating systems, 631–34, 635
process management, 632–34
programming, 619–20
responsiveness, 611–12
software engineering for, 610–37
stimulus/response model, 613–14, 634
timing analysis, 626–31, 635

reasonableness checks, 327

recognition, 410, 411, 414–15, 432
record-level protection, 393–394
recovery

database integrity checking and, 430
design for, 400–01
requirements, 317
resilience and, 411, 414–15, 430, 432

reductionism of complex systems, 590–93, 606
redundancy

dependability and, 295–97, 303
diversity and, 318, 398
requirements, 317

reengineering (software reengineering), 273,
276–78, 280

refactoring, 51, 62, 78, 80–81, 83–84, 168, 278–79
agile methods, 51, 80–81
architectural design and, 168
extreme programming (XP) methods, 78
maintenance and, 278–79
pair programming, 83–84
software evolution, 273, 278–79, 280

reference architectures, 191
refinement-based development, 300
regression testing, 244
regulation and compliance (software), 294–95, 353
regulators, 294–95, 361, 362, 368
reinstatement, 411, 414–15, 432
release alignment (Scrum), 96
release management, 216, 731, 750–53, 754
release testing, 245–48
reliability, 309

availability and, 309–12
dependability and, 288–90, 297, 303, 336
diversity and, 318, 322, 323–25, 336
emergent properties, 560–61
failure and, 18, 307–12, 560–61
fault-tolerant architectures, 318–25
functional requirements, 312, 317–18, 335
growth modeling, 334
human error, 307
measurement of, 331–35
metrics, 312–13, 332, 335
non-functional requirements, 312, 314–18
operational profiles, 334–35
overspecification of, 315
programming guidelines, 325–31
requirements, 312–18, 335
safety and, 340–41
security and, 379

	 Subject Index    793

sociotechnical systems, 560–61
software, 18, 560–61
specification, 314–18
system error, 307–09
system fault, 307–09
systems, 18, 19, 22, 288–90, 297, 303, 306–38
statistical testing, 332–33, 336

remote method invocations (RMIs), 497
remote procedure calls (RPCs), 470, 471, 497
repairability, 289
repeatable process, 297, 303
replicated servers, 318
repository architectural pattern, 179–80, 190
repository cloning, 737–38
representation checks, 327
requirements, 102, 134

agile methods and, 55, 131–32
analysis and definition (life-cycle phase), 47
availability, 218
business changes, 131, 135
classification and organization of, 113
components, 218
discovery and understanding, 113, 115–18
documents (software specification), 103–04, 111,

114, 126–29, 135
elicitation and analysis of, 55, 112–20, 134
enduring, 132
engineering understanding of, 20, 23, 26
evolution, 131
functional, 105–07, 134, 317–18
hazard-based, 345
identification, 132
management, 132–134, 135
non-functional, 105, 107–11, 134, 314–17
notations for writing, 121
prioritization and negotiation of, 113
refinement, 53
reliability and, 312–18
reviews, 130
risk-based, 344, 345
safety, 344–52
specification, 55, 69, 102–03, 106–07, 110,

120–29, 135, 314–18, 344, 345
spiral model for, 572
software process, 44, 54–56
storage, 132
system, 102–03, 120–21
testing (requirements-based), 245–46
traceability, 132, 133

user, 102–03
validation, 55, 129–30, 135
volatile, 132

requirements engineering (RE), 69, 101–37
change management, 111, 130–34
documents for, 103–05
elicitation/analysis process, 112–20, 134
ethnography technique for, 116–18
feasibility studies, 54, 104
interviewing techniques for, 115–16
processes, 111–12, 134
software process activities, 44, 54–56
software documentation (SRS) for, 126–27
spiral model for, 112
system development and, 570

requirements partitioning, 571
research management systems, 448–49
resilience (system resilience), 288, 409, 408–34

activities, 410–11
automated management, 423–24
cybersecurity, 412–16, 432
dependability and, 288, 289
design for, 424–32
efficiency and, 422–23
engineering, 408–34
4 Rs model, 410–11, 414–15, 432
human error and, 418–21
interrelated business approach, 426–27
management, 421–24, 432
operational processes, 421–24, 432
security and, 288, 379
sociotechnical systems, 416–24
survivable systems analysis, 425–26
system failure and, 410–12
testing, 427–428

resistance, 410–11, 414–15, 432
resource management systems,

188–89, 192
resource sharing, 491
respect (people management), 652
restart capabilities, 329–330
restaurant interactions, 496–97
RESTful services, 524, 529–33, 544
reuse (software reuse), 26, 28, 46, 52–54, 169,

209–10, 212, 213–15, 222, 437–63,
474–480

application frameworks, 442, 443–46, 460
application system, 438, 453–60
approaches supporting, 441–43

794    Subject Index

reuse (continued)
architectural design and, 169
CBSE for, 473, 474–77
CBSE with, 473, 477–80
component selection and design, 57
components, 52–53, 212, 214, 221, 438–439, 452,

468, 487
costs of, 214, 439
design patterns, 209–10, 212, 442, 444
engineering applications of, 26, 28
generator-based, 443
implementation and, 212, 213–15
integration and configuration of, 52–54
integration problems, 459–60
landscape, 340–443
levels of, 213–14
object and function, 438
process model for, 52–53
software development tools, 53
software product lines, 442, 446–52
system features and, 46

reuse-based software engineering, 53–54, 438
reuse model, 690–92
reverse engineering, 277
reverse planning, 680
reviews, 130, 229, 239, 710–14

checklists, 713–14
code, 83, 715
hazard register for, 355
inspections and, 229, 710–14, 727
program inspections, 713–14
quality management (QM), 710–14, 727
requirements validation, 130
review process, 711–13
safety, 354, 355
verification and validation using, 229

rework, 49, 56, 61, 73, 75, 84, 129
risk

acceptable, 347–48
accidents (mishaps) and, 343–44, 347
analysis, 362, 648–49
as low as reasonably practical (ALARP), 347
defined, 343
redundancy and diversion for, 398
indicators, 652
intolerable, 347
ranking types of, 649
reduction, 351–52, 398

security assessment, 381–82, 405
triangle, 347–48

risk management, 644–52, 664
identification of risk, 647–48
planning process, 650–51
processes, 645–47
product risks, 644–45
project risks, 644–45
risk analysis and, 648–49
risk monitoring, 651–52
strategies for, 650–81

risk-based requirements specification, 344, 345
robot control system, 168
role replication (Scrum), 96
Ruby, 190, 444
RUP (Rational Unified Process), 46–47

