
20C h a p t e r

W861

20
Multithreading

To understand how multiple threads can
execute in parallel

To learn to implement threads

To understand race conditions and deadlocks

To avoid corruption of shared objects by using
locks and conditions

To use threads for programming animations

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

20.1  Running Threads  W862

Programming Tip 20.1: Use the Runnable
Interface  W866

Special Topic 20.1: Thread Pools  W866

20.2  Terminating Threads  W867

Programming Tip 20.2: Check for Thread
Interruptions in the run Method of
a Thread  W869

20.3  Race Conditions  W869

20.4  Synchronizing Object
Access  W875

20.5  Avoiding Deadlocks  W877

Common Error 20.1: Calling await Without
Calling signalAll  W882

Common Error 20.2: Calling signalAll Without
Locking the Object  W883

Special Topic 20.2: Object Locks and
Synchronized Methods  W883

Special Topic 20.3: The Java Memory Model  W884

20.6  Application: Algorithm
Animation  W884

Random Fact 20.1: Embedded Systems  W893

Big Java, Late Objects, Cay Horstmann, Copyright © 2013 John Wiley and Sons, Inc. All rights reserved.

W862

It is often useful for a program to carry out two or more
tasks at the same time. For example, a web browser can
load multiple images on a web page at the same time. Or an
animation program can show moving figures, with separate
tasks computing the positions of each separate figure. In
this chapter, you will see how to implement this behavior by
running tasks in multiple threads, and how you can ensure
that the tasks access shared data in a controlled fashion.

20.1  Running Threads
A thread is a program unit that is executed independently of other parts of the pro-
gram. The Java virtual machine executes each thread for a short amount of time and
then switches to another thread. This gives the illusion of executing the threads in
parallel to each other. Actually, if a computer has multiple central processing units
(CPUs), then some of the threads can run in parallel, one on each processor.

Running a thread is simple in Java—follow these steps:

1.	Write a class that implements the Runnable interface. That interface has a single
method called run:

public interface Runnable
{
 void run();
}

2.	Place the code for your task into the run method of your class:
public class MyRunnable implements Runnable
{
 public void run()
 {
 Task statements
 . . .
 }
}

3.	Create an object of your subclass:
Runnable r = new MyRunnable();

4.	Construct a Thread object from the runnable object:
Thread t = new Thread(r);

5.	Call the start method to start the thread:
t.start();

Let’s look at a concrete example. We want to print ten greetings of “Hello, World!”, one
greeting every second. We add a time stamp to each greeting to see when it is printed.

Fri Dec 28 23:12:03 PST 2012 Hello, World!
Fri Dec 28 23:12:04 PST 2012 Hello, World!
Fri Dec 28 23:12:05 PST 2012 Hello, World!
Fri Dec 28 23:12:06 PST 2012 Hello, World!
Fri Dec 28 23:12:07 PST 2012 Hello, World!
Fri Dec 28 23:12:08 PST 2012 Hello, World!

A thread is a program
unit that is executed
concurrently with
other parts of
the program.

The start method
of the Thread class
starts a new thread
that executes the
run method of the
associated
Runnable object.

20.1 R unning Threads   W863

Fri Dec 28 23:12:09 PST 2012 Hello, World!
Fri Dec 28 23:12:10 PST 2012 Hello, World!
Fri Dec 28 23:12:11 PST 2012 Hello, World!
Fri Dec 28 23:12:12 PST 2012 Hello, World!

Using the instructions for creating a thread, define a class that implements the Runnable
interface:

public class GreetingRunnable implements Runnable
{
 private String greeting;

 public GreetingRunnable(String aGreeting)
 {
 greeting = aGreeting;
 }

 public void run()
 {
 Task statements
 . . .
 }
}

The run method should loop ten times through the following task actions:

•	 Print a time stamp.
•	 Print the greeting.
•	 Wait a second.

Get the time stamp by constructing an object of the java.util.Date class. The Date con-
structor without arguments produces a date that is set to the current date and time.

Date now = new Date();
System.out.println(now + " " + greeting);

To wait a second, we use the static sleep method of the Thread class. The call
Thread.sleep(milliseconds)

puts the current thread to sleep for a given number of milliseconds. In our case, it
should sleep for 1,000 milliseconds, or one second.

There is, however, one technical problem. Putting a thread to sleep is potentially
risky—a thread might sleep for so long that it is no longer useful and should be termi-
nated. As you will see in Section 20.2, to terminate a thread, you interrupt it. When a
sleeping thread is interrupted, an InterruptedException is generated. You need to catch
that exception in your run method and terminate the thread.

The simplest way to handle thread interruptions is to give your run method the fol-
lowing form:

public void run()
{
 try
 {
 Task statements
 }
 catch (InterruptedException exception)
 {
 }
 Clean up, if necessary.
}

The sleep method
puts the current
thread to sleep for
a given number
of milliseconds.

When a thread is
interrupted, the most
common response is
to terminate the
run method.

W864  Chapter 20  Multithreading

We follow that structure in our example. Here is the complete code for our runnable
class:

section_1/GreetingRunnable.java

1 import java.util.Date;
2
3 /**
4 A runnable that repeatedly prints a greeting.
5 */
6 public class GreetingRunnable implements Runnable
7 {
8 private static final int REPETITIONS = 10;
9 private static final int DELAY = 1000;

10
11 private String greeting;
12
13 /**
14 Constructs the runnable object.
15 @param aGreeting the greeting to display
16 */
17 public GreetingRunnable(String aGreeting)
18 {
19 greeting = aGreeting;
20 }
21
22 public void run()
23 {
24 try
25 {
26 for (int i = 1; i <= REPETITIONS; i++)
27 {
28 Date now = new Date();
29 System.out.println(now + " " + greeting);
30 Thread.sleep(DELAY);
31 }
32 }
33 catch (InterruptedException exception)
34 {
35 }
36 }
37 }

To start a thread, first construct an object of the runnable class.
Runnable r = new GreetingRunnable("Hello, World!");

Then construct a thread and call the start method.
Thread t = new Thread(r);
t.start();

Now a new thread is started, executing the code in the run method of your runnable
class in parallel with any other threads in your program.

In the GreetingThreadRunner program, we start two threads: one that prints “Hello”
and one that prints “Goodbye”.

20.1 R unning Threads   W865

section_1/GreetingThreadRunner.java

1 /**
2 This program runs two greeting threads in parallel.
3 */
4 public class GreetingThreadRunner
5 {
6 public static void main(String[] args)
7 {
8 GreetingRunnable r1 = new GreetingRunnable("Hello");
9 GreetingRunnable r2 = new GreetingRunnable("Goodbye");

10 Thread t1 = new Thread(r1);
11 Thread t2 = new Thread(r2);
12 t1.start();
13 t2.start();
14 }
15 }

Program Run

Fri Dec 28 12:04:46 PST 2012 Hello
Fri Dec 28 12:04:46 PST 2012 Goodbye
Fri Dec 28 12:04:47 PST 2012 Hello
Fri Dec 28 12:04:47 PST 2012 Goodbye
Fri Dec 28 12:04:48 PST 2012 Hello
Fri Dec 28 12:04:48 PST 2012 Goodbye
Fri Dec 28 12:04:49 PST 2012 Hello
Fri Dec 28 12:04:49 PST 2012 Goodbye
Fri Dec 28 12:04:50 PST 2012 Hello
Fri Dec 28 12:04:50 PST 2012 Goodbye
Fri Dec 28 12:04:51 PST 2012 Hello
Fri Dec 28 12:04:51 PST 2012 Goodbye
Fri Dec 28 12:04:52 PST 2012 Goodbye
Fri Dec 28 12:04:52 PST 2012 Hello
Fri Dec 28 12:04:53 PST 2012 Hello
Fri Dec 28 12:04:53 PST 2012 Goodbye
Fri Dec 28 12:04:54 PST 2012 Hello
Fri Dec 28 12:04:54 PST 2012 Goodbye
Fri Dec 28 12:04:55 PST 2012 Goodbye
Fri Dec 28 12:04:55 PST 2012 Hello

Because both threads are running in parallel, the two message sets are interleaved.
However, if you look closely, you will find that the two threads aren’t exactly inter-
leaved. Sometimes, the second thread seems to jump ahead of the first thread. This
shows an important characteristic of threads. The thread scheduler gives no guarantee
about the order in which threads are executed. Each thread runs for a short amount of
time, called a time slice. Then the scheduler activates another thread. However, there
will always be slight variations in running times, especially when calling operating
system services (such as input and output). Thus, you should expect that the order in
which each thread gains control is somewhat random.