S

safety, 339–72, 379
architectural design and, 172
assurance processes, 353–56
costs and, 357, 362–63
dependability and, 288, 299
engineering processes, 352–61
ethics and, 30–31
formal verification, 356–58
functional requirements, 344
hazard-driven requirements, 345, 368
hazards and, 342, 343, 345–351
model checking, 358–59, 368
regulation and compliance for, 294–95
regulators, 294–95, 361, 362
reliability and, 340–41
requirements, 344–52, 362
risks and, 343, 343–44, 347–48, 351–52
software certification, 355–56
static program analysis, 359–61, 368
terminology, 343

safety cases, 361–67, 368
development of, 362–63
organization of, 361–62
regulators for, 361, 362, 368
software safety arguments, 364–67
structured arguments, 363–364

	 Subject Index    795

safety-critical systems, 287, 340–44, 368
certification of, 294, 302, 355–56
control systems, 341–42
dependability and, 294, 302
development process and, 352–53
error-prone constructs and, 329
hazard-driven techniques, 342
primary safety-critical software, 341
process assurance and, 355–56
regulation and compliance for, 294, 353
risk triangle for, 347–48
secondary safety-critical software, 341–42
system failure and, 340–41

safety reviews, 355
SAP, 21
Sarbanes Oxley accounting regulations, 51
scalability, 491, 492, 494, 514, 515–16
scale, software development and, 24
scaling agile methods, 88–97, 98
scenarios

elicitation of requirements from, 118–20
testing, 246–47, 252
use cases, 125–26

scheduling, 675–80, 696
activity charts for, 678–80
project planning and, 675–80, 696
plan-driven projects, 675–76
presentation (visualizing), 676–80

Scrum, 73, 78, 85–88, 96, 98
secure systems, 561
security, 24, 26, 373–407

application, 374–375
architectural design and, 172, 388,

392–95
assurance, 402–04
availability, 374, 375, 379
checklist, 403
confidentiality, 374
controls, 377, 378–79
dependability and, 22, 26, 288, 376–79
design for, 374, 388–402, 405
engineering, 373–407
failure, 397
guidelines, 396–401, 404
infrastructure, 374, 375–76
logging user actions, 398
operational, 374, 376
organizations and, 380–82
policies, 396–97

programming guidelines, 401–02
protection, 380, 384, 390, 393–94, 395
regulation and compliance for, 294–95
reliability and, 379
requirements, 382–88
resilience and, 288, 379
risk assessment, 381–82, 405
safety and, 379
system layers, 374–75
terminology, 377–378
testing, 402–04
threats, 377, 378, 404
trust and, 22, 24
usability guideline, 397–98
validation, 405
vulnerability and, 377, 378, 391, 401

self-monitoring architecture, 320–22
SEMAT (software engineering methods and tools)

initiative, 24
semicentralized P2P architecture, 511, 512
sensor-based data collection systems, 32
separation of concerns, 486
sequence diagrams, 141, 144, 146–49, 155, 163, 205,

206–07, 241
sequential composition, 480
server overload, 512–13
service engineering, 533–41

candidate identification, 533–36
implementation and deployment, 540–41
interface design, 533, 536–40
legacy systems and, 540

service information exchange (SOAP), 525–26,
531, 544

service-oriented architectures (SOAs), 513–14,
520–50

approach, 522, 524
components, 526–29
message exchange, 526–29
service interface, 528
service protocols, 525
software as service (SaS) v.,

513–14, 522
standards, 525–26
web applications, 524–29
WSDL and, 526, 527–29

service-oriented software engineering, see service
engineering; service-oriented architectures
(SOAs); services

service-oriented systems, 442, 466–67, 526–33

796    Subject Index

service-to-service communication, see
integrated services

services, 521
business, 534, 541–47, 548
classification of, 534, 548
communication and, 524–29
components, 521, 526–29
composition (construction) of, 541–47
coordination, 534, 548
incremental delivery and, 64–65
operation and maintenance for, 48
process models for, 544–46
reusable Web components, 52, 526–29
reuse of, 542
software development and, 541–47, 548
testing, 543, 546–47
utility, 534, 548
web-based, 27–28, 521
RESTful approach, 524, 529–33, 544
service information exchange (SOAP), 525–26,

531, 544
workflow, 542, 543, 544–46, 548

servicing, evolution v., 257–58
shared memory interfaces, 238
signatures, 744–45
simple design, 78
simplicity (agile methods), 76, 78, 91
simulation systems, 25
simulators, 217
size checks, 327
SLAM model checker, 358
small releases, 78
social change, business and, 24
social layer, 292
sociotechnical systems, 552, 577

complexity of, 556, 558–59
defensive layers, 419–20
emergent properties 544, 559–61, 577
environment and software interaction,

293–94
failure propagation, 560–61
human error and, 418–21
layers of, 292–93, 557
management, 421–24, 432
nested technical systems, 416–17
non-deterministic properties, 561–62
operational processes, 421–24, 432
organizational elements, 557–58

regulation and compliance, 294–95
resilience and, 416–24
success criteria, 562–63
systems engineering for, 556–59

software, 19, 20, 228
attributes, 20, 22
customized (bespoke), 21
efficiency, 22
engineering ethics, 28–31
failures, 18
generic products, 20–21
issues affecting, 24
lifetime, 256–57
product types, 20–21, 24–26
professional development, 19–28
regulation and compliance of, 294–95
system boundaries and characteristics, 26

software architecture catalog, Booch’s, 170
software as service (SaS), 512–16, 517

configuration of, 514–15
multi-tenancy, 514, 515, 516
scalability, 514, 515–16
server overload and, 512–13
service-oriented architectures (SOAs) v.,

513–14, 522
‘software crisis’, 19
Software Development Life Cycle (SDLC) model, 45
software development tools, 53
software diversity, 318, 322, 323–25, 336
software engineering, 19–23, 40, 92

activities for software process, 20, 23, 44
computer science v., 20, 23
diversity, 24–27
engineering discipline, 21–22
ethical responsibility and, 28–31, 40
formal verification, 356–58
fundamental notions in, 26, 40
Internet effect on, 20, 27–28
licensing for, 356
model checking, 358–59, 368
model-driven engineering (MDE), 158–59
product development and, 20–21
reuse-based, 53–54, 438
safety processes, 352–61
static program analysis, 359–61, 368
systems engineering v., 20, 23, 40, 554
web-based systems, 27–28

Software Engineering Institute (SEI), 67

	 Subject Index    797

software measurement/metrics, 716–26, 727
software platform, 57
software pricing, 670–72, 696
software product lines, 442, 446–52
software quality attributes, 704
software requirements specification (SRS),

126–29
software safety arguments, 364–67
source code translation, 277
SourceForge, 476, 478
space shuttle (U.S.) system, 319
specialization, software product lines, 450
specifications (software specifications), 20, 54–56,