The thread scheduler
runs each thread for
a short amount
of time, called a
time slice.

W866  Chapter 20  Multithreading

1.	 What happens if you change the call to the sleep method in the run method to
Thread.sleep(1)?

2.	 What would be the result of the program if the main method called
r1.run();
r2.run();

instead of starting threads?

Practice It	 Now you can try these exercises at the end of the chapter: R20.2, R20.3, P20.7.

Use the Runnable Interface

In Java, you can define the task statements of a thread in two ways. As you have seen already,
you can place the statements into the run method of a class that implements the Runnable inter-
face. Then you use an object of that class to construct a Thread object. You can also form a
subclass of the Thread class, and place the task statements into the run method of your subclass:

public class MyThread extends Thread
{
 public void run()
 {
 Task statements
 . . .
 }
}

Then you construct an object of the subclass and call the start method:

Thread t = new MyThread();
t.start();

This approach is marginally easier than using a Runnable, and it also seems quite intuitive.
However, if a program needs a large number of threads, or if a program executes in a resource-
constrained device, such as a cell phone, it can be quite expensive to construct a separate thread
for each task. Special Topic 20.1 shows how to use a thread pool to overcome this problem. A
thread pool uses a small number of threads to execute a larger number of runnables.

The Runnable interface is designed to encapsulate the concept of a sequence of statements
that can run in parallel with other tasks, without equating it with the concept of a thread, a
potentially expensive resource that is managed by the operating system.

Thread Pools

A program that creates a huge number of short-lived threads can be inefficient. Threads are
managed by the operating system, and there is a cost for creating threads. Each thread requires
memory, and thread creation takes time. This cost can be reduced by using a thread pool. A
thread pool creates a number of threads and keeps them alive. When you add a Runnable object
to the thread pool, the next idle thread executes its run method.

For example, the following statements submit two runnables to a thread pool:

Runnable r1 = new GreetingRunnable("Hello");
Runnable r2 = new GreetingRunnable("Goodbye");
ExecutorService pool = Executors.newFixedThreadPool(MAX_THREADS);
pool.execute(r1);
pool.execute(r2);

S e l f C h e c k

Programming Tip 20.1

Special Topic 20.1

20.2 T erminating Threads   W867

If many runnables are submitted for execution, then the pool may not have enough threads
available. In that case, some runnables are placed in a queue until a thread is idle. As a result,
the cost of creating threads is minimized. However, the runnables that are run by a particular
thread are executed sequentially, not in parallel.

Thread pools are particularly important for server programs, such as database and web
servers, that repeatedly execute requests from multiple clients. Rather than spawning a new
thread for each request, the requests are implemented as runnable objects and submitted to a
thread pool.

20.2  Terminating Threads
When the run method of a thread has finished executing, the thread terminates. This is
the normal way of terminating a thread—implement the run method so that it returns
when it determines that no more work needs to be done.

However, sometimes you need to terminate a running thread. For example, you
may have several threads trying to find a solution to a problem. As soon as the first
one has succeeded, you may want to terminate the other ones. In the initial release
of the Java library, the Thread class had a stop method to terminate a thread. How-
ever, that method is now deprecated—computer scientists have found that stopping
a thread can lead to dangerous situations when multiple threads share objects. (We
will discuss access to shared objects in Section 20.3.) Instead of simply stopping a
thread, you should notify the thread that it should be terminated. The thread needs
to cooperate, by releasing any resources that it is currently using and doing any other
required cleanup. In other words, a thread should be in charge of terminating itself.

To notify a thread that it should clean up and terminate, you use the interrupt
method.

t.interrupt();

This method does not actually cause the thread to terminate—it merely sets a boolean
variable in the thread data structure.

The run method can check whether that flag has been set, by calling the static inter-
rupted method. In that case, it should do any necessary cleanup and exit. For example,
the run method of the GreetingRunnable could check for interruptions at the beginning
of each loop iteration:

public void run()
{
 for (int i = 1; i <= REPETITIONS && !Thread.interrupted(); i++)
 {
 Do work.
 }
 Clean up.
}

However, if a thread is sleeping, it can’t execute code that checks for interruptions.
Therefore, the sleep method is terminated with an InterruptedException whenever a
sleeping thread is interrupted. The sleep method also throws an InterruptedException
when it is called in a thread that is already interrupted. If your run method calls sleep
in each loop iteration, simply use the InterruptedException to find out whether the

A thread terminates
when its run method
terminates.

The run method can
check whether its
thread has been
interrupted by calling
the interrupted
method.

W868  Chapter 20  Multithreading

thread is terminated. The easiest way to do that is to surround the entire work por-
tion of the run method with a try block, like this:

public void run()
{
 try
 {
 for (int i = 1; i <= REPETITIONS; i++)
 {
 Do work.
 Sleep.
 }
 }
 catch (InterruptedException exception)
 {
 }
 Clean up.
}

Strictly speaking, there is nothing in the Java language specification that says that
a thread must terminate when it is interrupted. It is entirely up to the thread what
it does when it is interrupted. Interrupting is a general mechanism for getting the
thread’s attention, even when it is sleeping. However, in this chapter, we will always
terminate a thread that is being interrupted.

3.	 Suppose a web browser uses multiple threads to load the images on a web page.
Why should these threads be terminated when the user hits the “Back” button?

4.	 Consider the following runnable.
public class MyRunnable implements Runnable
{
 public void run()
 {
 try
 {
 System.out.println(1);
 Thread.sleep(1000);
 System.out.println(2);
 }
 catch (InterruptedException exception)
 {
 System.out.println(3);
 }
 System.out.println(4);
 }
}

Suppose a thread with this runnable is started and immediately interrupted:
Thread t = new Thread(new MyRunnable());
t.start();
t.interrupt();

What output is produced?

Practice It	 Now you can try these exercises at the end of the chapter: R20.4, R20.5, R20.6.

S e l f C h e c k

20.3 R ace Conditions   W869

Check for Thread Interruptions in the run Method of a Thread

By convention, a thread should terminate itself (or at least act in some other well-defined way)
when it is interrupted. You should implement your threads to follow this convention.

To do so, put the thread action inside a try block that catches the InterruptedException. That
exception occurs when your thread is interrupted while it is not running, for example inside a
call to sleep. When you catch the exception, do any required cleanup and exit the run method.

Some programmers don’t understand the purpose of the InterruptedException and muzzle it
by placing only the call to sleep inside a try block:

public void run()
{
 while (. . .)
 {
 . . .
 try
 {
 Thread.sleep(delay);
 }
 catch (InterruptedException exception) {} // DON’T
 . . .
 }
}

Don’t do that. If you do, users of your thread class can’t get your thread’s attention by inter-
rupting it. It is just as easy to place the entire thread action inside a single try block. Then
interrupting the thread terminates the thread action.

public void run()
{
 try
 {
 while (. . .)
 {
 . . .
 Thread.sleep(delay);
 . . .
 }
 }
 catch (InterruptedException exception) {} // OK
}

20.3  Race Conditions
When threads share access to a common object, they can conflict with each other.
To demonstrate the problems that can arise, we will investigate a sample program in
which multiple threads manipulate a bank account.

We construct a bank account that starts out with a zero balance. We create two sets
of threads:

•	 Each thread in the first set repeatedly deposits $100.
•	 Each thread in the second set repeatedly withdraws $100.

Programming Tip 20.2

W870  Chapter 20  Multithreading

Here is the run method of the DepositRunnable class:
public void run()
{
 try
 {
 for (int i = 1; i <= count; i++)
 {
 account.deposit(amount);
 Thread.sleep(DELAY);
 }
 }
 catch (InterruptedException exception)
 {
 }
}

The WithdrawRunnable class is similar—it withdraws money instead.
The deposit and withdraw methods of the BankAccount class have been modified to

print messages that show what is happening. For example, here is the code for the
deposit method:

public void deposit(double amount)
{
 System.out.print("Depositing " + amount);
 double newBalance = balance + amount;
 System.out.println(", new balance is " + newBalance);
 balance = newBalance;
}

You can find the complete source code at the end of this section.
Normally, the program output looks somewhat like this:
Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
Withdrawing 100.0, new balance is 100.0
. . .
Withdrawing 100.0, new balance is 0.0

In the end, the balance should be zero. However, when you run this program repeat-
edly, you may sometimes notice messed-up output, like this:

Depositing 100.0Withdrawing 100.0, new balance is 100.0
, new balance is -100.0

And if you look at the last line of the output, you will notice that the final balance is
not always zero. Clearly, something problematic is happening. You may have to try
the program several times to see this effect.