208–09, 300–02
availability, 313
engineering definition and constraints, 23
functional requirements, 106–07
graphical notations, 121
dependability and, 300–02
design interface, 208–09
errors, 324–25
formal techniques, 300–02
hazard-driven safety requirements, 345
management of, 26
natural language requirements, 121–22
non-functional requirements, 110
problem analysis and, 133
reliability metrics, 313–14
risk-based requirements, 344, 345
safety requirements and, 344–45
software process, 44, 54–56
SRS document, 126–29
structured natural language requirements, 121,

122–24
system failure and, 310
system requirements, 102–03, 120–29, 135
use cases, 125–26
user requirements, 102–03, 120, 135

speculative generosity, 279
SPIN model checker, 358
spiral models, 48, 112, 256–57, 572
sprint (Scrum), 85, 86–87
SQL (Structured Query Language), 218, 399, 401,

445, 505
stable domain abstractions, 475
staff allocation charts, 678, 680
stakeholders, 103–04, 107, 112–16
stand-alone applications, 25

standards
documentation, 706
ISO 9000 standards framework, 708–10, 734
process, 45, 707, 708, 734
product, 706, 707
quality management (QM) and, 706–10, 727
software, 706–10, 727
service-oriented architectures (SOAs),

524, 525–26
value of, 707–08
web service, 525–26

state diagrams (UML), 141, 163, 205, 207–08
state machine models, 205, 207–08, 222, 617–18
state-based modeling, 156–58
static analyzers, 217
static metrics, 720–21
static models, 143, 205, 222
static perspective (RUP), 46
static program analysis, 359–61, 368
statistical testing, 332–33, 336
stimulus/response (embedded systems) model,

613–14, 634
storage management, 132, 740
stories, elicitation of requirements from, 118–20
story cards, 79–80, 99. See also user stories
stress testing, 248
structural models, 149–54, 163, 199, 205
structured arguments, 363–64
structured natural language requirements, 121,

122–24
subsystem engineering, 571, 573
subsystem faults, 573
subsystem model, 205–06
Subversion system, 216, 735
support environment, 32
support services, 472
support software, 262
survivable systems analysis, 425–26
sustainable pace, 78
‘Swiss cheese’ model, 420–21
switch (case) statements, 279
system availability, see availability
system boundaries, 141–42, 163, 199, 556–57
system building, 731, 740–45, 753
system construction by composition, 543–44
system design

actuator control processes, 613–14, 615
embedded systems, 217–18, 613–20

798    Subject Index

system design (continued)
host-target development, 213, 216–18, 222
modeling, 617–19
producer/consumer processes, 616–17
programming, 619–20
real-time systems, 205, 613–20
risk assessment, 389–92
security systems, 388–402, 405
stimulus response model, 613–14

system error, 307–09
system failure, 307

acceptance of, 410
availability and, 309–12
costs of, 286
critical systems, 287, 290, 297, 302,

340–41
dependability and, 22, 268, 286–91, 303
error and fault v., 308
hardware failure and, 287
human errors and, 287, 351–52
nondeterminism and, 560–61
reliability and, 307–12, 560–61
reparability and, 289
resilience and, 410–12, 420–21
safety-critical systems, 340–41
security and, 22, 268, 397
sociotechnical, 560–61
software failures and, 287, 340–41
specifications and, 310
‘Swiss cheese’ model of, 420–21
types of, 287

system fault, 307–09
system infrastructure frameworks, 446
system integration, 215–16
system level (reuse), 214
system modeling, see models
system of system coalitions, 589
system output, 268
system requirements, 52, 102–03
system reuse, 438
system selection, 594–95
system testing, 48, 59, 231–32, 240–42
system versions, 323–325
system vision document, 565–66
systems (software systems). See also distributed

systems; embedded software systems;
systems of systems (SoS)

activity models (diagram), 60, 61
agile methods for, 93–96

analysis for architectural design, 169
case study types, 31–32
complexity of, 18, 93–96, 274–75, 278, 552–53,

558–59
cost effectiveness of, 22–23
dependability, 268, 286–91, 303
engineering fundamentals for, 26, 40
large-scale, 93–94, 556
modeling, 25, 138–166
sociotechnical, 291–95, 303, 556–63
software design and, 47
specification requirements, 120–29
state representation, 155
systems of systems (SoS) v., 581–82
types of, 18, 20–21, 24–26, 32, 40, 552

systems engineering, 20, 23, 40, 551–79
conceptual design, 553, 563–66, 577
development processes, 570–74, 577
enterprise systems, 552
lifetimes and, 575–76
range of disciplines, 554–55
sociotechnical systems, 552, 556–63, 577
software engineering v., 20, 23, 40, 554
spiral model for requirements, 572
stages of, 553–54
system evolution, 575–76
system procurement (acquisition), 453–54,

566–70, 577
technical computer-based systems, 552

systems of systems (SoS), 25, 256, 442, 556,
580–609

architectural design, 595, 599–606, 607
classification of systems, 587–90, 606
container systems, 603–05
data-feed systems, 602–03
deployment and integration of, 595, 597–99
engineering, 593–99
governance complexity, 586–87,

588–90, 606
interface development, 595–97
large-scale systems, 556
management complexity, 585, 586–87,

587–90, 606
reductionism, 590–93, 606
software systems, 582
system complexity, 584–87, 606
system v., 581–82
technical complexity, 585, 586–87, 590
trading systems, 605–106

	 Subject Index    799

T

tabular specification, 124
task cards, 79–80, 82. See also user stories
teamwork, 656–64

development team, 85, 90, 92–93
group cohesion, 658
group communication, 662–64
group member selection, 659–60
group organization, 660–62
hierarchical groups, 661–62
hiring people, 661
physical work environment and, 663

technical complexity, SoS, 585, 586–87, 590
technical computer-based systems, 552
test cases, 130, 234–37, 252
test-driven development (TDD), 242–45
test-first development, 59, 78, 81–83, 252
test planning, 231
testing (software testing), 58–60, 226–54, 402–04,

427–28
acceptance, 77, 82, 249, 250–51, 252
agile methods for, 59, 78, 81–83, 251
alpha, 249
assurance and, 402–04
automated, 78, 81–83, 233–34,