Here is a scenario that explains how a problem can occur.

1.	A deposit thread executes the lines
System.out.print("Depositing " + amount);
double newBalance = balance + amount;

in the deposit method of the BankAccount class. The value of the balance variable is
still 0, and the value of the newBalance local variable is 100.

2.	Immediately afterward, the deposit thread reaches the end of its time slice, and
the second thread gains control.

20.3 R ace Conditions   W871

3.	A withdraw thread calls the withdraw method, which prints a message and
withdraws $100 from the balance variable. It is now -100.

4.	The withdraw thread goes to sleep.
5.	The deposit thread regains control and picks up where it was interrupted. It

now executes the lines
System.out.println(", new balance is " + newBalance);
balance = newBalance;

The value of balance is now 100 (see Figure 1).
Thus, not only are the messages interleaved, but the balance is wrong. The balance
after a withdrawal and deposit should again be 0, not 100. Because the deposit method

Figure 1  Corrupting the Contents of the balance Variable

Deposit thread Withdraw thread

balance =
newBalance

balance =
newBalance

Print ", new
balance is..."

Print ", new
balance is..."

newBalance =
balance - amount

newBalance =
balance + amount

Print
"Withdrawing..."

Print
"Depositing..."

Deposit thread reaches
the end of its time slice

balance
is now –100

balance
is now 100

balance
is 0

Local variable
newBalance in deposit

method is 100

Local variable
newBalance in withdraw

method is –100

W872  Chapter 20  Multithreading

was interrupted, it used the old balance (before the withdrawal) to compute the value
of its local newBalance variable. Later, when it was activated again, it used that new
Balance value to overwrite the changed balance variable.

As you can see, each thread has its own local variables, but all threads share access
to the balance instance variable. That shared access creates a problem. This problem
is often called a race condition. All threads, in their race to complete their respective
tasks, manipulate a shared variable, and the end result depends on which of them hap-
pens to win the race.

You might argue that the reason for this problem is that we made it too easy to
interrupt the balance computation. Suppose the code for the deposit method is reor-
ganized like this:

public void deposit(double amount)
{
 balance = balance + amount;
 System.out.print("Depositing " + amount
 + ", new balance is " + balance);
}

Suppose further that you make the same change in the withdraw method. If you run the
resulting program, everything seems to be fine.

However, that is a dangerous illusion. The problem hasn’t gone away; it has become
much less frequent, and, therefore, more difficult to observe. It is still possible for the
deposit method to reach the end of its time slice after it has computed the right-hand-
side value

balance + amount

but before it performs the assignment
balance = the right-hand-side value

When the method regains control, it finally carries out the assignment, putting the
wrong value into the balance variable.

section_3/BankAccountThreadRunner.java

1 /**
2 This program runs threads that deposit and withdraw
3 money from the same bank account.
4 */
5 public class BankAccountThreadRunner
6 {
7 public static void main(String[] args)
8 {
9 BankAccount account = new BankAccount();

10 final double AMOUNT = 100;
11 final int REPETITIONS = 100;
12 final int THREADS = 100;
13
14 for (int i = 1; i <= THREADS; i++)
15 {
16 DepositRunnable d = new DepositRunnable(
17 account, AMOUNT, REPETITIONS);
18 WithdrawRunnable w = new WithdrawRunnable(
19 account, AMOUNT, REPETITIONS);
20
21 Thread dt = new Thread(d);
22 Thread wt = new Thread(w);

A race condition
occurs if the effect
of multiple threads
on shared data
depends on the order
in which the threads
are scheduled.

20.3 R ace Conditions   W873

23
24 dt.start();
25 wt.start();
26 }
27 }
28 }

section_3/DepositRunnable.java

1 /**
2 A deposit runnable makes periodic deposits to a bank account.
3 */
4 public class DepositRunnable implements Runnable
5 {
6 private static final int DELAY = 1;
7 private BankAccount account;
8 private double amount;
9 private int count;

10
11 /**
12 Constructs a deposit runnable.
13 @param anAccount the account into which to deposit money
14 @param anAmount the amount to deposit in each repetition
15 @param aCount the number of repetitions
16 */
17 public DepositRunnable(BankAccount anAccount, double anAmount,
18 int aCount)
19 {
20 account = anAccount;
21 amount = anAmount;
22 count = aCount;
23 }
24
25 public void run()
26 {
27 try
28 {
29 for (int i = 1; i <= count; i++)
30 {
31 account.deposit(amount);
32 Thread.sleep(DELAY);
33 }
34 }
35 catch (InterruptedException exception) {}
36 }
37 }

section_3/WithdrawRunnable.java

1 /**
2 A withdraw runnable makes periodic withdrawals from a bank account.
3 */
4 public class WithdrawRunnable implements Runnable
5 {
6 private static final int DELAY = 1;
7 private BankAccount account;
8 private double amount;
9 private int count;

10

W874  Chapter 20  Multithreading

11 /**
12 Constructs a withdraw runnable.
13 @param anAccount the account from which to withdraw money
14 @param anAmount the amount to withdraw in each repetition
15 @param aCount the number of repetitions
16 */
17 public WithdrawRunnable(BankAccount anAccount, double anAmount,
18 int aCount)
19 {
20 account = anAccount;
21 amount = anAmount;
22 count = aCount;
23 }
24
25 public void run()
26 {
27 try
28 {
29 for (int i = 1; i <= count; i++)
30 {
31 account.withdraw(amount);
32 Thread.sleep(DELAY);
33 }
34 }
35 catch (InterruptedException exception) {}
36 }
37 }

section_3/BankAccount.java

1 /**
2 A bank account has a balance that can be changed by
3 deposits and withdrawals.
4 */
5 public class BankAccount
6 {
7 private double balance;
8
9 /**

10 Constructs a bank account with a zero balance.
11 */
12 public BankAccount()
13 {
14 balance = 0;
15 }
16
17 /**
18 Deposits money into the bank account.
19 @param amount the amount to deposit
20 */
21 public void deposit(double amount)
22 {
23 System.out.print("Depositing " + amount);
24 double newBalance = balance + amount;
25 System.out.println(", new balance is " + newBalance);
26 balance = newBalance;
27 }
28

20.4 S ynchronizing Object Access   W875

29 /**
30 Withdraws money from the bank account.
31 @param amount the amount to withdraw
32 */
33 public void withdraw(double amount)
34 {
35 System.out.print("Withdrawing " + amount);
36 double newBalance = balance - amount;
37 System.out.println(", new balance is " + newBalance);
38 balance = newBalance;
39 }
40
41 /**
42 Gets the current balance of the bank account.
43 @return the current balance
44 */
45 public double getBalance()
46 {
47 return balance;
48 }
49 }

Program Run

Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
. . .
Withdrawing 100.0, new balance is 400.0
Depositing 100.0, new balance is 500.0
Withdrawing 100.0, new balance is 400.0
Withdrawing 100.0, new balance is 300.0

5.	 Give a scenario in which a race condition causes the bank balance to be -100
after one iteration of a deposit thread and a withdraw thread.

6.	 Suppose two threads simultaneously insert objects into a linked list. Using the
implementation in Chapter 16, explain how the list can be damaged in the
process.

Practice It	 Now you can try these exercises at the end of the chapter: R20.8, R20.9, P20.1.

20.4  Synchronizing Object Access
To solve problems such as the one that you observed in the preceding section, use a
lock object. The lock object is used to control the threads that want to manipulate a
shared resource.

The Java library defines a Lock interface and several classes that implement this
interface. The ReentrantLock class is the most commonly used lock class, and the only
one that we cover in this book. (Locks are a feature added in Java version 5.0. Earlier
versions of Java have a lower-level facility for thread synchronization—see Special
Topic 20.2).