242, 252
beta, 58, 60, 249–250
choosing test cases, 234–37, 252
component testing, 59, 232, 237–39
customer, 58, 59
debugging v., 58, 232, 244
defect, 58, 227–28, 232, 245, 248
development and, 59–60, 81–83, 570
development testing, 231–42, 252
goals of, 227
incremental approach, 59
inspections v., 229–30
model of, 230–31
penetration, 403–04
plan-driven phases, 59–60
process, 58–60
release testing, 245–48
reliability and, 332–33, 336
resilience, 427–428
security, 402–04
services, 543, 546–47
stages in, 59, 231

statistical, 332–33, 336
system, 59, 232, 240–42
test-driven development (TDD), 242–45
tool-based analysis, 404
unit testing, 47, 232–37
user testing, 249–51
validation, 58–60, 227–29

threats, 377, 378, 404, 413, 414–15
timeouts, 330–31
timestamps, 744
timing analysis, 626–31, 635
timing errors, 238–39
TOGAF, 600, 601
tool-based analysis, 404
tool support, 132, 743, 744, 746
traceability (requirements), 132, 133
trading systems, 605–06
transaction-based applications, 25
transaction processing systems, 185,

186–87, 192
transition phase (RUP), 46–47
triple modular redundancy (TMR), 322
trust, security and, 22, 24
two-tier client-server architecture, 501, 503–05

U

UML (Unified Modeling Language), 140
activity diagrams, 33–34, 141, 143–44
architectural design and, 139, 175, 205
behavioral models, 155–57
business processes and, 143–44
class diagrams, 141, 149–50
component interface diagram, 469
deployment diagrams, 149, 218
diagram types, 139, 140–41, 205
event-driven, 156–57
executable (xUML), 162
generalization and, 152
interaction models, 144–49
object oriented metrics and, 721
object-oriented systems and, 140, 198–209
package symbol, 37
sequence diagrams, 141, 146–49, 155, 163, 205,

206–07
state diagrams, 141, 205, 207–08

800    Subject Index

UML (continued)
subsystem models, 205–06
system modeling using, 139, 140
use cases, 125–26, 141, 144–46, 163, 205
workflow models, 143–44, 544

unified user interface (UI), 596–97
Uniform Resource Locator (URL), 530–32, 539
unit testing, 47, 231, 232–37
Universal Description, Discovery, and Integration

(UDDI), 526
Universal Resource Identifiers (URIs), 471, 527
Unix systems, 183, 401
urgent changes, 260
usability

error tolerance, 289
patterns, 175
requirements, 109–10
security guideline, 397–98

usage, component models and, 471
use cases, 125–26, 141, 144–46

interaction models, 144–46, 163, 200–01
requirements specification and, 125–26
testing, 240–41
UML diagram models, 141

user access, 392
user actions, logging, 398
user-defined error checking, 360
user expectations, 228–29
user interface design, 62
user requirements, 55, 73–74, 102–03
user stories, 79–80, 82, 86, 247, 681–82

conceptual design and, 565–66
project planning (agile method) with, 681–82
task cards, 79–80

user testing, 249–51
utility services, 534, 548

V

V & V (verification and validation), 58, 227–29, 356.
See also testing; validation

V-model, 60
vacation package workflow, 542, 544–45
validation (software validation), 20, 69, 58–60

engineering activities for, 23, 44
requirements, 55, 129–30, 135

testing, 58–60, 227–29
verification v., 227–29

validity checks, 129, 326–27, 399
vehicle dispatcher system, 448–49
velocity (Scrum), 85
verifiability, 129
verification (software verification)

cost effectiveness of, 357
formal methods and, 300, 356–59
goal of, 228
levels of confidence, 228–29
model checking, 300, 358–59
safety engineering, 356–59
validation v., 227–29

version control (VC) systems, 731, 735, 753
version management (VM), 215, 216, 731,

735–40, 753
vertical software packages, 20
views, architectural, 173–175, 192
Virtual Learning Environment (VLE), 38
virtual systems, 588
visibility of information, 325–26
volatile requirements, 132
VOLERE requirements engineering method, 123–24
vulnerability, 377, 378, 391, 401, 402

W

waterfall model, 45, 47–49
weather information database, 531–32
weather stations, see wilderness weather stations
web application frameworks (WAFs), 444
web-based systems, 27–28
web services, 27, 52, 521, 524–33. See also services;

WSDL
browser development, 27, 521
business process model and, 544–46, 548
business, 534, 541–47, 548
classification of, 534, 548
clouds, 27, 532
components for, 526–29
composition (construction) of, 541–47
coordination, 534, 548
defined, 27, 521
http and https protocols, 530–31
interactive transaction-based applications, 25

	 Subject Index    801

interfaces, 28, 528
resource operations, 530
RESTful approach and, 529–33, 544
reusable components as, 52, 526–29, 542
service-oriented architecture (SOA) and, 524–29
SOA approach, 524
software development and, 541–47, 548
standards, 525–26
testing, 543, 546–47
utility, 534, 548
WSDL interface, 528

‘wicked’ problems, 130–31, 286, 301
wilderness weather stations, 36–38

architectural design of, 201–02
availability and reliability of, 289
‘collect weather data’ sequence chart for, 241
context model for, 199
data collection (sequence diagram) in, 206
data collection system architecture in, 202
data management and archiving system, 36
environment of, 36–37
high-level architecture of, 201
interface specification, 208–09
object class identification, 202–04
object interface of, 233
objects, 203–04
sequence diagram for, 241
sociotechnical system of, 291–92

state diagram, 207–08
station maintenance system, 37
system testing, 240–41
use case model for, 200–01

work environments, 663
work flow representation (UML), 143–44
workflow, 83, 452, 542, 543, 544–46, 548
wrapping, legacy system, 278, 442, 540
WS-BPEL, 525, 526, 544, 546
WSDL (Web Service Definition Language), 526,

527–29, 537, 540, 544
message exchange, 527–29, 537
model elements, 527–28
service deployment and, 540
web service interface, 528

X

XML, 470, 525, 527–529
language processing, 186, 189, 191, 470, 544
namespaces, 528–29
service descriptions, 528–29
web services and, 525
WS-BPEL workflow models, 544, 546
WSDL message exchange, 527–29

XML-based protocols, 521

A

Abbott, R., 202, 224
Abdelshafi, I., 87, 100
Abrial, J. R., 49, 71, 300, 304, 357, 370
Abts, C., 459, 460, 462, 594, 608, 684, 688, 691,

694, 699
Addy, E., 476, 489
Aiello, B., 731, 754, 755
Alexander, C., 209, 224
Alford, M., 552, 579
Ali Babar, M., 169, 194
Allen, R., 459, 460, 463
Ambler, S. W., 89, 95, 98, 99, 140, 162, 165
Ambrosio, A. M., 341, 372
Amelot, A., 300, 304
Anderson, E. A., 300, 305
Anderson, R. J., 495
Anderson, R., 376, 402, 405, 406
Andrea, J., 244, 254
Andres, C., 98, 680, 699
Appleton, B., 175, 194, 754
Arbon, J., 252
Arisholm, E., 84, 99
Armour, P., 696
Arnold, S., 552, 579
Ash, D., 275, 282
Atlee, J. M., 135
Avizienis, A. A., 286, 303, 304,