S e l f C h e c k

W876  Chapter 20  Multithreading

Typically, a lock object is added to a class whose methods access shared resources,
like this:

public class BankAccount
{
 private Lock balanceChangeLock;
 . . .
 public BankAccount()
 {
 balanceChangeLock = new ReentrantLock();
 . . .
 }
}

All code that manipulates the shared resource is surrounded by calls to lock and
unlock the lock object:

balanceChangeLock.lock();
Manipulate the shared resource.
balanceChangeLock.unlock();

However, this sequence of statements has a potential flaw. If the code between the
calls to lock and unlock throws an exception, the call to unlock never happens. This is
a serious problem. After an exception, the current thread continues to hold the lock,
and no other thread can acquire it. To overcome this problem, place the call to unlock
into a finally clause:

balanceChangeLock.lock();
try
{
 Manipulate the shared resource.
}
finally
{
 balanceChangeLock.unlock();
}

For example, here is the code for the deposit method:
public void deposit(double amount)
{
 balanceChangeLock.lock();
 try
 {
 System.out.print("Depositing " + amount);
 double newBalance = balance + amount;
 System.out.println(", new balance is " + newBalance);
 balance = newBalance;
 }
 finally
 {
 balanceChangeLock.unlock();
 }
}

When a thread calls the lock method, it owns the lock until it calls the unlock method. If
a thread calls lock while another thread owns the lock, the first thread is temporarily
deactivated. The thread scheduler periodically reactivates such a thread so that it can
again try to acquire the lock. If the lock is still unavailable, the thread is again deacti-
vated. Eventually, when the lock is available because the original thread unlocked it,
the waiting thread can acquire the lock.

By calling the lock
method, a thread
acquires a Lock
object. Then no
other thread can
acquire the lock until
the first thread
releases the lock.

20.5 A voiding Deadlocks   W877

Figure 2 
Visualizing Object Locks

One way to visualize this behavior is to imagine that the lock object is the lock of
an old-fashioned telephone booth and the threads are people wanting to make tele-
phone calls (see Figure 2). The telephone booth can accommodate only one person at
a time. If the booth is empty, then the first person wanting to make a call goes inside
and closes the door. If another person wants to make a call and finds the booth occu-
pied, then the second person needs to wait until the first person leaves the booth. If
multiple people want to gain access to the telephone booth, they all wait outside.
They don’t necessarily form an orderly queue; a randomly chosen person may gain
access when the telephone booth becomes available again.

With the ReentrantLock class, a thread can call the lock method on a lock object that
it already owns. This can happen if one method calls another, and both start by lock-
ing the same object. The thread gives up ownership if the unlock method has been
called as often as the lock method.

By surrounding the code in both the deposit and withdraw methods with lock and
unlock calls, we ensure that our program will always run correctly. Only one thread
at a time can execute either method on a given object. Whenever a thread acquires the
lock, it is guaranteed to execute the method to completion before the other thread
gets a chance to modify the balance of the same bank account object.

7.	 If you construct two BankAccount objects, how many lock objects are created?
8.	 What happens if we omit the call unlock at the end of the deposit method?

Practice It	 Now you can try these exercises at the end of the chapter: P20.2, P20.6, P20.8.

20.5  Avoiding Deadlocks
You can use lock objects to ensure that shared data are in a consistent state when
several threads access them. However, locks can lead to another problem. It can hap-
pen that one thread acquires a lock and then waits for another thread to do some
essential work. If that other thread is currently waiting to acquire the same lock, then

S e l f C h e c k

W878  Chapter 20  Multithreading

neither of the two threads can proceed. Such a situation is called a deadlock or deadly
embrace. Let’s look at an example.

Suppose we want to disallow negative bank balances in our program. Here’s a
naive way of doing that. In the run method of the WithdrawRunnable class, we can check
the balance before withdrawing money:

if (account.getBalance() >= amount)
{
 account.withdraw(amount);
}

This works if there is only a single thread running that withdraws money. But suppose
we have multiple threads that withdraw money. Then the time slice of the current
thread may expire after the check account.getBalance() >= amount passes, but before the
withdraw method is called. If, in the interim, another thread withdraws more money,
then the test was useless, and we still have a negative balance.

Clearly, the test should be moved inside the withdraw method. That ensures that
the test for sufficient funds and the actual withdrawal cannot be separated. Thus, the
withdraw method could look like this:

public void withdraw(double amount)
{
 balanceChangeLock.lock();
 try
 {
 while (balance < amount)
 {
 Wait for the balance to grow.
 }
 . . .
 }
 finally
 {
 balanceChangeLock.unlock();
 }
}

But how can we wait for the balance to grow? We can’t simply call sleep inside the
withdraw method. If a thread sleeps after acquiring a lock, it blocks all other threads
that want to use the same lock. In particular, no other thread can successfully execute
the deposit method. Other threads will call deposit, but they will simply be blocked
until the withdraw method exits. But the withdraw method doesn’t exit until it has funds
available. This is the deadlock situation that we mentioned earlier.

To overcome this problem, we use a condition object. Condition objects allow a
thread to temporarily release a lock, so that another thread can proceed, and to regain
the lock at a later time.

In the telephone booth analogy, suppose that the coin reservoir of the telephone
is completely filled, so that no further calls can be made until a service technician
removes the coins. You don’t want the person in the booth to go to sleep with the
door closed. Instead, think of the person leaving the booth temporarily. That gives
another person (hopefully a service technician) a chance to enter the booth.

Each condition object belongs to a specific lock object. You obtain a condition
object with the newCondition method of the Lock interface. For example,

public class BankAccount
{

A deadlock occurs
if no thread can
proceed because
each thread is
waiting for another
to do some
work first.

20.5 A voiding Deadlocks   W879

 private Lock balanceChangeLock;
 private Condition sufficientFundsCondition;
 . . .
 public BankAccount()
 {
 balanceChangeLock = new ReentrantLock();
 sufficientFundsCondition = balanceChangeLock.newCondition();
 . . .
 }
}

It is customary to give the condition object a name that describes the condition that
you want to test (such as “sufficient funds”). You need to implement an appropri-
ate test. For as long as the test is not fulfilled, call the await method on the condition
object:

public void withdraw(double amount)
{
 balanceChangeLock.lock();
 try
 {
 while (balance < amount)
 {
 sufficientFundsCondition.await();
 }
 . . .
 }
 finally
 {
 balanceChangeLock.unlock();
 }
}

When a thread calls await, it is not simply deactivated in the same way as a thread that
reaches the end of its time slice. Instead, it is in a blocked state, and it will not be acti-
vated by the thread scheduler until it is unblocked. To unblock, another thread must
execute the signalAll method on the same condition object. The signalAll method
unblocks all threads waiting on the condition. They can then compete with all other
threads that are waiting for the lock object. Eventually, one of them will gain access to
the lock, and it will exit from the await method.

In our situation, the deposit method calls signalAll:
public void deposit(double amount)
{
 balanceChangeLock.lock();
 try
 {
 . . .
 sufficientFundsCondition.signalAll();
 }
 finally
 {
 balanceChangeLock.unlock();
 }
}

The call to signalAll notifies the waiting threads that sufficient funds may be avail-
able, and that it is worth testing the loop condition again.

Calling await on a
condition object
makes the current
thread wait and
allows another
thread to acquire
the lock object.

W880  Chapter 20  Multithreading

In the telephone booth analogy, the thread calling await corresponds to the person
who enters the booth and finds that the phone doesn’t work. That person then leaves
the booth and waits outside, depressed, doing absolutely nothing, even as other peo-
ple enter and leave the booth. The person knows it is pointless to try again. At some
point, a service technician enters the booth, empties the coin reservoir, and shouts a
signal. Now all the waiting people stop being depressed and again compete for the
telephone booth.

There is also a signal method, which randomly picks just one thread that is waiting
on the object and unblocks it. The signal method can be more efficient, but it is use-
ful only if you know that every waiting thread can actually proceed. In general, you
don’t know that, and signal can lead to deadlocks. For that reason, we recommend
that you always call signalAll.

The await method can throw an InterruptedException. The withdraw method propa-
gates that exception, because it has no way of knowing what the thread that calls the
withdraw method wants to do if it is interrupted.

With the calls to await and signalAll in the withdraw and deposit methods, we can
launch any number of withdrawal and deposit threads without a deadlock. If you run
the sample program, you will note that all transactions are carried out without ever
reaching a negative balance.

section_5/BankAccount.java

1 import java.util.concurrent.locks.Condition;
2 import java.util.concurrent.locks.Lock;
3 import java.util.concurrent.locks.ReentrantLock;
4
5 /**
6 A bank account has a balance that can be changed by
7 deposits and withdrawals.
8 */
9 public class BankAccount

10 {
11 private double balance;
12 private Lock balanceChangeLock;
13 private Condition sufficientFundsCondition;
14
15 /**
16 Constructs a bank account with a zero balance.
17 */
18 public BankAccount()
19 {
20 balance = 0;
21 balanceChangeLock = new ReentrantLock();
22 sufficientFundsCondition = balanceChangeLock.newCondition();
23 }
24
25 /**
26 Deposits money into the bank account.
27 @param amount the amount to deposit
28 */
29 public void deposit(double amount)
30 {
31 balanceChangeLock.lock();
32 try
33 {

A waiting thread is
blocked until another
thread calls
signalAll or signal
on the condition
object for which the
thread is waiting.

20.5 A voiding Deadlocks   W881

34 System.out.print("Depositing " + amount);
35 double newBalance = balance + amount;
36 System.out.println(", new balance is " + newBalance);
37 balance = newBalance;
38 sufficientFundsCondition.signalAll();
39 }
40 finally
41 {
42 balanceChangeLock.unlock();
43 }
44 }
45
46 /**
47 Withdraws money from the bank account.
48 @param amount the amount to withdraw
49 */
50 public void withdraw(double amount)
51 throws InterruptedException
52 {
53 balanceChangeLock.lock();
54 try
55 {
56 while (balance < amount)
57 {
58 sufficientFundsCondition.await();
59 }
60 System.out.print("Withdrawing " + amount);
61 double newBalance = balance - amount;
62 System.out.println(", new balance is " + newBalance);
63 balance = newBalance;
64 }
65 finally
66 {
67 balanceChangeLock.unlock();
68 }
69 }
70
71 /**
72 Gets the current balance of the bank account.
73 @return the current balance
74 */
75 public double getBalance()
76 {
77 return balance;
78 }
79 }

section_5/BankAccountThreadRunner.java

1 /**
2 This program runs threads that deposit and withdraw
3 money from the same bank account.
4 */
5 public class BankAccountThreadRunner
6 {
7 public static void main(String[] args)
8 {
9 BankAccount account = new BankAccount();

10 final double AMOUNT = 100;

W882  Chapter 20  Multithreading

11 final int REPETITIONS = 100;
12 final int THREADS = 100;
13
14 for (int i = 1; i <= THREADS; i++)
15 {
16 DepositRunnable d = new DepositRunnable(
17 account, AMOUNT, REPETITIONS);
18 WithdrawRunnable w = new WithdrawRunnable(
19 account, AMOUNT, REPETITIONS);
20
21 Thread dt = new Thread(d);
22 Thread wt = new Thread(w);
23
24 dt.start();
25 wt.start();
26 }
27 }
28 }

Program Run

Depositing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0
Depositing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
. . .
Withdrawing 100.0, new balance is 100.0
Depositing 100.0, new balance is 200.0
Withdrawing 100.0, new balance is 100.0
Withdrawing 100.0, new balance is 0.0

9.	 What is the essential difference between calling sleep and await?
10.	 Why is the sufficientFundsCondition object an instance variable of the BankAccount

class and not a local variable of the withdraw and deposit methods?

Practice It	 Now you can try these exercises at the end of the chapter: R20.12, P20.3, P20.4,
P20.5.

Calling await Without Calling signalAll

It is intuitively clear when to call await. If a thread finds out that it can’t do its job, it has to
wait. But once a thread has called await, it temporarily gives up all hope and doesn’t try again
until some other thread calls signalAll on the condition object for which the thread is wait-
ing. In the telephone booth analogy, if the service technician who empties the coin reservoir
doesn’t notify the waiting people, they’ll wait forever.

A common error is to have threads call await without matching calls to signalAll by other
threads. Whenever you call await, ask yourself which call to signalAll will signal your waiting
thread.

S e l f C h e c k

Common Error 20.1

20.5 A voiding Deadlocks   W883

Calling signalAll Without Locking the Object

The thread that calls signalAll must own the lock that belongs to the condition object on
which signalAll is called. Otherwise, an IllegalMonitorStateException is thrown.

In the telephone booth analogy, the service technician must shout the signal while inside the
telephone booth after emptying the coin reservoir.

In practice, this should not be a problem. Remember that signalAll is called by a thread that
has just changed the state of some shared data in a way that may benefit waiting threads. That
change should be protected by a lock in any case. As long as you use a lock to protect all access
to shared data, and you are in the habit of calling signalAll after every beneficial change, you
won’t run into problems. But if you use signalAll in a haphazard way, you may encounter the
IllegalMonitorStateException.

Object Locks and Synchronized Methods

The Lock and Condition classes were added in Java version 5.0. They overcome limitations of
the thread synchronization mechanism in earlier Java versions. In this note, we discuss that
classic mechanism.

Every Java object has one built-in lock and one built-in condition variable. The lock works
in the same way as a ReentrantLock object. However, to acquire the lock, you call a synchro-
nized method.

You simply tag all methods that contain thread-sensitive code (such as the deposit and with-
draw methods of the BankAccount class) with the synchronized reserved word.

public class BankAccount
{
 public synchronized void deposit(double amount)
 {
 System.out.print("Depositing " + amount);
 double newBalance = balance + amount;
 System.out.println(", new balance is " + newBalance);
 balance = newBalance;
 }

 public synchronized void withdraw(double amount)
 {
 . . .
 }
 . . .
}

When a thread calls a synchronized method on a BankAccount object, it owns that object’s lock
until it returns from the method and thereby unlocks the object. When an object is locked by
one thread, no other thread can enter a synchronized method for that object. When another
thread makes a call to a synchronized method for that object, the calling thread is automati-
cally deactivated and needs to wait until the first thread has unlocked the object again.

In other words, the synchronized reserved word automatically implements the lock/try/
finally/unlock idiom for the built-in lock.

The object lock has a single condition variable that you manipulate with the wait, notifyAll,
and notify methods of the Object class. If you call x.wait(), the current thread is added to the

Common Error 20.2

Special Topic 20.2

W884  Chapter 20  Multithreading

set of threads that is waiting for the condition of the object x. Most commonly, you will call
wait(), which makes the current thread wait on this. For example,

public synchronized void withdraw(double amount)
 throws InterruptedException
{
 while (balance < amount)
 {
 wait();
 }
 . . .
}

The call notifyAll() unblocks all threads that are waiting for this:

public synchronized void deposit(double amount)
{
 . . .
 notifyAll();
}

This classic mechanism is undeniably simpler than using explicit locks and condition variables.
However, there are limitations. Each object lock has one condition variable, and you can’t test
whether another thread holds the lock. If these limitations are not a problem, by all means, go
ahead and use the synchronized reserved word. If you need more control over threads, the Lock
and Condition interfaces give you additional flexibility.

The Java Memory Model

In a computer with multiple CPUs, you have to be particularly careful when multiple threads
access shared data. Because modern processors are quite a bit faster than RAM memory, each
CPU has its own memory cache that stores copies of frequently used memory locations. If a
thread changes shared data, another thread may not see the change until both processor caches
are synchronized. The same effect can happen even on a computer with a single CPU—occa-
sionally, memory values are cached in CPU registers.

The Java language specification contains a set of rules, called the memory model, that
describes under which circumstances the virtual machine must ensure that changes to shared
data are visible in other threads. One of the rules states the following:
•	 If a thread changes shared data and then releases a lock, and another thread acquires the

same lock and reads the same data, then it is guaranteed to see the changed data.
However, if the first thread does not release a lock, then the virtual machine is not required to
write cached data back to memory. Similarly, if the second thread does not acquire the lock,
the virtual machine is not required to refresh its cache from memory.

Thus, you should always use locks or synchronized methods when you access data that is
shared among multiple threads, even if you are not concerned about race conditions.

20.6  Application: Algorithm Animation
One popular use for thread programming is animation. A program that displays an
animation shows different objects moving or changing in some way as time pro-
gresses. This is often achieved by launching one or more threads that compute how
parts of the animation change.

Special Topic 20.3

20.6 A pplication: Algorithm Animation   W885

You can use the Swing Timer class for simple animations without having to do any
thread programming—see Exercise P20.19 for an example. However, more advanced
animations are best implemented with threads.

In this section you will see a particular kind of animation, namely the visualization
of the steps of an algorithm. Algorithm animation is an excellent technique for gain-
ing a better understanding of how an algorithm works. Many algorithms can be ani-
mated—type “Java algorithm animation” into your favorite web search engine, and
you’ll find lots of links to web pages with animations of various algorithms.

 All algorithm animations have a similar structure. The algorithm runs in a separate
thread that periodically updates an image of the current state of the algorithm and
then pauses so that the user can view the image. After a short amount of time, the
algorithm thread wakes up again and runs to the next point of interest in the algo-
rithm. It then updates the image and pauses again. This sequence is repeated until the
algorithm has finished.