323, 338

B

Badeau, F., 300, 304
Balcer, M. J., 162, 165
Ball, T., 300, 305, 358, 361, 370
Bamford, R., 709, 729, 734, 755
Banker, R. D., 275, 282
Basili, V. R., 73, 100
Bass, B. M., 655, 666
Bass, L., 169, 170, 175, 192, 194
Baumer, D., 446, 462
Baxter, G., 559, 579
Bayersdorfer, M., 221, 224
Beck, K., 71, 77, 80, 98, 99, 100, 203, 224, 242,

254, 279, 282, 680, 699
Beedle, M., 71, 85, 100
Behm, P., 356, 371
Belady, L., 271
Bell, R., 347
Bellouiti, S., 87, 100
Bennett, K. H., 257, 282
Benoit, P., 356, 371
Bentley, R., 125, 137
Berczuk, S. P., 175, 194, 754
Bernstein, A. J., 186, 195
Bernstein, P. A., 498, 519
Berry, G., 612, 637
Bezier, B., 235, 254
Bicarregui, J., 300, 302, 303, 305
Bird, J., 280

Author Index

804    Author Index

Clark, B. K., 683, 684, 688, 691, 694, 699
Cleaveland, R., 371
Clements, P., 169, 170, 175, 192, 194
Cliff, D., 583, 592, 609
Cloutier, R., 563, 579
Cohn, M., 680, 697, 699
Coleman, D., 275, 282
Collins-Sussman, B., 216, 225, 735, 755
Connaughton, C., 727
Conradi, R., 69
Cook, B., 300, 305
Cooling, J., 627, 637
Coplien, J. O., 175, 194
Coulouris, G., 491, 517, 519
Councill, W. T., 467, 489
Crabtree, A., 117, 137
Cranor, L., 398, 406
Crnkovic, I., 487, 488
Cunningham, W., 84, 100, 203, 224
Curbera, F., 544, 550
Cusamano, M., 231, 254

D

Daigneau, R., 548
Dang, Y., 719, 726, 729
Datar, S. M., 275, 282
Davidsen, M. G., 272, 282
Davis, A. M., 102, 137
Deemer, P., 88, 100
Dehbonei, B., 356, 371
Deibler, W. J., 709, 729, 734, 755
Delmas, D., 356, 372
Delseny, H., 356, 357, 372
DeMarco, T., 665
den Haan, J., 159, 165
Devnani-Chulani, S., 688, 691, 694, 699
Dijkstra, E. W., 227, 254
Dipti, 282
Dollimore, J., 491, 517, 519
Douglass, B. P., 299, 305, 617, 620, 637
Duftler, M., 544, 550
Dunteman, G., 655, 666
Duquenoy, P., 31, 42
Dybä, T., 69, 84, 99

Bird, J., 90, 100
Bishop, P., 361, 371
Bjorke, P., 563, 579
Blair, G., 491, 517, 519
Bloomfield, R. E., 361, 371
Bochot, T., 300, 305, 358, 371
Boehm, B. W., 40, 45, 48, 71, 98, 227–28, 254, 459,

460, 462, 594, 608, 649, 666, 683, 684, 687,
688, 691, 694, 695, 697, 699

Bollella, G., 619, 637
Booch, G., 140, 165, 166, 170, 193, 194
Bosch, J., 169, 173, 180, 194
Bott, F., 31, 42
Bounimova, E., 300, 305
Brambilla, M., 139, 159, 163, 165
Brant, J., 80, 100, 279, 282
Brazendale, J., 347
Brereton, P., 517
Brilliant, S. S., 324, 338
Brook, P., 552, 579
Brooks, E. P., 665
Brown, A. W., 98, 684, 688, 699
Brown, L., 376, 405, 407
Bruno, E. J., 619, 637
Budgen, D., 517
Burns, A., 619, 631, 634, 635, 637
Buschmann, F., 175, 194, 195, 209, 224, 225
Buse, R. P. L., 726, 729

C

Cabot, J., 139, 159, 163, 165, 488
Calinescu, R. C., 300, 305, 583, 592, 609
Carollo, J., 252
Cha, S. S., 349, 371
Chapman, C., 220, 225
Chapman, R., 300, 305, 404, 406
Chaudron, M. R. V., 175, 195
Checkland, P., 559, 579
Chen, L., 169, 194
Cheng, B. H. C., 135
Chidamber, S., 721, 729
Chrissis, M. B., 67, 71, 734, 755
Christerson, M., 125, 137, 144, 165
Chulani, S., 684, 688, 699

	 Author Index    805

Graydon, P. J., 362, 371
Gregory, G., 82, 100, 233, 243, 254
Griss, M., 443, 463, 478, 489
Gryczan, G., 446, 462

H

Hall, A., 300, 305, 404, 406
Hall, E., 644, 666
Hall, M. A., 726, 729
Hamilton, S., 358, 371
Han, S., 719, 726, 729
Harel, D., 156, 165, 617, 637
Harford, T., 726, 729
Harkey, D., 507, 519
Harrison, N. B., 175, 194
Hatton, L., 325, 338
Heimdahl, M. P. E., 300, 305
Heineman, G. T., 467, 489
Helm, R., 175, 194, 209, 210, 222, 225,

444, 463
Henney, K., 175, 194, 209, 224
Heslin, R., 663, 666
Hitchins, D., 581, 608
Hnich, B., 487
Hofmeister, C., 174, 195
Holdener, A. T., 28, 42, 445, 463, 512, 519
Hollnagel, E., 409, 417–18, 434
Holtzman, J., 552, 579
Holzmann, G. J., 336, 358, 371
Hopkins, R., 94, 100, 256, 282
Horowitz, E., 683, 684, 688, 699
Howard, M., 405
Hudepohl, J. P., 360, 372
Hull, R., 151, 165
Humphrey, 67
Humphrey, W., 702, 713, 729
Hutchinson, J., 162, 165

I

Ince, D., 709, 729

E

Ebert, C., 611, 635, 637
Edwards, J., 507, 519
El-Amam, K., 721, 729
Ellison, R. J., 425, 432, 434
Erickson, J., 140, 165
Erl, T., 526, 534, 548, 550
Erlikh, L., 256, 282

F

Fagan, M. E., 230, 254, 713, 729
Fairley, R. E., 563, 579
Faivre, A., 356, 371
Fayad, M. E., 446, 462
Fayoumi, A., 602, 609
Feathers, M., 280
Fielding, R., 530, 550
Firesmith, D. G., 383, 406
Fitzgerald, J., 300, 302, 303, 305, 735, 755
Fitzpatrick, B., 216, 225
Fogel, K., 222
Fowler, M., 80, 100, 279, 282
Fox, A., 517
Frank, E., 726, 729
Freeman, A., 28, 42