Let’s take the selection sort algorithm of Chapter 14 as an example. That algo-
rithm sorts an array of values. It first finds the smallest element, by inspecting all
elements in the array, and bringing the smallest element to the leftmost position. It
then finds the smallest element among the remaining elements and brings it into the
second position. It keeps going in that way. As the algorithm progresses, the sorted
part of the array grows.

How can you visualize this algorithm? It is useful to show the part of the array
that is already sorted in a different color. Also, we want to show how each step of the
algorithm inspects another element in the unsorted part. That demonstrates why the
selection sort algorithm is so slow—it first inspects all elements of the array, then all
but one, and so on. If the array has n elements, the algorithm inspects

(1) (2)
(1)

2
�+ − + − + =

+
n n n

n n

or O(n2) elements. To demonstrate that, we mark the currently visited element in red.
Thus, the algorithm state is described by three items:

•	 The array of values

•	 The size of the already sorted area

•	 The currently marked element

We add this state to the SelectionSorter class.

public class SelectionSorter
{
 // This array is being sorted
 private int[] a;
 // These instance variables are needed for drawing
 private int markedPosition = -1;
 private int alreadySorted = -1;
 . . .
}

The array that is being sorted is now an instance variable, and we will change the sort
method from a static method to an instance method.

This state is accessed by two threads: the thread that sorts the array and the thread
that paints the frame. We use a lock to synchronize access to the shared state.

Use a separate thread
for running the
algorithm that is
being animated.

The algorithm state
needs to be safely
accessed by the
algorithm and
painting threads.

W886  Chapter 20  Multithreading

Finally, we add a component instance variable to the algorithm class and augment the
constructor to set it. That instance variable is needed for repainting the component
and finding out the dimensions of the component when drawing the algorithm state.

public class SelectionSorter
{
 private JComponent component;
 . . .
 public SelectionSorter(int[] anArray, JComponent aComponent)
 {
 a = anArray;
 sortStateLock = new ReentrantLock();
 component = aComponent;
 }
}

At each point of interest, the algorithm needs to pause so that the user can admire
the graphical output. We supply the pause method shown below, and call it at various
places in the algorithm. The pause method repaints the component and sleeps for a
small delay that is proportional to the number of steps involved.

public void pause(int steps) throws InterruptedException
{
 component.repaint();
 Thread.sleep(steps * DELAY);
}

We add a draw method to the algorithm class that can draw the current state of the data
structure, with the items of special interest highlighted. The draw method is specific to
the particular algorithm. This draw method draws the array elements as a sequence of
sticks in different colors. The already sorted portion is blue, the marked position is
red, and the remainder is black (see Figure 3).

public void draw(Graphics g)
{
 sortStateLock.lock();
 try
 {
 int deltaX = component.getWidth() / a.length;
 for (int i = 0; i < a.length; i++)
 {
 if (i == markedPosition)
 {
 g.setColor(Color.RED);
 }
 else if (i <= alreadySorted)
 {
 g.setColor(Color.BLUE);
 }
 else
 {
 g.setColor(Color.BLACK);
 }
 g.drawLine(i * deltaX, 0, i * deltaX, a[i]);
 }
 }
 finally
 {
 sortStateLock.unlock();
 }
}

20.6 A pplication: Algorithm Animation   W887

Figure 3  A Step in the Animation
of the Selection Sort Algorithm

You need to update the special positions as the algorithm progresses and pause the
animation whenever something interesting happens. The pause should be propor-
tional to the number of steps that are being executed. For a sorting algorithm, pause
one unit for each visited array element.

Here is the minimumPosition method from Chapter 14:
public static int minimumPosition(int[] a, int from)
{
 int minPos = from;
 for (int i = from + 1; i < a.length; i++)
 {
 if (a[i] < a[minPos]) { minPos = i; }
 }
 return minPos;
}

After each iteration of the for loop, update the marked position of the algorithm
state; then pause the program. To measure the cost of each step fairly, pause for two
units of time, because two array elements were inspected. Because we need to access
the marked position and call the pause method, we need to change the method to an
instance method:

private int minimumPosition(int from)
 throws InterruptedException
{
 int minPos = from;
 for (int i = from + 1; i < a.length; i++)
 {
 sortStateLock.lock();
 try
 {
 if (a[i] < a[minPos]) { minPos = i; }
 // For animation
 markedPosition = i;

W888  Chapter 20  Multithreading

 }
 finally
 {
 sortStateLock.unlock();
 }
 pause(2);
 }
 return minPos;
}

The sort method is augmented in the same way. You will find the code at the end of
this section. This concludes the modification of the algorithm class. Let us now turn
to the component class.

The component’s paintComponent method calls the draw method of the algorithm
object.

public class SelectionSortComponent extends JComponent
{
 private SelectionSorter sorter;
 . . .
 public void paintComponent(Graphics g)
 {
 sorter.draw(g);
 }
}

The SelectionSortComponent constructor constructs a SelectionSorter object, which
supplies a new array and the this reference to the component that displays the sorted
values:

public SelectionSortComponent()
{
 int[] values = ArrayUtil.randomIntArray(30, 300);
 sorter = new SelectionSorter(values, this);
}

The startAnimation method constructs a thread that calls the sorter’s sort method:
public void startAnimation()
{
 class AnimationRunnable implements Runnable
 {
 public void run()
 {
 try
 {
 sorter.sort();
 }
 catch (InterruptedException exception)
 {
 }
 }
 }

 Runnable r = new AnimationRunnable();
 Thread t = new Thread(r);
 t.start();
}

The class for the viewer program that displays the animation is at the end of this
example. Run the program and the animation starts.

20.6 A pplication: Algorithm Animation   W889

Exercise P20.17 asks you to animate the merge sort algorithm of Chapter 14. If you
do that exercise, then start both programs and run them in parallel to see which algo-
rithm is faster. Actually, you may find the result surprising. If you build fair delays
into the merge sort animation to account for the copying from and to the temporary
array, you will find that it doesn’t perform all that well for small arrays. But if you
increase the array size, then the advantage of the merge sort algorithm becomes clear.

section_6/SelectionSortViewer.java

1 import java.awt.BorderLayout;
2 import javax.swing.JButton;
3 import javax.swing.JFrame;
4
5 public class SelectionSortViewer
6 {
7 public static void main(String[] args)
8 {
9 JFrame frame = new JFrame();

10
11 final int FRAME_WIDTH = 300;
12 final int FRAME_HEIGHT = 400;
13
14 frame.setSize(FRAME_WIDTH, FRAME_HEIGHT);
15 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
16
17 final SelectionSortComponent component
18 = new SelectionSortComponent();
19 frame.add(component, BorderLayout.CENTER);
20
21 frame.setVisible(true);
22 component.startAnimation();
23 }
24 }

section_6/SelectionSortComponent.java

1 import java.awt.Graphics;
2 import javax.swing.JComponent;
3
4 /**
5 A component that displays the current state of the selection sort algorithm.
6 */
7 public class SelectionSortComponent extends JComponent
8 {
9 private SelectionSorter sorter;

10
11 /**
12 Constructs the component.
13 */
14 public SelectionSortComponent()
15 {
16 int[] values = ArrayUtil.randomIntArray(30, 300);
17 sorter = new SelectionSorter(values, this);
18 }
19
20 public void paintComponent(Graphics g)
21 {

W890  Chapter 20  Multithreading

22 sorter.draw(g);
23 }
24
25 /**
26 Starts a new animation thread.
27 */
28 public void startAnimation()
29 {
30 class AnimationRunnable implements Runnable
31 {
32 public void run()
33 {
34 try
35 {
36 sorter.sort();
37 }
38 catch (InterruptedException exception)
39 {
40 }
41 }
42 }
43
44 Runnable r = new AnimationRunnable();
45 Thread t = new Thread(r);
46 t.start();
47 }
48 }

section_6/SelectionSorter.java

1 import java.awt.Color;
2 import java.awt.Graphics;
3 import java.util.concurrent.locks.Lock;
4 import java.util.concurrent.locks.ReentrantLock;
5 import javax.swing.JComponent;
6
7 /**
8 This class sorts an array, using the selection sort algorithm.
9 */

10 public class SelectionSorter
11 {
12 // This array is being sorted
13 private int[] a;
14 // These instance variables are needed for drawing
15 private int markedPosition = -1;
16 private int alreadySorted = -1;
17
18 private Lock sortStateLock;
19
20 // The component is repainted when the animation is paused
21 private JComponent component;
22
23 private static final int DELAY = 100;
24
25 /**
26 Constructs a selection sorter.
27 @param anArray the array to sort
28 @param aComponent the component to be repainted when the animation
29 pauses

20.6 A pplication: Algorithm Animation   W891

30 */
31 public SelectionSorter(int[] anArray, JComponent aComponent)
32 {
33 a = anArray;
34 sortStateLock = new ReentrantLock();
35 component = aComponent;
36 }
37
38 /**
39 Sorts the array managed by this selection sorter.
40 */
41 public void sort()
42 throws InterruptedException
43 {
44 for (int i = 0; i < a.length - 1; i++)
45 {
46 int minPos = minimumPosition(i);
47 sortStateLock.lock();
48 try
49 {
50 ArrayUtil.swap(a, minPos, i);
51 // For animation
52 alreadySorted = i;
53 }
54 finally
55 {
56 sortStateLock.unlock();
57 }
58 pause(2);
59 }
60 }
61
62 /**
63 Finds the smallest element in a tail range of the array.
64 @param from the first position in a to compare
65 @return the position of the smallest element in the
66 range a[from] . . . a[a.length - 1]
67 */
68 private int minimumPosition(int from)
69 throws InterruptedException
70 {
71 int minPos = from;
72 for (int i = from + 1; i < a.length; i++)
73 {
74 sortStateLock.lock();
75 try
76 {
77 if (a[i] < a[minPos]) { minPos = i; }
78 // For animation
79 markedPosition = i;
80 }
81 finally
82 {
83 sortStateLock.unlock();
84 }
85 pause(2);
86 }
87 return minPos;
88 }
89

W892  Chapter 20  Multithreading

90 /**
91 Draws the current state of the sorting algorithm.
92 @param g the graphics context
93 */
94 public void draw(Graphics g)
95 {
96 sortStateLock.lock();
97 try
98 {
99 int deltaX = component.getWidth() / a.length;

100 for (int i = 0; i < a.length; i++)
101 {
102 if (i == markedPosition)
103 {
104 g.setColor(Color.RED);
105 }
106 else if (i <= alreadySorted)
107 {
108 g.setColor(Color.BLUE);
109 }
110 else
111 {
112 g.setColor(Color.BLACK);
113 }
114 g.drawLine(i * deltaX, 0, i * deltaX, a[i]);
115 }
116 }
117 finally
118 {
119 sortStateLock.unlock();
120 }
121 }
122
123 /**
124 Pauses the animation.
125 @param steps the number of steps to pause
126 */
127 public void pause(int steps)
128 throws InterruptedException
129 {
130 component.repaint();
131 Thread.sleep(steps * DELAY);
132 }
133 }

11.	 Why is the draw method added to the SelectionSorter class and not the Selection-
SortComponent class?

12.	 Would the animation still work if the startAnimation method simply called sorter.
sort() instead of spawning a thread that calls that method?

Practice It	 Now you can try these exercises at the end of the chapter: R20.14, P20.14, P20.16.

S e l f C h e c k

Chapter Summary  W893

Describe how multiple threads execute concurrently.

•	 A thread is a program unit that is executed concurrently with other parts of the
program.

•	 The start method of the Thread class starts a new thread that executes the run
method of the associated Runnable object.

•	 The sleep method puts the current thread to sleep for a given number of
milliseconds.

An embedded system
is a computer system

that controls a device. The device
contains a processor and other hard­
ware and is controlled by a computer
program. Unlike a personal computer,
which has been designed to be flex­
ible and run many different computer
programs, the hardware and software
of an embedded system are tailored
to a specific device. Computer-con­
trolled devices are becoming increas­
ingly common, ranging from washing
machines to medical equipment, auto­
mobile engines, and spacecraft.

Several challenges are specific to
programming embedded systems.
Most importantly, a much higher stan­
dard of quality control applies. Vendors
are often unconcerned about bugs in
personal computer software, because
they can always make you install a
patch or upgrade to the next version.
But in an embedded system, that is not
an option. Few consumers would feel
comfortable upgrading the software
in their washing machines or auto­
mobile engines. If you ever handed in
a programming assignment that you
believed to be correct, only to have
the instructor or grader find bugs in it,
then you know how hard it is to write
software that can reliably do its task
for many years without a chance of
changing it.

Quality standards are especially
important in devices whose failure
would destroy property or human
life—see Random Fact 7.2.

Many personal computer purchas­
ers buy computers that are fast and
have a lot of storage, because the
investment is paid back over time
when many programs are run on the
same equipment. But the hardware for
an embedded device is not shared—it
is dedicated to one device. A separate
processor, memory, and so on, are built
for every copy of the device (see the
photo). If it is possible to shave a few
pennies off the manufacturing cost of
every unit, the savings can add up
quickly for devices that are produced
in large volumes. Thus, the embedded-
system programmer has a much larger

economic incentive to conserve
resources than the programmer of
desktop software. Unfortunately, try­
ing to conserve resources usually
makes it harder to write programs that
work correctly.

Generally, embedded systems are
written in lower-level programming
languages to avoid the overhead of a
complex run-time system. The Java
run-time system, with its safety mech­
anisms, garbage collector, support
for multithreading, and so on, would
be too costly to add to every wash­
ing machine. However, some devices
are now being built with a scaled-

down version of Java:
the Java 2 Micro Edi­
tion. Examples are
smart cell phones and
onboard computers
for automobiles. The
Java 2 Micro Edition
is a good candidate
for devices that are
connected to a net­
work and that need
to be able to run new
applications safely.
For example, you can
download a program
into a Java-enabled cell
phone and be assured
that it cannot corrupt
other parts of the cell
phone software.

The Controller of an Embedded System

Random Fact 20.1  Embedded Systems

C h a p t e r S u mm a r y

W894  Chapter 20  Multithreading

•	 When a thread is interrupted, the most common response is to terminate the
run method.

•	 The thread scheduler runs each thread for a short amount of time, called a
time slice.

Choose appropriate mechanisms for terminating threads.

•	 A thread terminates when its run method terminates.
•	 The run method can check whether its thread has been interrupted by calling the

interrupted method.

Recognize the causes and effects of race conditions.

•	 A race condition occurs if the effect of multiple threads on shared data depends
on the order in which the threads are scheduled.

Use locks to control access to resources that are shared by multiple threads.

•	 By calling the lock method, a thread acquires a Lock object. Then
no other thread can acquire the lock until the first thread
releases the lock.

Explain how deadlocks occur and how they can be avoided with condition objects.

•	 A deadlock occurs if no thread can proceed because each thread is waiting for
another to do some work first.

•	 Calling await on a condition object makes the current thread wait and allows
another thread to acquire the lock object.

•	 A waiting thread is blocked until another thread calls signalAll or signal on the
condition object for which the thread is waiting.

Use multiple threads to display an animation of an algorithm.

•	 Use a separate thread for running the algorithm that is being animated.
•	 The algorithm state needs to be safely accessed by the algorithm and painting

threads.

java.lang.InterruptedException
java.lang.Object
 notify
 notifyAll
 wait
java.lang.Runnable
 run
java.lang.Thread
 interrupted
 sleep
 start

java.util.Date
java.util.concurrent.locks.Condition
 await
 signal
 signalAll
java.util.concurrent.locks.Lock
 lock
 newCondition
 unlock
java.util.concurrent.locks.ReentrantLock

S ta n d a r d L i b r a r y I t e m s I n t r o d u c e d i n t h i s C h a p t e r

Programming Exercises  W895

• R20.1	 Run a program with the following instructions:
GreetingRunnable r1 = new GreetingRunnable("Hello");
GreetingRunnable r2 = new GreetingRunnable("Goodbye");
r1.run();
r2.run();

Note that the threads don’t run in parallel. Explain.

••• R20.2	 In the program of Section 20.1, is it possible that both threads are sleeping at the
same time? Is it possible that neither of the two threads is sleeping at a particular
time? Explain.

••• R20.3	 In Java, a graphical user interface program has more than one thread. Explain how
you can prove that.

••• R20.4	 Why is the stop method for stopping a thread deprecated? How do you terminate a
thread?

• R20.5	 Give an example of why you would want to terminate a thread.

•• R20.6	 Suppose you surround each call to the sleep method with a try/catch block to catch
an InterruptedException and ignore it. What problem do you create?

•• R20.7	 What is a race condition? How can you avoid it?

•• R20.8	 Consider the ArrayList implementation from Section 16.2. Describe two different
scenarios in which race conditions can corrupt the data structure.