G

Gabriel, R. P., 581, 583, 607, 609
Gagne, G., 616, 637
Galin, D., 727
Gallis, H., 84, 99
Galvin, P. B., 616, 637
Gamma, E., 175, 194, 209, 210, 222, 225, 444, 463
Garfinkel, S., 398, 406
Garlan, D., 172, 175, 191, 192, 195, 459,

460, 461, 463
Gokhale, A., 443, 445, 463
Gotterbarn, D., 29, 40, 42

806    Author Index

J

Jackson, K., 552, 579
Jacobson, I., 24, 41, 42, 125, 137, 140, 144, 165,

166, 443, 463, 478, 489
Jain, P., 175, 195, 209, 225
Jeffrey, R., 727
Jeffries, R., 81, 84, 100, 140, 165, 242, 254
Jenkins, K., 94, 100, 256, 282
Jenney, P., 404, 407
Jhala, R., 300, 305, 358, 371
Joannou, D., 602, 609
Johnson, D. G., 31, 42
Johnson, R., 175, 194, 209, 210, 222, 225, 444, 463
Jones, C., 280, 611, 635, 637
Jones, T. C., 256, 282
Jonsson, P., 125, 137, 144, 165, 443, 463,

478, 489
Jonsson, T., 487

K

Kaner, C., 246, 254
Kawalsky, R., 602, 609
Kazman, R., 169, 170, 175, 192, 194
Keen, J., 583, 592, 609
Kelly, T., 583, 592, 609
Kemerer, C. F., 275, 282, 721, 729
Kennedy, D. M., 563, 579
Kerievsky, J., 279, 282
Kessler, R. R., 84, 100
Khalaf, R., 544, 550
Kifer, M., 186, 195
Kilner, S., 90, 100
Kindberg, T., 491, 517, 519
King, R., 151, 165
Kircher, M., 175, 195, 209, 225
Kitchenham, B., 718, 727, 729
Kiziltan, Z., 487
Klein, M., 581, 583, 607, 609
Kleppe, A., 485, 489
Knight, J. C., 324, 338, 362, 371
Knoll, R., 446, 462
Koegel, M., 161, 165

Konrad, M., 67, 71, 734, 755
Kopetz, H., 635
Korfiatis, P., 563, 579
Koskela, L., 59, 71
Koskinen, J., 275, 282
Kotonya, G., 473, 489
Kozlov, D., 275, 282
Krogstie, J., 272, 282
Krutchen, P., 46, 71, 173, 175, 195
Kuehl, S., 552, 579
Kumar, Y., 280
Kwiatkowska, M. Z., 300, 305, 358, 371, 583,

592, 609

L

Lamport, L., 495
Landwehr, C., 286, 303, 304
Lane, A., 392, 407
Lange, C. F. J., 175, 195
Laprie, J. C., 286, 303, 304, 409, 434
Larman, C., 73, 100, 222
Larsen, P.G., 300, 302, 303, 305
Lau, K-K., 466, 470, 487, 489
Laudon, K., 31, 42
LeBlanc, D., 405
Ledinot, E., 357, 371
Lee, E. A., 612, 637
Leffingwell, D., 95, 100
Lehman, M., 271
Leme, F., 82, 100, 233, 243, 254
Leveson, N. G., 324, 338, 368
Leveson, N. G., 349, 371
Levin, V., 300, 305, 358, 361, 370
Lewis, B., 521, 550
Lewis, P. M., 186, 195
Leymann, F., 532, 550
Lichtenberg, J., 300, 305
Lidman, S., 41, 42
Lientz, B. P., 256, 282
Lilienthal, C., 446, 462
Linger, R. C., 230, 254, 332, 338, 425,

432, 434
Lipson, H., 425, 434
Lister, T., 665

	 Author Index    807

Loeliger, J., 216, 225, 735, 755
Lomow, G., 524, 550
Longstaff, T., 425, 432, 434
Loope, J., 753, 755
Lopes, R., 359, 371
Lou, J-G., 719, 726, 729
Lovelock, C., 521, 550
Lowther, B., 275, 282
Lutz, R. R., 238, 254, 371
Lutz, R. R., 340, 371
Lyu, M. R., 336, 338

M

Madachy, R., 683, 684, 688, 699
Madeira, H., 341, 372
Maier, M. W., 582, 583, 588, 589, 599–600,

607, 609
Majumdar, R., 300, 305, 358, 371
Marciniak, J. J., 69
Markkula, J., 275, 282
Marshall, J. E., 663, 666
Martin, D., 117, 137, 175, 195
Martin, R. C., 244, 254
Maslow, A. A., 383, 666
Massol, V., 82, 100, 233, 243, 254
McCay, B., 552, 579
McComb, S. A., 563, 579
McConnell, S., 713, 729
McCullough, M., 216, 225, 735, 755
McDermid, J., 583, 592, 609
McDougall, P., 510, 519
McGarvey, C., 300, 305
McGraw, G., 333, 338, 396, 407
McMahon, P. E., 41, 22
Mead, N. R., 425, 434
Mejia, F., 356, 371
Mellor, S. J., 159, 162, 165
Melnik, G., 81, 100, 242, 254
Menzies, T., 719, 725, 726, 727, 729
Meunier, R., 175, 194, 209, 225
Meyer, B., 485, 489
Meynadier, J-M., 356, 371
Miers, D., 544, 550
Mili, A., 476, 489

Mili, H., 476, 489
Miller, K., 29, 40, 42
Miller, S. P., 300, 305
Mitchell, R. M., 263, 282
Monate, B., 357, 371
Monk, E., 455, 463
Moore, A., 425, 432, 434
Morisio, M., 453, 460, 461, 463
Mostashari, A., 563, 579
Moy, Y., 357, 371
Mulder, M., 87, 100
Musa, J. D., 334, 338
Muskens, J., 175, 195

N

Nagappan, N., 360, 372
Nascimento, L., 461
Natarajan, B., 443, 445, 463
Naur, P., 19, 42
Newcomer, E., 524, 550
Ng, P-W., 41, 42
Nii, H. P., 180, 195
Nord, R., 174, 195
Norman, G., 358, 371
Northrop, L., 581, 583, 607, 609
Nuseibeh, B., 169, 194

O

O’Hanlon, C., 274, 282
Ockerbloom, J., 459, 460, 463
Oliver, D., 552, 579
Oman, P., 275, 282
Ondrusek, B., 300, 305
Opdahl, A. L., 386, 407
Opdyke, W., 80, 100, 279, 282
Oram, A., 510, 517, 519
Orfali, R., 507, 519
Ould, M., 644, 666
Overgaard, G., 125, 137, 144, 165
Owens, D., 552, 579

808    Author Index

P

Paige, R., 583, 592, 609
Paries, J., 432, 434
Parker, D., 358, 371
Parnas, D., 296, 302, 305
Patel, S., 162, 166
Patterson, D., 517
Pautasso, C., 532, 550
Perrow, C., 342, 343, 371
Pfleeger, C. P., 376, 377, 407
Pfleeger, S. L., 376, 377, 407
Pilato, C., 216, 225, 735, 755
Pooley, R., 126, 137, 163
Poore, J. H., 230, 254, 332, 338
Pope, A., 466, 489, 493, 519
Prowell, S. J., 230, 254, 332, 338
Pullum, L., 318, 336, 338

Q

Quinn, M. J., 40

R

Rajamani, S. K., 300, 305, 358, 361, 370
Rajlich, V. T., 257, 282
Randell, B., 19, 42, 286, 303, 304,

307, 338
Ray, A., 368
Rayhan, S., 727
Raymond, E. S., 219, 225
Reason, J., 418, 420–21, 434
Regan, P., 358, 371
Reifer, D., 684, 688, 699
Richardson, L., 531, 550
Riehle, D., 446, 462
Rittel, H., 130, 137, 562, 579, 592, 609
Ritter, G., 637
Roberts, D., 80, 100, 279, 282
Robertson, J., 123, 135, 137
Robertson, S., 123, 135, 137
Rodden, T., 125, 137
Rodriguez, A., 548

Rogerson, S., 29, 40, 42
Rohnert, H., 175, 194, 195, 209, 225
Rosenberg, F., 544, 550
Rouncefield, M., 162, 165
Royce, W. W., 47, 71, 98, 687, 699
Rubin, K. S., 78, 85, 98, 100, 680, 699
Ruby, S., 531, 550
Rumbaugh, J., 140, 165, 166
Ryan, P., 754

S

Sachs, S., 731, 754, 755
Sakkinen, M., 275, 282
Sametinger, J., 470, 472, 489
Sami, M., 69
Sanderson, D., 516, 519
Sarris, S., 445, 463, 512, 519
Sawyer, P., 125, 137
Scacchi, W., 69
Schatz, B., 87, 100
Schmidt, D. C., 175, 194, 195, 209, 224, 225, 443,

445, 446, 462, 463, 581, 583, 607, 609
Schneider, S., 357, 371
Schneier, B., 384, 396, 407
Schoenfield, B., 392, 407
Schuh, P., 754
Schwaber, K., 71, 85, 100
Scott, J. E., 456, 463
Scott, K., 159, 165
Selby, R. W., 231, 254, 683, 699
Shaw, M., 172, 175, 191, 192, 195
Shimeall, T. J., 349, 371
Shou, P. K., 296, 305
Shrum, S., 67, 71, 734, 755
Siau, K., 140, 165
Silberschaltz, A., 616, 637
Sillitto, H., 578, 596, 600, 609
Silva, N., 341, 359, 371, 372
Sindre, G., 386, 407
Sjøberg, D. I. K., 69, 84, 99
Smart, J. F., 743, 755
Snipes, W., 360, 372
Sommerlad, P., 175, 194, 209, 225
Sommerville, I., 117, 135, 137, 175, 195, 461, 559,

579, 583, 592, 607, 609
Soni, D., 174, 195

	 Author Index    809

Souyris, J., 356, 372
Spafford, E., 399, 401, 407
Spence, I., 41, 42
St. Laurent, A., 220, 225
Stafford, J., 488
Stahl, T., 159, 166
Stal, M., 205, 209, 225
Stallings, W., 376, 405, 407,

616, 637
Stapleton, J., 71, 100
Steece, B., 684, 688, 699
Stevens, P., 126, 137, 163
Stevens, R., 552, 579, 583, 609
Stewart, J., 574, 579
Stoemmer, P., 697
Storey, N., 349, 372
Strunk, E. A., 362, 371
Suchman, L., 117, 137
Swanson, E. B., 256, 282
Swartz, A. J., 294, 305
Szyperski, C., 467, 474, 487,

488, 489

T

Tahchiev, P., 82, 100, 233, 243, 254
Tanenbaum, A. S., 491, 519
Tavani, H. T., 31, 42
Thayer, R. H., 552, 579
Thayer, R. H., 563, 579
Tian, Y., 602, 609
Torchiano, M., 453, 460, 461, 463
Torres-Pomales, W., 318, 338
Trammell, C. J., 230, 254, 332, 338
Trimble, J., 299, 305
Tully, C., 552, 579
Turner, M., 517
Turner, R., 45, 71
Twidale, M., 125, 137

U

Ulrich, W. M., 276, 282
Ulsund, T., 69
Ustuner, A., 300, 305

V

Valeridi, R., 697
van Schouwen, J., 296, 305
Van Steen, M., 491, 519
van Vliet, M., 87, 100
Vandermerwe, S., 521, 550
Veras, P. C., 341, 372
Vicente, D., 359, 371
Viega, J., 396, 405, 407
Vieira, M., 341, 372
Villani, E., 341, 372
Viller, S., 117, 137
Virelizier, P., 300, 305, 358, 371
Vlissides, J., 175, 194, 209, 210, 222, 225,

444, 463
Voas, J., 333, 338
Voelter, M., 159, 166
Vogel, L., 32, 42, 218, 225
Vouk, M. A., 360, 372

W

Waeselynck, H., 300, 305, 358, 371
Wagner, B., 455, 463
Wagner, L. G., 300, 305
Wallach, D. S., 512, 519
Wang, Z., 466, 470, 487, 489
Warmer, J., 485, 489
Warren, I., 266, 282
Webber, M., 130, 137, 562, 579,

592, 609
Weils, V., 356, 357, 358, 372
Weinberg, G., 83, 100
Weiner, L., 203, 225
Weinreich, R., 470, 472, 489
Weise, D., 159, 165
Wellings, A., 619, 631, 634, 635, 637
Westland, C., 683, 699
Whalen, M. W., 300, 305
Wheeler, D. A., 396, 407
Wheeler, W., 52, 71, 473, 489
White, J., 52, 71, 473, 489
White, S. A., 544, 550
White, S., 552, 579
Whittaker, J. A., 237, 242, 252, 254

810    Author Index

Whittle, J., 162, 165
Wiels, V., 300, 305, 371
Wilkerson, B., 203, 225
Willey, A., 552, 579
Williams, L., 84, 100, 360, 372
Williams, R., 574, 579
Wimmer, M., 139, 159, 163, 165
Wirfs-Brock, R., 203, 225
Witten, I. H., 726, 729
Woodcock, J., 300, 302, 303, 305
Woods, D., 432, 434
Wreathall, J., 432, 434
Wysocki, R. K., 665