•• R20.9	 Consider a stack that is implemented as a linked list, as in Section 16.3.1. Describe
two different scenarios in which race conditions can corrupt the data structure.

•• R20.10	 Consider a queue that is implemented as a circular array, as in Section 16.3.4.
Describe two different scenarios in which race conditions can corrupt the data struc-
ture.

•• R20.11	 What is a deadlock? How can you avoid it?

• R20.12	 What is the difference between a thread that sleeps by calling sleep and a thread that
waits by calling await?

• R20.13	 What happens when a thread calls await and no other thread calls signalAll or signal?

•• R20.14	 In the algorithm animation program of Section 20.6, we do not use any conditions.
Why not?

•• P20.1	 Write a program in which multiple threads add and remove elements from a java.
util.LinkedList. Demonstrate that the list is being corrupted.

•• P20.2	 Implement a stack as a linked list in which the push, pop, and isEmpty methods can be
safely accessed from multiple threads.

••• P20.3	 Implement a Queue class whose add and remove methods are synchronized. Supply one
thread, called the producer, which keeps inserting strings into the queue as long as

R e v i e w E x e r c i s e s

P r o g r a mm i n g E x e r c i s e s

W896  Chapter 20  Multithreading

there are fewer than 10 elements in it. When the queue gets too full, the thread waits.
As sample strings, simply use time stamps new Date().toString(). Supply a second
thread, called the consumer, that keeps removing and printing strings from the queue
as long as the queue is not empty. When the queue is empty, the thread waits. Both
the consumer and producer threads should run for 100 iterations.

• P20.4	 Enhance the program of Exercise P20.3 by supplying a variable number of producer
and consumer threads. Prompt the program user for the numbers.

• P20.5	 Reimplement Exercise P20.4 by using the ArrayBlockingQueue class from the standard
library.

•• P20.6	 Modify the ArrayList implementation of Section 16.2 so that all methods can be
safely accessed from multiple threads.

•• P20.7	 Write a program WordCount that counts the words in one or more files. Start a new
thread for each file. For example, if you call

java WordCount report.txt address.txt Homework.java

then the program might print
address.txt: 1052
Homework.java: 445
report.txt: 2099

••• P20.8	 Enhance the program of Exercise P20.7 so that the last active thread also prints a
combined count. Use locks to protect the combined word count and a counter of
active threads.

•• P20.9	 Write a program Find that searches all files specified on the command line and prints
out all lines containing a reserved word. Start a new thread for each file. For example,
if you call

java Find Buff report.txt address.txt Homework.java

then the program might print
report.txt: Buffet style lunch will be available at the
address.txt: Buffet, Warren|11801 Trenton Court|Dallas|TX
Homework.java: BufferedReader in;
address.txt: Walters, Winnie|59 Timothy Circle|Buffalo|MI

•• P20.10	 Add a condition to the deposit method of the BankAccount class in Section 20.5,
restricting deposits to $100,000 (the insurance limit of the U.S. government). The
method should block until sufficient money has been withdrawn by another thread.
Test your program with a large number of deposit threads.

••• P20.11	 Implement the merge sort algorithm of Chapter 14 by spawning a new thread
for each smaller MergeSorter. Hint: Use the join method of the Thread class to wait
for the spawned threads to finish. Look up the method’s behavior in the API docu-
mentation.

•• Graphics P20.12	 Write a program that shows two cars moving across a window. Use a separate thread
for each car.

••• Graphics P20.13	 Modify Exercise P20.12 so that the cars change direction when they hit an edge of
the window.

Programming Exercises  W897

• Graphics P20.14	 Enhance the SelectionSorter of Section 20.6 so that the current minimum is painted in
yellow.

•• Graphics P20.15	 Enhance the SelectionSortViewer of Section 20.6 so that the sorting only starts when
the user clicks a “Start” button.

•• Graphics P20.16	 Instead of using a thread and a pause method, use the Timer class introduced in
Chapter 11 to animate an algorithm. Whenever the timer sends out an action event,
run the algorithm to the next step and display the state. That requires a more exten-
sive recoding of the algorithm. You need to implement a runToNextStep method that is
capable of running the algorithm one step at a time. Add sufficient instance variables
to the algorithm to remember where the last step left off. For example, in the case of
the selection sort algorithm, if you know the values of alreadySorted and markedPosi-
tion, you can determine the next step.

••• Graphics P20.17	 Implement an animation of the merge sort algorithm of Chapter 14. Reimplement
the algorithm so that the recursive calls sort the elements inside a subrange of the
original array, rather than in their own arrays:

public void mergeSort(int from, int to)
{
 if (from == to) { return; }
 int mid = (from + to) / 2;
 mergeSort(from, mid);
 mergeSort(mid + 1, to);
 merge(from, mid, to);
}

The merge method merges the sorted ranges a[from] . . . a[mid] and a[mid + 1] . . .
a[to]. Merge the ranges into a temporary array, then copy back the temporary array
into the combined range.
Pause in the merge method whenever you inspect an array element. Color the range
a[from] . . . a[to] in blue and the currently inspected element in red.

••• Graphics P20.18	 Enhance Exercise P20.17 so that it shows two frames, one for a merge sorter and one
for a selection sorter. They should both sort arrays with the same values.

••• Graphics P20.19	 Reorganize the code of the sorting animation in Section 20.6 so that it can be used
for generic animations. Provide a class Animated with abstract methods

public void run()
public void draw(Graphics g, int width, int height)

and concrete methods
public void lock()
public void unlock(int steps)
public void setComponent(JComponent component)

so that the SelectionSorter can be implemented as
public class SelectionSorter extends Animated
{
 private int[] a;
 private int markedPosition = -1;
 private int alreadySorted = -1;

 public SelectionSorter(int[] anArray) { a = anArray; }

W898  Chapter 20  Multithreading

 public void run()
 {
 for (int i = 0; i < a.length - 1; i++)
 {
 int minPos = minimumPosition(i);
 lock();
 ArrayUtil.swap(a, minPos, i);
 alreadySorted = i;
 unlock(2);
 }
 }

 private int minimumPosition(int from)
 {
 int minPos = from;
 for (int i = from + 1; i < a.length; i++)
 {
 lock();
 if (a[i] < a[minPos]) { minPos = i; }
 markedPosition = i;
 unlock(2);
 }
 return minPos;
 }

 public void draw(Graphics g, int width, int height)
 {
 int deltaX = width / a.length;
 for (int i = 0; i < a.length; i++)
 {
 if (i == markedPosition) { g.setColor(Color.RED); }
 else if (i <= alreadySorted) { g.setColor(Color.BLUE); }
 else { g.setColor(Color.BLACK); }
 g.drawLine(i * deltaX, 0, i * deltaX, a[i]);
 }
 }
}

The remaining classes should be independent of any particular animation.

Answers to Self-Check Questions  W899

1.	 The messages are printed about one millisec-
ond apart.

2.	 The first call to run would print ten “Hello”
messages, and then the second call to run would
print ten “Goodbye” messages.

3.	 If the user hits the “Back” button, the current
web page is no longer displayed, and it makes
no sense to expend network resources to fetch
additional image data.

4.	 The run method prints the values 1, 3, and 4.
The call to interrupt merely sets the interrup-
tion flag, but the sleep method immediately
throws an InterruptedException.

5.	 There are many possible scenarios. Here is
one:
a.	The first thread loses control after the first

print statement.
b.	The second thread loses control just before

the assignment balance = newBalance.
c.	The first thread completes the deposit

method.
d.	The second thread completes the withdraw

method.
6.	 One thread calls addFirst and is preempted

just before executing the assignment first =
newNode. Then the next thread calls addFirst,

using the old value of first. Then the first
thread completes the process, setting first to
its new node. As a result, the links are not in
sequence.

7.	 Two, one for each bank account object. Each
lock protects a separate balance variable.

8.	 When a thread calls deposit, it continues to
own the lock, and any other thread trying to
deposit or withdraw money in the same bank
account is blocked forever.

9.	 A sleeping thread is reactivated when the sleep
delay has passed. A waiting thread is only reac-
tivated if another thread has called signalAll or
signal.

10.	 The calls to await and signal/signalAll must be
made to the same object.

11.	 The draw method uses the array values and
the values that keep track of the algorithm’s
progress. These values are available only in the
SelectionSorter class.

12.	 Yes, provided you only show a single frame. If
you modify the SelectionSortViewer program to
show two frames, you want the sorters to run
in parallel.

A n s w e r s t o S e l f- C h e c k Q u e s t i o n s