X

Xie, T., 719, 726, 729

Y

Yacoub, S., 476, 489
Yamaura, T., 252

Z

Zelkowitz, M., 637
Zhang, D., 719, 726, 729
Zhang, H., 719, 726, 729
Zhang, Y., 162, 166
Zheng, J., 360, 372
Zimmermann, O., 532, 550
Zimmermann, T., 719, 725, 726, 727, 729
Zullighoven, H., 446, 462
Zweig, D., 275, 282

	Cover
	Title Page
	Copyright Page
	Preface
	Acknowledgements
	Contents at a glance
	Dedication
	Contents
	Part 1 Introduction to Software Engineering��
	Chapter 1 Introduction�����������������������������
	1.1 Professional software development��
	1.2 Software engineering ethics��������������������������������������
	1.3 Case studies�����������������������

	Chapter 2 Software processes�����������������������������������
	2.1 Software process models����������������������������������
	2.2 Process activities�����������������������������
	2.3 Coping with change�����������������������������
	2.4 Process improvement������������������������������

	Chapter 3 Agile software development���
	3.1 Agile methods������������������������
	3.2 Agile development techniques���������������������������������������
	3.3 Agile project management�����������������������������������
	3.4 Scaling agile methods��������������������������������

	Chapter 4 Requirements engineering���
	4.1 Functional and non-functional requirements���
	4.2 Requirements engineering processes���
	4.3 Requirements elicitation�����������������������������������
	4.4 Requirements specification�������������������������������������
	4.5 Requirements validation����������������������������������
	4.6 Requirements change������������������������������

	Chapter 5 System modeling��������������������������������
	5.1 Context models�������������������������
	5.2 Interaction models�����������������������������
	5.3 Structural models����������������������������
	5.4 Behavioral models����������������������������
	5.5 Model-driven architecture������������������������������������

	Chapter 6 Architectural design�������������������������������������
	6.1 Architectural design decisions���
	6.2 Architectural views������������������������������
	6.3 Architectural patterns���������������������������������
	6.4 Application architectures������������������������������������

	Chapter 7 Design and implementation��
	7.1 Object-oriented design using the UML���
	7.2 Design patterns��������������������������
	7.3 Implementation issues��������������������������������
	7.4 Open-source development����������������������������������

	Chapter 8 Software testing���������������������������������
	8.1 Development testing������������������������������
	8.2 Test-driven development����������������������������������
	8.3 Release testing��������������������������
	8.4 User testing�����������������������

	Chapter 9 Software evolution�����������������������������������
	9.1 Evolution processes������������������������������
	9.2 Legacy systems�������������������������
	9.3 Software maintenance�������������������������������

	Part 2 System Dependability and Security���
	Chapter 10 Dependable systems������������������������������������
	10.1 Dependability properties������������������������������������
	10.2 Sociotechnical systems����������������������������������
	10.3 Redundancy and diversity������������������������������������
	10.4 Dependable processes��������������������������������
	10.5 Formal methods and dependability��

	Chapter 11 Reliability engineering���
	11.1 Availability and reliability��
	11.2 Reliability requirements������������������������������������
	11.3 Fault-tolerant architectures��
	11.4 Programming for reliability���������������������������������������
	11.5 Reliability measurement�����������������������������������

	Chapter 12 Safety engineering������������������������������������
	12.1 Safety-critical systems�����������������������������������
	12.2 Safety requirements�������������������������������
	12.3 Safety engineering processes��
	12.4 Safety cases������������������������

	Chapter 13 Security engineering��������������������������������������
	13.1 Security and dependability��������������������������������������
	13.2 Security and organizations��������������������������������������
	13.3 Security requirements���������������������������������
	13.4 Secure systems design���������������������������������
	13.5 Security testing and assurance��

	Chapter 14 Resilience engineering��
	14.1 Cybersecurity�������������������������
	14.2 Sociotechnical resilience�������������������������������������
	14.3 Resilient systems design������������������������������������

	Part 3 Advanced Software Engineering���
	Chapter 15 Software reuse��������������������������������
	15.1 The reuse landscape�������������������������������
	15.2 Application frameworks����������������������������������
	15.3 Software product lines����������������������������������
	15.4 Application system reuse������������������������������������

	Chapter 16 Component-based software engineering��
	16.1 Components and component models���
	16.2 CBSE processes��������������������������
	16.3 Component composition���������������������������������

	Chapter 17 Distributed software engineering��
	17.1 Distributed systems�������������������������������
	17.2 Client–server computing�����������������������������������
	17.3 Architectural patterns for distributed systems��
	17.4 Software as a service���������������������������������

	Chapter 18 Service-oriented software engineering���
	18.1 Service-oriented architecture���
	18.2 RESTful services����������������������������
	18.3 Service engineering�������������������������������
	18.4 Service composition�������������������������������

	Chapter 19 Systems engineering�������������������������������������
	19.1 Sociotechnical systems����������������������������������
	19.2 Conceptual design�����������������������������
	19.3 System procurement������������������������������
	19.4 System development������������������������������
	19.5 System operation and evolution��

	Chapter 20 Systems of systems������������������������������������
	20.1 System complexity�����������������������������
	20.2 Systems of systems classification���
	20.3 Reductionism and complex systems��
	20.4 Systems of systems engineering��
	20.5 Systems of systems architecture���

	Chapter 21 Real-time software engineering��
	21.1 Embedded system design����������������������������������
	21.2 Architectural patterns for real-time software���
	21.3 Timing analysis���������������������������
	21.4 Real-time operating systems���������������������������������������

	Part 4 Software Management���������������������������������
	Chapter 22 Project management������������������������������������
	22.1 Risk management���������������������������
	22.2 Managing people
	22.3 Teamwork��������������������

	Chapter 23 Project planning����������������������������������
	23.1 Software pricing����������������������������
	23.2 Plan-driven development�����������������������������������
	23.3 Project scheduling������������������������������
	23.4 Agile planning��������������������������
	23.5 Estimation techniques���������������������������������
	23.6 COCOMO cost modeling��������������������������������

	Chapter 24 Quality management������������������������������������
	24.1 Software quality����������������������������
	24.2 Software standards������������������������������
	24.3 Reviews and inspections�����������������������������������
	24.4 Quality management and agile development��
	24.5 Software measurement��������������������������������

	Chapter 25 Configuration management��
	25.1 Version management������������������������������
	25.2 System building���������������������������
	25.3 Change management�����������������������������
	25.4 Release management������������������������������

	Glossary���������������
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Subject index��������������������
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Author index�������������������
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

